1
|
Prete A, Bancos I. Mild autonomous cortisol secretion: pathophysiology, comorbidities and management approaches. Nat Rev Endocrinol 2024; 20:460-473. [PMID: 38649778 DOI: 10.1038/s41574-024-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The majority of incidentally discovered adrenal tumours are benign adrenocortical adenomas and the prevalence of adrenocortical adenomas is around 1-7% on cross-sectional abdominal imaging. These can be non-functioning adrenal tumours or they can be associated with autonomous cortisol secretion on a spectrum that ranges from rare clinically overt adrenal Cushing syndrome to the much more prevalent mild autonomous cortisol secretion (MACS) without signs of Cushing syndrome. MACS is diagnosed (based on an abnormal overnight dexamethasone suppression test) in 20-50% of patients with adrenal adenomas. MACS is associated with cardiovascular morbidity, frailty, fragility fractures, decreased quality of life and increased mortality. Management of MACS should be individualized based on patient characteristics and includes adrenalectomy or conservative follow-up with treatment of associated comorbidities. Identifying patients with MACS who are most likely to benefit from adrenalectomy is challenging, as adrenalectomy results in improvement of cardiovascular morbidity in some, but not all, patients with MACS. Of note, diagnosis and management of patients with bilateral MACS is especially challenging. Current gaps in MACS clinical practice include a lack of specific biomarkers diagnostic of MACS-related health outcomes and a paucity of clinical trials demonstrating the efficacy of adrenalectomy on comorbidities associated with MACS. In addition, little evidence exists to demonstrate the efficacy and safety of long-term medical therapy in patients with MACS.
Collapse
Affiliation(s)
- Alessandro Prete
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Peng K, Liu Q, Wang N, Wang L, Duan X, Ding D. Association between smoking and alcohol drinking and benign adrenal tumors: a Mendelian randomization study. Endocrine 2024; 84:1206-1215. [PMID: 38409624 DOI: 10.1007/s12020-024-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND In recent years, the detection rate of adrenal tumors has increased, but it is unclear whether smoking and alcohol drinking are risk factors for benign adrenal tumors. The objective of this study is to employ Mendelian randomization (MR) analysis to explore the causal relationship between smoking, alcohol drinking and susceptibility to benign adrenal tumors. METHODS We acquired large-scale data from publicly accessible databases on genome-wide association studies (GWAS) pertaining to smoking, alcohol drinking and benign adrenal tumors. A total of 11 sets of instrumental variables (IVs) and 281 associated single nucleotide polymorphic (SNP) loci were identified. The Mendelian randomization analyses were conducted using inverse variance weighting (IVW), MR-Egger regression and weighted median estimation (WME) methods, in addition to sensitivity analyses. RESULTS There is no causal relationship between smoking status, alcohol drinking status, alcohol intake frequency, alcohol taken with meals, alcohol consumption and benign adrenal tumors, while pack years of smoking and cigarettes per day are risk factors for benign adrenal tumors. The IVW analysis revealed that both the pack years of smoking and cigarettes per day were positively associated with an increased risk of benign adrenal tumors (OR = 2.853, 95%CI = 1.384-5.878, p = 0.004; OR = 1.543, 95%CI = 1.147-2.076, p = 0.004). Two SNPs (rs8042849 in the analysis of pack years of smoking and rs8034191 in the analysis of cigarettes per day) significantly drove the observed causal effects. CONCLUSION Two-sample Mendelian randomization analysis showed a causal effect between smoking but not alcohol consumption and benign adrenal tumors.
Collapse
Affiliation(s)
- Kun Peng
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qingyuan Liu
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ning Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Lingdian Wang
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Xiaoyu Duan
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Degang Ding
- Department of Urology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
3
|
Tyczewska M, Sujka-Kordowska P, Szyszka M, Jopek K, Blatkiewicz M, Malendowicz LK, Rucinski M. Transcriptome Profile of the Rat Adrenal Gland: Parenchymal and Interstitial Cells. Int J Mol Sci 2023; 24:ijms24119159. [PMID: 37298112 DOI: 10.3390/ijms24119159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The homeostasis of the adrenal gland plays a decisive role in its proper functioning, both in non-stressful conditions and under the influence of various types of stress. This consists of interactions between all types of cells that make up the organ, including parenchymal and interstitial cells. The amount of available information on this subject in the rat adrenal glands under non-stressful conditions is insufficient; the aim of the research was to determine the expression of marker genes for rat adrenal cells depending on their location. The material for the study consisted of adrenal glands taken from intact adult male rats that were separated into appropriate zones. Transcriptome analysis by means of Affymetrix® Rat Gene 2.1 ST Array was used in the study, followed by real-time PCR validation. Expression analysis of interstitial cell marker genes revealed both the amount of expression of these genes and the zone in which they were expressed. The expression of marker genes for fibroblasts was particularly high in the cells of the ZG zone, while the highest expression of specific macrophage genes was observed in the adrenal medulla. The results of this study, especially with regard to interstitial cells, provide a so far undescribed model of marker gene expression of various cells, both in the cortex and medulla of the sexually mature rat adrenal gland. The interdependence between parenchymal and interstitial cells creates a specific microenvironment that is highly heterogeneous within the gland with respect to some of the interstitial cells. This phenomenon most likely depends on the interaction with the differentiated parenchymal cells of the cortex, as well as the medulla of the gland.
Collapse
Affiliation(s)
- Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Ludwik K Malendowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland
| |
Collapse
|
4
|
Bertherat J, Bourdeau I, Bouys L, Chasseloup F, Kamenicky P, Lacroix A. Clinical, pathophysiologic, genetic and therapeutic progress in Primary Bilateral Macronodular Adrenal Hyperplasia. Endocr Rev 2022:6957368. [PMID: 36548967 DOI: 10.1210/endrev/bnac034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) usually present bilateral benign adrenocortical macronodules at imaging and variable levels of cortisol excess. PBMAH is a rare cause of primary overt Cushing's syndrome, but may represent up to one third of bilateral adrenal incidentalomas with evidence of cortisol excess. The increased steroidogenesis in PBMAH is often regulated by various G-protein coupled receptors aberrantly expressed in PBMAH tissues; some receptor ligands are ectopically produced in PBMAH tissues creating aberrant autocrine/paracrine regulation of steroidogenesis. The bilateral nature of PBMAH and familial aggregation, led to the identification of germline heterozygous inactivating mutations of the ARMC5 gene, in 20-25% of the apparent sporadic cases and more frequently in familial cases; ARMC5 mutations/pathogenic variants can be associated with meningiomas. More recently, combined germline mutations/pathogenic variants and somatic events inactivating the KDM1A gene were specifically identified in patients affected by GIP-dependent PBMAH. Functional studies demonstrated that inactivation of KDM1A leads to GIP-receptor (GIPR) overexpression and over or down-regulation of other GPCRs. Genetic analysis is now available for early detection of family members of index cases with PBMAH carrying identified germline pathogenic variants. Detailed biochemical, imaging, and co-morbidities assessment of the nature and severity of PBMAH is essential for its management. Treatment is reserved for patients with overt or mild cortisol/aldosterone or other steroid excesses taking in account co-morbidities. It previously relied on bilateral adrenalectomy; however recent studies tend to favor unilateral adrenalectomy, or less frequently, medical treatment with cortisol synthesis inhibitors or specific blockers of aberrant GPCR.
Collapse
Affiliation(s)
- Jerôme Bertherat
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Lucas Bouys
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - Peter Kamenicky
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| |
Collapse
|
5
|
Guan Y, Yue S, Chen Y, Pan Y, An L, Du H, Liang C. Molecular Cluster Mining of Adrenocortical Carcinoma via Multi-Omics Data Analysis Aids Precise Clinical Therapy. Cells 2022; 11:cells11233784. [PMID: 36497046 PMCID: PMC9737968 DOI: 10.3390/cells11233784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a malignancy of the endocrine system. We collected clinical and pathological features, genomic mutations, DNA methylation profiles, and mRNA, lncRNA, microRNA, and somatic mutations in ACC patients from the TCGA, GSE19750, GSE33371, and GSE49278 cohorts. Based on the MOVICS algorithm, the patients were divided into ACC1-3 subtypes by comprehensive multi-omics data analysis. We found that immune-related pathways were more activated, and drug metabolism pathways were enriched in ACC1 subtype patients. Furthermore, ACC1 patients were sensitive to PD-1 immunotherapy and had the lowest sensitivity to chemotherapeutic drugs. Patients with the ACC2 subtype had the worst survival prognosis and the highest tumor-mutation rate. Meanwhile, cell-cycle-related pathways, amino-acid-synthesis pathways, and immunosuppressive cells were enriched in ACC2 patients. Steroid and cholesterol biosynthetic pathways were enriched in patients with the ACC3 subtype. DNA-repair-related pathways were enriched in subtypes ACC2 and ACC3. The sensitivity of the ACC2 subtype to cisplatin, doxorubicin, gemcitabine, and etoposide was better than that of the other two subtypes. For 5-fluorouracil, there was no significant difference in sensitivity to paclitaxel between the three groups. A comprehensive analysis of multi-omics data will provide new clues for the prognosis and treatment of patients with ACC.
Collapse
Affiliation(s)
- Yu Guan
- Department of Urology, The First Affifiliated Hospital of Anhui Medical University, 218th Jixi Road, Hefei 230022, China
- Institute of Urology, Anhui Medical University, 81th Meishan Road, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University (AHMU), 81th Meishan Road, Hefei 230022, China
| | - Shaoyu Yue
- Department of Urology, The First Affifiliated Hospital of Anhui Medical University, 218th Jixi Road, Hefei 230022, China
- Institute of Urology, Anhui Medical University, 81th Meishan Road, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University (AHMU), 81th Meishan Road, Hefei 230022, China
| | - Yiding Chen
- Department of Urology, The First Affifiliated Hospital of Anhui Medical University, 218th Jixi Road, Hefei 230022, China
- Institute of Urology, Anhui Medical University, 81th Meishan Road, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University (AHMU), 81th Meishan Road, Hefei 230022, China
| | - Yuetian Pan
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany
| | - Lingxuan An
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany
| | - Hexi Du
- Department of Urology, The First Affifiliated Hospital of Anhui Medical University, 218th Jixi Road, Hefei 230022, China
- Institute of Urology, Anhui Medical University, 81th Meishan Road, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University (AHMU), 81th Meishan Road, Hefei 230022, China
- Correspondence: (H.D.); (C.L.); Tel.: +86-18856040979 (H.D.); +86-13505604595 (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affifiliated Hospital of Anhui Medical University, 218th Jixi Road, Hefei 230022, China
- Institute of Urology, Anhui Medical University, 81th Meishan Road, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University (AHMU), 81th Meishan Road, Hefei 230022, China
- Correspondence: (H.D.); (C.L.); Tel.: +86-18856040979 (H.D.); +86-13505604595 (C.L.)
| |
Collapse
|
6
|
Xu W, Zheng J, Wang X, Zhou B, Chen H, Li G, Yan F. tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to suppress the proliferation of gastric carcinoma. Cell Commun Signal 2022; 20:68. [PMID: 35590368 PMCID: PMC9118711 DOI: 10.1186/s12964-022-00857-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background As a new kind of non-coding RNAs (ncRNAs), tRNA derivatives play an important role in gastric carcinoma (GC). Nevertheless, the underlying mechanism tRNA derivatives were involved in was rarely illustrated. Methods We screened out the tRNA derivative, tRF-Val-CAC-016, based on the tsRNA sequencing and demonstrated the effect tRF-Val-CAC-016 exerted on GC proliferation in vitro and in vivo. We applied Dual-luciferase reporter assay, RIP assay, and bioinformatic analysis to discover the downstream target of tRF-Val-CAC-016. Then CACNA1d was selected, and the oncogenic characteristics were verified. Subsequently, we detected the possible regulation of the canonical MAPK signaling pathway to further explore the downstream mechanism of tRF-Val-CAC-016. Results As a result, we found that tRF-Val-CAC-016 was low-expressed in GC, and upregulation of tRF-Val-CAC-016 could significantly suppress the proliferation of GC cell lines. Meanwhile, tRF-Val-CAC-016 regulated the canonical MAPK signaling pathway by targeting CACNA1d. Conclusions tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to suppress the proliferation of gastric carcinoma. This study discussed the function and mechanism of tRF-Val-CAC-016 in GC for the first time. The pioneering work has contributed to our present understanding of tRNA derivative, which might provide an alternative mean for the targeted therapy of GC. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00857-9.
Collapse
Affiliation(s)
- Weiguo Xu
- Department of General Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Junyu Zheng
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, Jiangsu, China
| | - Xiao Wang
- Department of Radiology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bin Zhou
- Department of Gastric Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, Jiangsu, China
| | - Huanqiu Chen
- Department of Gastric Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, Jiangsu, China.
| | - Gang Li
- Department of Gastric Surgery, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, Jiangsu, China.
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Baiziting No. 42, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
7
|
Sandru F, Petca RC, Carsote M, Petca A, Dumitrascu M, Ghemigian A. Adrenocortical carcinoma: Pediatric aspects (Review). Exp Ther Med 2022; 23:287. [DOI: 10.3892/etm.2022.11216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Florica Sandru
- Department of Dermatology, ‘Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Răzvan-Cosmin Petca
- Department of Urology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihai Dumitrascu
- Department of Obstetrics and Gynecology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adina Ghemigian
- Department of Endocrinology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
8
|
Bolger GB. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front Endocrinol (Lausanne) 2022; 13:1024423. [PMID: 36313756 PMCID: PMC9612118 DOI: 10.3389/fendo.2022.1024423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The cAMP-signaling cancers, which are defined by functionally-significant somatic mutations in one or more elements of the cAMP signaling pathway, have an unexpectedly wide range of cell origins, clinical manifestations, and potential therapeutic options. Mutations in at least 9 cAMP signaling pathway genes (TSHR, GPR101, GNAS, PDE8B, PDE11A, PRKARA1, PRKACA, PRKACB, and CREB) have been identified as driver mutations in human cancer. Although all cAMP-signaling pathway cancers are driven by mutation(s) that impinge on a single signaling pathway, the ultimate tumor phenotype reflects interactions between five critical variables: (1) the precise gene(s) that undergo mutation in each specific tumor type; (2) the effects of specific allele(s) in any given gene; (3) mutations in modifier genes (mutational "context"); (4) the tissue-specific expression of various cAMP signaling pathway elements in the tumor stem cell; and (5) and the precise biochemical regulation of the pathway components in tumor cells. These varying oncogenic mechanisms reveal novel and important targets for drug discovery. There is considerable diversity in the "druggability" of cAMP-signaling components, with some elements (GPCRs, cAMP-specific phosphodiesterases and kinases) appearing to be prime drug candidates, while other elements (transcription factors, protein-protein interactions) are currently refractory to robust drug-development efforts. Further refinement of the precise driver mutations in individual tumors will be essential for directing priorities in drug discovery efforts that target these mutations.
Collapse
|
9
|
Abou Nader N, Boyer A. Adrenal Cortex Development and Maintenance: Knowledge Acquired From Mouse Models. Endocrinology 2021; 162:6362524. [PMID: 34473283 DOI: 10.1210/endocr/bqab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal cortex is an endocrine organ organized into concentric zones that are specialized to produce specific steroid hormones essential for life. The development and maintenance of the adrenal cortex are complex, as a fetal adrenal is first formed from a common primordium with the gonads, followed by its separation in a distinct primordium, the invasion of the adrenal primordium by neural crest-derived cells to form the medulla, and finally its encapsulation. The fetal cortex is then replaced by a definitive cortex, which will establish zonation and be maintained throughout life by regeneration relying on the proliferation, centripetal migration, and differentiation of several stem/progenitor cell populations whose activities are sex-specific. Here, we highlight the advances made, using transgenic mouse models, to delineate the molecular mechanisms regulating these processes.
Collapse
Affiliation(s)
- Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
10
|
Teuber JP, Nanba K, Turcu AF, Chen X, Zhao L, Else T, Auchus RJ, Rainey WE, Rege J. Intratumoral steroid profiling of adrenal cortisol-producing adenomas by liquid chromatography- mass spectrometry. J Steroid Biochem Mol Biol 2021; 212:105924. [PMID: 34089832 PMCID: PMC8734951 DOI: 10.1016/j.jsbmb.2021.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Endogenous Cushing syndrome (CS) is an endocrine disorder marked by excess cortisol production rendering patients susceptible to visceral obesity, dyslipidemia, hypertension, osteoporosis and diabetes mellitus. Adrenal CS is characterized by autonomous production of cortisol from cortisol-producing adenomas (CPA) via adrenocorticotropic hormone-independent mechanisms. A limited number of studies have quantified the steroid profiles in sera from patients with CS. To understand the intratumoral steroid biosynthesis, we quantified 19 steroids by mass spectrometry in optimal cutting temperature compound (OCT)-embedded 24 CPA tissue from patients with overt CS (OCS, n = 10) and mild autonomous cortisol excess (MACE, n = 14). Where available, normal CPA-adjacent adrenal tissue (AdjN) was also collected and used for comparison (n = 8). Immunohistochemistry (IHC) for CYP17A1 and HSD3B2, two steroidogenic enzymes required for cortisol synthesis, was performed on OCT sections to confirm the presence of tumor tissue and guided subsequent steroid extraction from the tumor. LC-MS/MS was used to quantify steroids extracted from CPA and AdjN. Our data indicated that CPA demonstrated increased concentrations of cortisol, cortisone, 11-deoxycortisol, corticosterone, progesterone, 17OH-progesterone and 16OH-progesterone as compared to AdjN (p < 0.05). Compared to OCS, MACE patient CPA tissue displayed higher concentrations of corticosterone, 18OH-corticosterone, 21-deoxycortisol, progesterone, and 17OH-progesterone (p < 0.05). These findings also demonstrate that OCT-embedded tissue can be used to define intra-tissue steroid profiles, which will have application for steroid-producing and steroid-responsive tumors.
Collapse
Affiliation(s)
- James P Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xuan Chen
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard J Auchus
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Abstract
Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances, including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France
| | - Andreas Schedl
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
12
|
Chen D, Shen Z, Cheng X, Wang Q, Zhou J, Ren F, Sun Y, Wang H, Huang R. Homeobox A5 activates p53 pathway to inhibit proliferation and promote apoptosis of adrenocortical carcinoma cells by inducing Aldo-Keto reductase family 1 member B10 expression. Bioengineered 2021; 12:1964-1975. [PMID: 34027794 PMCID: PMC8806264 DOI: 10.1080/21655979.2021.1924545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Aldo-Keto Reductase Family 1 Member B10 (AKR1B10) and Homeobox A5 (HOXA5) are both down-regulated in adrenocortical carcinoma (ACC), and HOXA5 is predicted to bind to the promoter of AKR1B10. We aimed to investigate whether HOXA5 could bind to AKR1B10 to regulate ACC cells proliferation and apoptosis. The expression of AKR1B10 and HOXA5 in ACC patients and the relationship of their expression between ACC prognosis were evaluated by searching database. Then, NCI-H295R cells were overexpressed to detect the alteration of cell proliferation, apoptosis and the expression of p53 and p21 proteins. The interaction between AKR1B10 and HOXA5 was validated by luciferase report and chromatin immunoprecipitation. Finally, NCI-H295R cells were silenced with HOXA5 in the presence of AKR1B10 overexpression, and then cell proliferation and apoptosis were also assessed. Results revealed that AKR1B10 and HOXA5 are down-regulated in ACC patients and the low expression of it is correlated with low percent of overall survival (OS) and disease free survival (DFS). Compared with Y1 cells, SW-13 and NCI-H295R cells exerted lower expression of AKR1B10 and HOXA5. AKR1B10 significantly inhibited cell viability, colony formation and expression of Ki67 and PCNA, but promoted apoptosis and expression of p53 and p21 in NCI-H295R cells. HOXA5 could interact with AKR1B10 and enhance AKR1B10 expression. Furthermore, HOXA5 knockdown obviously blocked the effect of AKR1B10 overexpression on NCI-H295R cells proliferation and apoptosis. In conclusion, HOXA5 could bind to AKR1B10 promotor to increase its expression, activate p53 signaling, thereby inhibiting proliferation and promoting apoptosis of ACC cells.
Collapse
Affiliation(s)
- Danyan Chen
- Departments of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhaonan Shen
- Departments of Nephrology, The Fifth People's Hospital of Chongqing, Chongqing China
| | - Xi Cheng
- Departments of Science & Education, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qi Wang
- Departments of Laboratory, Chengdu Sixth People's Hospital, Chengdu, Sichuan Province China
| | - Junlin Zhou
- Departments of Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province China
| | - Fang Ren
- Departments of Emergency, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing China
| | - Yue Sun
- Departments of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing China
| | - Hongman Wang
- Departments of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Rongxi Huang
- Departments of Endocrinology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
13
|
Ma H, Li R, Di X, Jin X, Wang Y, Lai B, Shi C, Ji M, Zhu X, Wang K. ITRAQ-based proteomic analysis reveals possible target-related proteins in human adrenocortical adenomas. BMC Genomics 2019; 20:655. [PMID: 31419939 PMCID: PMC6697928 DOI: 10.1186/s12864-019-6030-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism (PA), which is the most common form of secondary arterial hypertension. However, the authentic fundamental mechanisms underlying ACAs remain unclear. Objective Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and bioinformatics analyses from etiological studies of ACAs were performed to screen the differentially expressed proteins (DEPs) and investigate the relevant mechanisms of their occurrence and development. Results could help determine therapeutic targets of clinical significance. Methods In the present study, iTRAQ-based proteomics was applied to analyze ACA tissue samples from normal adrenal cortex tissues adjacent to the tumor. Using proteins extracted from a panel of four pairs of ACA samples, we identified some upregulated proteins and other downregulated proteins in all four pairs of ACA samples compared with adjacent normal tissue. Subsequently, we predicted protein–protein interaction networks of three DEPs to determine the authentic functional factors in ACA. Results A total of 753 DEPs were identified, including 347 upregulated and 406 downregulated proteins. The expression of three upregulated proteins (E2F3, KRT6A, and ALDH1A2) was validated by Western blot in 24 ACA samples. Our data suggested that some DEPs might be important hallmarks during the development of ACA. Conclusions This study is the first proteomic research to investigate alterations in protein levels and affected pathways in ACA using the iTRAQ technique. Thus, this study not only provides a comprehensive dataset on overall protein changes but also sheds light on its potential molecular mechanism in human ACAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6030-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- He Ma
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Hematology, the Second Hospital of Jilin University, Changchun, China
| | - Yan Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Bingjie Lai
- Department of Intensive Care Unit, the Second Hospital of Jilin University, Changchun, China
| | - Cailian Shi
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Mingxin Ji
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Xinran Zhu
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|