1
|
Zheng S, Ge Y, Fang X, Liu M, Sun H, Deng X, Liao L. Multiplex Nontargeted Framework Enables Tracking Metabolic Profile of Oxymetholone and Methasterone In Vivo at Nanogram Level by GC-Orbitrap-HRMS for Antidoping Purpose. Anal Chem 2025. [PMID: 39883123 DOI: 10.1021/acs.analchem.4c06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol. Healthy volunteers each ingested one tablet of the drug, and urine samples were collected over 50 days in postadministration phase. The complete detection of the three fractions (free fraction, glucuronide fraction, and sulfate fraction) of the metabolites was carried out. The GC-Orbitrap-HRMS full-scan mode was employed to detect postadministration urine samples, comparing these with preadministration baseline urine samples to identify newly formed substances. Electron ionization (EI) mass spectra were used to infer possible metabolite structures, leading to the discovery of three novel metabolites of oxymetholone and two novel metabolites of methasterone. Notably, the newly identified oxymetholone metabolite, 2-methylene-17α-methyl-androstane-16ξ,17β-diol-3-one (O-M6), was detectable as a glucuronide conjugate up to 4 days after administration. The methasterone metabolite, 18-nor-17β-hydroxymethyl-2α,17α-dimethyl-5α-androst-13-en-3-one (M-M4), exhibited prolonged detectability as a glucuronide conjugate, being present in urine samples from both volunteers up to 50 days after administration. These findings have significant implications for antidoping purpose, providing extended detection windows for these anabolic steroids.
Collapse
Affiliation(s)
- Siying Zheng
- Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shanghai Anti-doping Laboratory, 900 Jiangwancheng Road, Shanghai 200438, China
| | - Yuqi Ge
- Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shanghai Anti-doping Laboratory, 900 Jiangwancheng Road, Shanghai 200438, China
| | - Xian Fang
- Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shanghai Anti-doping Laboratory, 900 Jiangwancheng Road, Shanghai 200438, China
| | - Mengpan Liu
- Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shanghai Anti-doping Laboratory, 900 Jiangwancheng Road, Shanghai 200438, China
| | - Haoyi Sun
- Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shanghai Anti-doping Laboratory, 900 Jiangwancheng Road, Shanghai 200438, China
| | - Xiaojun Deng
- Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shanghai Anti-doping Laboratory, 900 Jiangwancheng Road, Shanghai 200438, China
| | - Lei Liao
- Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shanghai Anti-doping Laboratory, 900 Jiangwancheng Road, Shanghai 200438, China
| |
Collapse
|
2
|
Qiu F, Ai Q, Li J, Wu H. Transcriptome analysis reveals the genetic basis underlying the formation and seasonal changes of nuptial pads in Rana chensinensis. BMC Genomics 2024; 25:1254. [PMID: 39736519 DOI: 10.1186/s12864-024-11176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood. RESULTS To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R. chensinensis. We identified numerous sexually and seasonally differential expression genes in nuptial pads. Notably, genes including KRT, TRY, HPDB, AKR1C1, and AKR1C3 were identified as potential key regulators of keratinization and coloration variation in nuptial pads. We further examined gene co-expression modules closely linked to nuptial pad development. These modules contained genes involved in signal transduction, substance transport, cytoskeletal structure, energy metabolism, and protein modification, suggesting that the development of nuptial pads is a complex multifaceted regulatory process. Furthermore, genes in modules associated with pad development during the breeding season were primarily involved in apoptosis, steroid hormone synthesis, autophagy, and cytochrome P450 pathways, suggesting their pivotal role in pad formation. Additionally, key regulators of the cell cycle, such as FOXO4, PIK3C2A, and GSPT2, were implicated in influencing nuptial pad development by modulating cell differentiation and proliferation. CONCLUSIONS Our study provides a valuable reference for investigating the molecular basis of sexual dimorphism in R. chensinensis and other amphibian species more broadly.
Collapse
Affiliation(s)
- Fuyuan Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China
| | - Qingbo Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China
| | - Jun Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China
| | - Hua Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
3
|
Liu S, Zheng Q, Bai F. Differences of Atomic-Level Interactions between Midazolam and Two CYP Isoforms 3A4 and 3A5. Molecules 2023; 28:6900. [PMID: 37836743 PMCID: PMC10574787 DOI: 10.3390/molecules28196900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
CYP 3A4 and CYP 3A5 are two important members of the human cytochrome P450 family. Although their overall structures are similar, the local structures of the active site are different, which directly leads to obvious individual differences in drug metabolic efficacy and toxicity. In this work, midazolam (MDZ) was selected as the probe substrate, and its interaction with two proteins, CYP 3A4 and CYP 3A5, was studied by molecular dynamics simulation (MD) along with the calculation of the binding free energy. The results show that two protein-substrate complexes have some similarities in enzyme-substrate binding; that is, in both complexes, Ser119 forms a high occupancy hydrogen bond with MDZ, which plays a key role in the stability of the interaction between MDZ and the enzymes. However, the complex formed by CYP 3A4 and MDZ is more stable, which may be attributed to the sandwich structure formed by the fluorophenyl group of the substrate with Leu216 and Leu482. Our study interprets the binding differences between two isoform-substrate complexes and reveals a structure-function relationship from the atomic perspective, which is expected to provide a theoretical basis for accurately measuring the effectiveness and toxicity of drugs for individuals in the era of precision medicine.
Collapse
Affiliation(s)
- Shuhui Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
- School and Hospital of Stomatology, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| | - Fuquan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| |
Collapse
|
4
|
Zhao J, Zhang X, Wang Y, Huang H, Sharma S, Sharma SS, Wolf CA, Liu S, Wolber G, Sorensen EJ, Bureik M. Exploring the Chemical Space of Proluciferins as Probe Substrates for Human Cytochrome P450 Enzymes. Appl Biochem Biotechnol 2023; 195:1042-1058. [PMID: 36287330 DOI: 10.1007/s12010-022-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
We report the synthesis of 21 new proluciferin compounds that bear a small aliphatic ether group connected to the 6' hydroxy function of firefly luciferin and either contain an acid or methyl ester function at the dihydrothiazole ring. Each of these compounds was found to be a substrate for some members of the human CYP1 and CYP3 families; a total of 92 new enzyme-substrate pairs were identified. In a screen of the whole human P450 complement (CYPome) with three selected proluciferin acid substrates, another 13 enzyme-substrate pairs were detected, which involve enzymes belonging to the CYP2, CYP4, CYP7, CYP21, and CYP27 families. All in all, we identified new probe substrates for members of seven out of 18 human CYP families.
Collapse
Affiliation(s)
- Jie Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yueyin Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Huimin Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Shishir Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | | | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Sijie Liu
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Erik J Sorensen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Loke S, de la Torre X, Iannone M, La Piana G, Schlörer N, Botrè F, Bureik M, Parr MK. Controlled administration of dehydrochloromethyltestosterone in humans: Urinary excretion and long-term detection of metabolites for anti-doping purpose. J Steroid Biochem Mol Biol 2021; 214:105978. [PMID: 34418529 DOI: 10.1016/j.jsbmb.2021.105978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Dehydrochloromethyltestosterone (DHCMT) is an anabolic-androgenic steroid that was developed by Jenapharm in the 1960s and was marketed as Oral Turinabol®. It is prohibited in sports at all times; nevertheless, there are several findings by anti-doping laboratories every year. New long-term metabolites have been proposed in 2011/12, which resulted in adverse analytical findings in retests of the Olympic games of 2008 and 2012. However, no controlled administration trial monitoring these long-term metabolites was reported until now. In this study, DHCMT (5 mg, p.o.) was administered to five healthy male volunteers and their urine samples were collected for a total of 60 days. The unconjugated and the glucuronidated fraction were analyzed separately by gas chromatography coupled to tandem mass spectrometry. The formation of the described long-term metabolites was verified, and their excretion monitored in detail. Due to interindividual differences there were several varieties in the excretion profiles among the volunteers. The metabolite M3, which has a fully reduced A-ring and modified D-ring structure, was identified by comparison with reference material as 4α-chloro-17β-hydroxymethyl-17α-methyl-18-nor-5α-androstan-13-en-3α-ol. It was found to be suitable as long-term marker for the intake of DHCMT in four of the volunteers. In one of the volunteers, it was detectable for 45 days after single oral dose administration. However, in two of the volunteers M5 (already published as long-term metabolite in the 1990s) showed longer detection windows. In one volunteer M3 was undetectable but another metabolite, M2, was found as the longest detectable metabolite. The last sample clearly identified as positive was collected between 9.9 and 44.9 days. Furthermore, the metabolite epiM4 (partially reduced A-ring and a modified D-ring structure which is epimerized in position 17 compared to M3) was identified in the urine of all volunteers with the help of chemically synthesized reference as 4-chloro-17α-hydroxymethyl-17β-methyl-18-nor-androsta-4,13-dien-3β-ol. It may serve as additional confirmatory metabolite. It is highly recommended to screen for all known metabolites in both fractions, glucuronidated and unconjugated, to improve identification of cheating athletes. This study also offers some deeper insights into the metabolism of DHCMT and of 17α-methyl steroids in general.
Collapse
Affiliation(s)
- Steffen Loke
- Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2+4, 14195, Berlin, Germany.
| | | | - Michele Iannone
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, Rome, 00197, Italy.
| | - Giuseppe La Piana
- Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2+4, 14195, Berlin, Germany.
| | - Nils Schlörer
- Universität zu Köln, NMR facility, Department of Chemistry, Greinstraße 4, 50939, Cologne, Germany.
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, Rome, 00197, Italy; REDs - Research and Expertise in antiDoping Sciences, ISSUL - Institute des Sciences du Sport, Université de Lausanne, 1015, Lausanne, Switzerland.
| | - Matthias Bureik
- Tianjin University, School of Pharmaceutical Science and Technology, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Maria Kristina Parr
- Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2+4, 14195, Berlin, Germany.
| |
Collapse
|
6
|
Zschiesche A, Chundela Z, Thieme D, Keiler AM. HepG2 as promising cell-based model for biosynthesis of long-term metabolites: Exemplified for metandienone. Drug Test Anal 2021; 14:298-306. [PMID: 34705329 DOI: 10.1002/dta.3184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022]
Abstract
In order to detect the abuse of substances in sports, the knowledge of their metabolism is of undisputable importance. As in vivo administration of compounds faces ethical problems and might even not be applicable for nonapproved compounds, cell-based models might be a versatile tool for biotransformation studies. We coincubated HepG2 cells with metandienone and D3 -epitestosterone for 14 days. Phase I and II metabolites were analyzed by high-performance liquid chromatography (HPLC)-tandem mass spectrometry and confirmed by gas chromatography-mass spectrometry (GC-MS). The metandienone metabolites formed by HepG2 cells were comparable with those renally excreted by humans. HepG2 cells also generated the two long-term metabolites 17β-hydroxymethyl-17α-methyl-18-nor-androst-1,4,13-trien-3-one and 17α-hydroxymethyl-17β-methyl-18-nor-androst-1,4,13-trien-3-one used in doping analyses, though in an inverse ratio compared with that observed in human urine. In conclusion, we showed that HepG2 cells are suitable as model for the investigation of biotransformation of androgens, especially for the anabolic androgenic steroid metandienone. They further proved to cover phase I and II metabolic pathways, which combined with a prolonged incubation time with metandienone resulted in the generation of its respective long-term metabolites known from in vivo metabolism. Moreover, we showed the usability of D3 -epitestosterone as internal standard for the incubation. The method used herein appears to be suitable and advantageous compared with other models for the investigation of doping-relevant compounds, probably enabling the discovery of candidate metabolites for doping analyses.
Collapse
Affiliation(s)
- Annette Zschiesche
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Zdenek Chundela
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Annekathrin M Keiler
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany.,Faculty of Biology, Environmental Monitoring & Endocrinology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Loke S, Stoll A, Machalz D, Botrè F, Wolber G, Bureik M, Parr MK. Corticosteroid Biosynthesis Revisited: No Direct Hydroxylation of Pregnenolone by Steroid 21-Hydroxylase. Front Endocrinol (Lausanne) 2021; 12:633785. [PMID: 34149610 PMCID: PMC8211424 DOI: 10.3389/fendo.2021.633785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450s (CYPs) are an essential family of enzymes in the human body. They play a crucial role in metabolism, especially in human steroid biosynthesis. Reactions catalyzed by these enzymes are highly stereo- and regio-specific. Lack or severe malfunctions of CYPs can cause severe diseases and even shorten life. Hence, investigations on metabolic reactions and structural requirements of substrates are crucial to gain further knowledge on the relevance of different enzymes in the human body functions and the origin of diseases. One key enzyme in the biosynthesis of gluco- and mineralocorticoids is CYP21A2, also known as steroid 21-hydroxylase. To investigate the steric and regional requirements of substrates for this enzyme, we performed whole-cell biotransformation assays using a strain of fission yeast Schizosaccharomyces pombe recombinantly expressing CYP21A2. The progestogens progesterone, pregnenolone, and their 17α-hydroxy-derivatives were used as substrates. After incubation, samples were analyzed using gas chromatography coupled to mass spectrometry. For progesterone and 17α-hydroxyprogesterone, their corresponding 21-hydroxylated metabolites 11-deoxycorticosterone and 11-deoxycortisol were detected, while after incubation of pregnenolone and 17α-hydroxypregnenolone, no hydroxylated product was observed. Findings were confirmed with authentic reference material. Molecular docking experiments agree with these results and suggest that interaction between the 3-oxo group and arginine-234 of the enzyme is a strict requirement. The presented results demonstrate once more that the presence of an oxo-group in position 3 of the steroid is indispensable, while a 3-hydroxy group prevents hydroxylation in position C-21 by CYP21A2. This knowledge may be transferred to other CYP21A2 substrates and hence help to gain essential insights into steroid metabolism.
Collapse
Affiliation(s)
- Steffen Loke
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Anna Stoll
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Francesco Botrè
- Federazione Medico Sportiva Italiana, Laboratorio Antidoping Federazione Medico Sportiva Italiana (FMSI), Rome, Italy
- ISSUL—Institute des sciences du sport, Université de Lausanne, Lausanne, Switzerland
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Sharma S, Sharma SS, Zhang X, Bureik JP, Sorensen EJ, Bureik M. Conversion of five proluciferin esters by human cytochrome P450 enzymes. Biotechnol J 2021; 16:e2100007. [PMID: 33909340 DOI: 10.1002/biot.202100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Probe substrates are an important tool for activity monitoring of human drug metabolizing enzymes such as cytochromes P450 (CYPs). BRIEF METHODS In the present study we have tested human CYPs for metabolization of five proluciferin ester substrates which had previously only been known to be hydroxylated by CYP26A1. MAJOR RESULTS It was found that these substrates were converted by another 21 human CYPs, which belong to the CYP families 1 to 4, 7, and 26. Thus, 66 new pairs of enzyme and substrate were identified. Correlation analysis indicated the presence of three distinct sets of enzymes with high similarity in their activity profiles that encompass a total of 16 individual enzymes. CONCLUSIONS Some of these newly identified correlations may serve as a starting point for further study of those human CYPs whose activities are not yet satisfactorily understood.
Collapse
Affiliation(s)
- Shishir Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| | - Xue Zhang
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| | - Jan-Philipp Bureik
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris Saclay, Palaiseau cedex, France
| | - Erik J Sorensen
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China.,Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Loke S, Liu L, Wenzel M, Scheffler H, Iannone M, de la Torre X, Schlörer N, Botrè F, Keiler AM, Bureik M, Parr MK. New Insights into the Metabolism of Methyltestosterone and Metandienone: Detection of Novel A-Ring Reduced Metabolites. Molecules 2021; 26:1354. [PMID: 33802606 PMCID: PMC7961831 DOI: 10.3390/molecules26051354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/09/2023] Open
Abstract
Metandienone and methyltestosterone are orally active anabolic-androgenic steroids with a 17α-methyl structure that are prohibited in sports but are frequently detected in anti-doping analysis. Following the previously reported detection of long-term metabolites with a 17ξ-hydroxymethyl-17ξ-methyl-18-nor-5ξ-androst-13-en-3ξ-ol structure in the chlorinated metandienone analog dehydrochloromethyltestosterone ("oral turinabol"), in this study we investigated the formation of similar metabolites of metandienone and 17α-methyltestosterone with a rearranged D-ring and a fully reduced A-ring. Using a semi-targeted approach including the synthesis of reference compounds, two diastereomeric substances, viz. 17α-hydroxymethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol and its 5α-analog, were identified following an administration of methyltestosterone. In post-administration urines of metandienone, only the 5β-metabolite was detected. Additionally, 3α,5β-tetrahydro-epi-methyltestosterone was identified in the urines of both administrations besides the classical metabolites included in the screening procedures. Besides their applicability for anti-doping analysis, the results provide new insights into the metabolism of 17α-methyl steroids with respect to the order of reductions in the A-ring, the participation of different enzymes, and alterations to the D-ring.
Collapse
Affiliation(s)
- Steffen Loke
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| | - Lingyu Liu
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| | - Maxi Wenzel
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| | - Heike Scheffler
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| | - Michele Iannone
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (M.I.); (X.d.l.T.); (F.B.)
| | - Xavier de la Torre
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (M.I.); (X.d.l.T.); (F.B.)
| | - Nils Schlörer
- Institute for Organic Chemistry, Universität zu Köln, Grenstraße 4, 50939 Cologne, Germany;
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (M.I.); (X.d.l.T.); (F.B.)
- REDs–Research and Expertise in Antidoping Sciences, ISSUL–Institute del Sciences du Sport de l’Université de Lausanne, 1015 Lausanne, Switzerland
| | - Annekathrin Martina Keiler
- Institute of Doping Analysis & Sports Biochemistry Dresden, Dresdner Str. 12, 01731 Kreischa, Germany;
- Environmental Monitoring & Endocrinology, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China;
| | - Maria Kristina Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (S.L.); (L.L.); (M.W.); (H.S.)
| |
Collapse
|
10
|
Weldemichael DM, Zhou K, Su SJ, Zhao L, Marchisio MA, Bureik M. Futile cycling by human microsomal cytochrome P450 enzymes within intact fission yeast cells. Arch Biochem Biophys 2021; 701:108791. [PMID: 33592181 DOI: 10.1016/j.abb.2021.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Human cytochrome P450 enzymes (CYPs or P450s) are known to be reduced by their electron transfer partners in the absence of substrate and in turn to reduce other acceptor molecules such as molecular oxygen, thereby creating superoxide anions (O2-•). This process is known as futile cycling. Using our previously established fission yeast expression system we have monitored cells expressing each one of the 50 human microsomal CYPs in the absence of substrate for oxidation of dihydroethidium in living cells by flow cytometry. It was found that 38 of these display a statistically significant increase in O2-• production. More specifically, cells expressing some CYPs were found to be intermediate strength O2-• producers, which means that their effect was comparable to that of treatment with 3 mM H2O2. Cells expressing other CYPs had an even stronger effect, with those expressing CYP2B6, CYP5A1, CYP2A13, CYP51A1, or CYP1A2, respectively, being the strongest producers of O2-•.
Collapse
Affiliation(s)
- Dawit M Weldemichael
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Shi-Jia Su
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Lin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
11
|
Shostko DY, Liubina AI, Kozyrkov YY, Beliaev SA. The synthesis of 4-chloro-17β-hydroxymethyl-17α-methyl-18-norandrosta-4,13-diene-3α-ol - Proposed long term metabolite (M4) of oralturinabol. Steroids 2020; 158:108601. [PMID: 32084502 DOI: 10.1016/j.steroids.2020.108601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
4-Chloro-17β-hydroxymethyl-17α-methyl-18-norandrosta-4,13-diene-3α-ol is one of proposed long term metabolites of oralturinabol (anabolic androgenic steroid restricted in sport). The synthesis of 4-chloro-17β-hydroxymethyl-17α-methyl-18-norandrosta-4,13-diene-3α-ol was achieved. Isomerisation of configuration of 13-carbon was used for construction of 17β-hydroxymethyl-17α-methyl fragment. The proposed route of synthesis allows to obtain 3β-hydroxy isomer as well.
Collapse
Affiliation(s)
- D Yu Shostko
- National Anti-Doping Laboratory, Lesnoy 31, 223040, Belarus
| | - A I Liubina
- National Anti-Doping Laboratory, Lesnoy 31, 223040, Belarus
| | - Yu Yu Kozyrkov
- National Anti-Doping Laboratory, Lesnoy 31, 223040, Belarus.
| | - S A Beliaev
- National Anti-Doping Laboratory, Lesnoy 31, 223040, Belarus
| |
Collapse
|
12
|
Loke S, Stoll A, Joseph JF, Machalz D, de la Torre X, Botrè F, Wolber G, Bureik M, Parr M. Corticosteroid Biosynthesis Revisited: Substrate Specificity of Steroid 21‐Hydroxylase. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Scomparin A, Bureik M. A convenient new method for reproducible fed-batch fermentation of fission yeast Schizosaccharomyces pombe. Biotechnol Lett 2020; 42:937-943. [PMID: 32064568 DOI: 10.1007/s10529-020-02840-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Development of an open-loop fed-batch protocol for highly reproducible fermentation of fission yeast that starts from batch cultures instead of glucose-limited aerobic chemostat cultures. RESULTS A new strategy was employed that consists of an exponential feeding phase followed by a starvation period and then a linear feeding phase. A comparison of several independent fed-batch fermentations of a recombinant fission yeast strain showed that while during the initial phase process parameters such as glucose consumption and CO2 evolution varied considerably as expected, they were much more uniform during the third phase. For instance, the normalized standard deviation of glucose consumption was thirty times higher during the exponential feeding phase of the fermentation that during the linear feeding phase. CONCLUSION These data demonstrate the usefulness of the proposed strategy. It is expected that by variation of only two parameters (the total amount of glucose fed in the initial phase and the time frame of the starvation phase) the protocol can easily be adapted to other microbes.
Collapse
Affiliation(s)
- Alberto Scomparin
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China.
| |
Collapse
|
14
|
Lin B, Zhang H, Zheng Q. How do mutations affect the structural characteristics and substrate binding of CYP21A2? An investigation by molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:8870-8877. [DOI: 10.1039/d0cp00763c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CYP21A2 mutations affect the activity of the protein leading to CAH disease.
Collapse
Affiliation(s)
- Baihui Lin
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Hongxing Zhang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Qingchuan Zheng
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| |
Collapse
|