1
|
Wu X, Zeng J, Ye X, Peng M, Lan Y, Zhang S, Li H. Effects of vitamin D supplementation on diabetic foot ulcer healing: a meta-analysis. Postgrad Med J 2024:qgae107. [PMID: 39215492 DOI: 10.1093/postmj/qgae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To systematically review the effect of vitamin D supplementation on diabetic foot ulcer (DFU) healing. METHODS The PubMed, Web of Science, Science direct, Ebsco host, CNKI, WanFang, VIP, and CBM databases were electronically searched to collect randomized controlled trials (RCTs) on the impact of vitamin D supplementation on DFUs from inception to 19 November 2022. Two researchers independently screened the literature, extracted the data and assessed the risk of bias of the included studies. Meta-analysis was then performed by using RevMan 5.3 software. RESULTS A total of seven studies involving 580 patients were included. The results of meta-analysis showed that compared with control group, the wound healing efficiency rate (RR = 1.42, 95%CI 1.03 to 1.95, P = 0.03) and wound reduction rate (MD = 13.11, 95%CI 4.65 to 21.56, P < 0.01) of the experimental group were higher; the change values of the wound area (MD = -3.29, 95%CI -4.89 to 1.70, P < 0.01) and 25 (OH) D (MD = 9.63, 95%CI 6.96 to 12.31, P < 0.01) were larger. Supplementation of vitamin D on DFU patients can improve glucose metabolism and insulin indexes: hemoglobin A1c (MD = -0.44, 95%CI -0.62 to -0.26, P < 0.01), fasting insulin (MD = -3.75, 95%CI -5.83 to -1.67, P < 0.01), HOMA - β (MD = -5.14, 95%CI -8.74 to -1.54, P < 0.01), and quantitative insulin sensitivity check index (MD = 0.02, 95%CI 0.01 to 0.02, P < 0.01). It can also improve inflammation and oxidative stress markers: high sensitivity C-reactive protein (MD = -0.83, 95%CI -1.06 to -0.59, P < 0.01), erythrocyte sedimentation rate (MD = -15.74, 95%CI -21.78 to -9.71, P<0.01), nitric oxide (MD = 1.81, 95%CI 0.07 to 3.55, P = 0.04), and malondialdehyde (MD = -0.43, 95%CI -0.61 to -0.24, P<0.01). There was no statistically significant difference in changes of fasting plasma glucose, homeostasis model of assessment-insulin resistance, total antioxidant capacity, glutathione, very low density lipoprotein cholesterol, low density lipoprotein cholesterol, and high density lipoprotein cholesterol (P>0.05). CONCLUSION The current evidence suggests that vitamin D supplementation can significantly promote DFU healing by lowering blood sugar and alleviating inflammation and oxidative stress. Key messages What is already known on this topic Diabetic foot ulcer (DFU) is a major complication of diabetes mellitus, with high morbidity, mortality and resource utilization. Vitamin D has the effect of lowering blood sugar, improving insulin sensitivity, and increasing anti-inflammatory response. Clinical research on vitamin D supplementation for the treatment of DFU is increasing, but due to the lack of combing and integration, the actual efficacy of vitamin D in patients is unclear. What this study adds This meta-analysis has shown that vitamin D supplementation can significantly promote DFU healing by lowering blood glucose and alleviating inflammation and oxidative stress. How this study might affect research, practice or policy This study preliminarily found the effectiveness of vitamin D supplementation on the healing of DFU, which can provide a reference for the treatment of DFU by medical staff.
Collapse
Affiliation(s)
- Xiaokun Wu
- Department of Nursing, Foshan Hospital of Traditional Chinese Medicine, 6 Qinren Road, Chancheng District, Foshan 528099, China
| | - Jinchan Zeng
- Obstetrics Department, Shenzhen Baoan Women's and Children's Hospital, 56 Yulu Road, Bao'an District, Shenzhen 518102, China
| | - Xuemei Ye
- Burn and Wound Repair Center, Guangzhou Red Cross Hospital of Jinan University, 396 Tongfu Middle Road, Haizhu District, Guangzhou 510220, China
| | - Mengmiao Peng
- Burn and Wound Repair Center, Guangzhou Red Cross Hospital of Jinan University, 396 Tongfu Middle Road, Haizhu District, Guangzhou 510220, China
| | - Yutao Lan
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu Distric, Guangzhou 510315, China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital of Jinan University, 396 Tongfu Middle Road, Haizhu District, Guangzhou 510220, China
| | - Haiyan Li
- Department of Outpatient, Guangzhou Red Cross Hospital of Jinan University, 396 Tongfu Middle Road, Haizhu District, Guangzhou 510220, China
| |
Collapse
|
2
|
Meng G, Pan Y, Tang W, Zhang L, Cui Y, Schumacher FR, Wang M, Wang R, He S, Krischer J, Li Q, Feng H. imply: improving cell-type deconvolution accuracy using personalized reference profiles. Genome Med 2024; 16:65. [PMID: 38685057 PMCID: PMC11057104 DOI: 10.1186/s13073-024-01338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Using computational tools, bulk transcriptomics can be deconvoluted to estimate the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, ignoring person-to-person heterogeneity. Here, we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. Simulation studies demonstrate reduced bias compared with existing methods. Real data analyses on longitudinal consortia show disparities in cell type proportions are associated with several disease phenotypes in Type 1 diabetes and Parkinson's disease. imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/ .
Collapse
Affiliation(s)
- Guanqun Meng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Yue Pan
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, 38105, TN, USA
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Lijun Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Ying Cui
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, CA, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Rui Wang
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, 44106, OH, USA
| | - Sijia He
- Department of Biostatistics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Jeffrey Krischer
- Health Informatics Institute, University of South Florida, Tampa, 38105, FL, USA
| | - Qian Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, 38105, TN, USA.
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA.
| |
Collapse
|
3
|
Li H, Ruan Y, Liu C, Fan X, Yao Y, Dai Y, Song Y, Jiang D, Sun N, Jiao G, Chen Z, Fan S, Meng F, Yang H, Zhang Y, Li Z. VDR promotes pancreatic cancer progression in vivo by activating CCL20-mediated M2 polarization of tumor associated macrophage. Cell Commun Signal 2024; 22:224. [PMID: 38600588 PMCID: PMC11005177 DOI: 10.1186/s12964-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.
Collapse
Affiliation(s)
- Hengzhen Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
| | - Xiaona Fan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
- Heilongjiang Province Key Laboratory of molecular Oncology, Harbin, China
| | - Yisheng Dai
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yushuai Song
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Jiang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangtao Jiao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuo Chen
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shiheng Fan
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Fanfei Meng
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China.
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
4
|
Nakamura Y, Kulkarni NN, Takahashi T, Alimohamadi H, Dokoshi T, Liu E, Shia M, Numata T, Luo EW, Gombart AF, Yang X, Secrest P, Gordts PL, Tsimikas S, Wong GC, Gallo RL. Increased LL37 in psoriasis and other inflammatory disorders promotes LDL uptake and atherosclerosis. J Clin Invest 2024; 134:e172578. [PMID: 38194294 PMCID: PMC10904043 DOI: 10.1172/jci172578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Patients with chronic inflammatory disorders such as psoriasis have an increased risk of cardiovascular disease and elevated levels of LL37, a cathelicidin host defense peptide that has both antimicrobial and proinflammatory properties. To explore whether LL37 could contribute to the risk of heart disease, we examined its effects on lipoprotein metabolism and show that LL37 enhanced LDL uptake in macrophages through the LDL receptor (LDLR), scavenger receptor class B member 1 (SR-B1), and CD36. This interaction led to increased cytosolic cholesterol in macrophages and changes in expression of lipid metabolism genes consistent with increased cholesterol uptake. Structure-function analysis and synchrotron small-angle x-ray scattering showed structural determinants of the LL37-LDL complex that underlie its ability to bind its receptors and promote uptake. This function of LDL uptake is unique to cathelicidins from humans and some primates and was not observed with cathelicidins from mice or rabbits. Notably, Apoe-/- mice expressing LL37 developed larger atheroma plaques than did control mice, and a positive correlation between plasma LL37 and oxidized phospholipid on apolipoprotein B (OxPL-apoB) levels was observed in individuals with cardiovascular disease. These findings provide evidence that LDL uptake can be increased via interaction with LL37 and may explain the increased risk of cardiovascular disease associated with chronic inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adrian F. Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | | | - Patrick Secrest
- Department of Medicine, Division of Endocrinology and Metabolism, and
| | - Philip L.S.M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, and
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | | | - Gerard C.L. Wong
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | | |
Collapse
|
5
|
Meng G, Pan Y, Tang W, Zhang L, Cui Y, Schumacher FR, Wang M, Wang R, He S, Krischer J, Li Q, Feng H. imply: improving cell-type deconvolution accuracy using personalized reference profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559579. [PMID: 37808714 PMCID: PMC10557724 DOI: 10.1101/2023.09.27.559579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, which ignores person-to-person heterogeneity. Here we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. imply can borrow information across repeatedly measured samples for each subject, and obtain precise cell type proportion estimations. Simulation studies demonstrate reduced bias in cell type abundance estimation compared with existing methods. Real data analyses on large longitudinal consortia show more realistic deconvolution results that align with biological facts. Our results suggest that disparities in cell type proportions are associated with several disease phenotypes in type 1 diabetes and Parkinson's disease. Our proposed tool imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/.
Collapse
Affiliation(s)
- Guanqun Meng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Yue Pan
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, 38105, TN, USA
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Lijun Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Ying Cui
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, CA, USA
| | - Fredrick R. Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Rui Wang
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, 44106, OH, USA
| | - Sijia He
- Department of Biostatistics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Jeffrey Krischer
- Health Informatics Institute, University of South Florida, Tampa, 38105, FL, USA
| | - Qian Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, 38105, TN, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| |
Collapse
|
6
|
Soundrarajan N, Somasundaram P, Kim D, Cho HS, Jeon H, Ahn B, Kang M, Song H, Park C. Effective Healing of Staphylococcus aureus-Infected Wounds in Pig Cathelicidin Protegrin-1-Overexpressing Transgenic Mice. Int J Mol Sci 2023; 24:11658. [PMID: 37511418 PMCID: PMC10380341 DOI: 10.3390/ijms241411658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to existing treatments for multidrug-resistant bacteria-infected wounds. Therefore, the effect of protegrin-1 (PG1), a potent porcine AMP with broad-spectrum activity, on wound healing was evaluated. PG1-overexpressing transgenic mice were used as an in vivo model to evaluate its healing efficiency against Staphylococcus aureus-infected (106 colony forming units) wounds. We analyzed the wounds under four specific conditions in the presence or absence of antibiotic treatment. We observed the resolution of bacterial infection and formation of neo-epithelium in S. aureus-infected wounds of the mice, even without antibiotic treatment, whereas all wild-type mice with bacterial infection died within 8 to 10 days due to uncontrolled bacterial proliferation. Interestingly, the wound area on day 7 was smaller (p < 0.01) in PG1 transgenic mice than that in the other groups, including antibiotic-treated mice, suggesting that PG1 exerts biological effects other than bactericidal effect. Additionally, we observed that the treatment of primary epidermal keratinocytes with recombinant PG1 enhanced cell migration in in vitro scratch and cell migration assays. This study contributes to the understanding of broad-spectrum endogenous cathelicidins with potent antimicrobial activities, such as PG1, on wound healing. Furthermore, our findings suggest that PG1 is a potent therapeutic candidate for wound healing.
Collapse
Affiliation(s)
| | - Prathap Somasundaram
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Dohun Kim
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hye-Sun Cho
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Byeonyong Ahn
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Mingue Kang
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Umehara Y, Trujillo-Paez JV, Yue H, Peng G, Nguyen HLT, Okumura K, Ogawa H, Niyonsaba F. Calcitriol, an Active Form of Vitamin D3, Mitigates Skin Barrier Dysfunction in Atopic Dermatitis NC/Nga Mice. Int J Mol Sci 2023; 24:ijms24119347. [PMID: 37298299 DOI: 10.3390/ijms24119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Atopic dermatitis and psoriasis are prevalent chronic inflammatory skin diseases that are characterized by dysfunctional skin barriers and substantially impact patients' quality of life. Vitamin D3 regulates immune responses and keratinocyte differentiation and improves psoriasis symptoms; however, its effects on atopic dermatitis remain unclear. Here, we investigated the effects of calcitriol, an active form of vitamin D3, on an NC/Nga mouse model of atopic dermatitis. We observed that the topical application of calcitriol decreased the dermatitis scores and epidermal thickness of NC/Nga mice with atopic dermatitis compared to untreated mice. In addition, both stratum corneum barrier function as assessed by the measurement of transepidermal water loss and tight junction barrier function as evaluated by biotin tracer permeability assay were improved following calcitriol treatment. Moreover, calcitriol treatment reversed the decrease in the expression of skin barrier-related proteins and decreased the expression of inflammatory cytokines such as interleukin (IL)-13 and IL-33 in mice with atopic dermatitis. These findings suggest that the topical application of calcitriol might improve the symptoms of atopic dermatitis by repairing the dysfunctional epidermal and tight junction barriers. Our results suggest that calcitriol might be a viable therapeutic agent for the treatment of atopic dermatitis in addition to psoriasis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Faculty of International Liberal Arts Global Health Studies, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
8
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Tang Y, Huang Y, Luo L, Xu M, Deng D, Fang Z, Zhao X, Chen M. Level of 25-hydroxyvitamin D and vitamin D receptor in diabetic foot ulcer and factor associated with diabetic foot ulcers. Diabetol Metab Syndr 2023; 15:30. [PMID: 36829206 PMCID: PMC9951493 DOI: 10.1186/s13098-023-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND At present, there is no clinical study to elucidate the correlation between vitamin D deficiency and the incidence of diabetic foot osteomyelitis (DFO).This study aims to clarify levels of 25-hydroxyvitamin D [25(OH)VD] in peripheral blood and vitamin D receptor (VDR) expression in wound margin tissues (T-VDR) of patients with type 2 diabetes mellitus (T2DM) with diabetic foot ulcer (DFU) and DFO, and to determine its correlation with treatment outcomes of DFU and DFO, and and its value as a potential biomarker for the diagnosis of DFU and DFO. METHODS 156 T2DM patients with DFU (DFU group), 100 T2DM patients without DFU (T2DM group), and 100 healthy controls (NC group). The DFU group patients were subdivided into DFO (n = 80) and NDFO groups (n = 76). The level of serum 25(OH)VD was measured via chemiluminescence immunoassay, and T-VDR expression level was determined by quantitative real-time PCR. RESULTS The levels of serum 25(OH)VD in the DFU group were significantly lower than the T2DM group [(10.3 (5.8, 18.7) vs 15.7 (8.6, 24.6) ng/mL, P = 0.002)]. Similarly, the levels of serum 25(OH)VD and T-VDR expression in the DFO group were statistically lower than the NDFO group [9.2 (5.2, 20.5) vs 12.8 (6.9, 22.1) ng/mL, P = 0.006)], [1.96 (0.61, 3.97) vs 3.11 (1.36, 5.11), P = 0.004)], respectively. Furthermore, the levels of serum 25(OH)VD and T-VDR expression in DFU patients were positively correlated with the ulcer healing rate of foot ulcer after 8 weeks of treatment ( P = 0.031, P = 0.016, respectively). Multivariate logistic regression analysis showed that low level of serum 25(OH)VD was an independent risk factor for DFU and DFO (ORDFU = 2.42, ORDFO = 3.05, P = 0.008, 0.001, respectively), and decreased T-VDR expression level was an independent risk factor for DFO (OR = 2.83, P = 0.004). Meanwhile, the ROC curve analysis indicated that the AUC of serum 25(OH)VD level for the diagnosis of DFU and DFO was 0.821 (95% CI, 0.754-0.886, P < 0.001) and 0.786 (95%CI, 0.643-0.867, P < 0.001), respectively. When establishing a diagnosis of DFO, the AUC of T-VDR expression level was 0.703 (95%CI: 0.618-0.853, P < 0.001). CONCLUSIONS The levels of serum 25(OH)VD and T-VDR expression in DFU and DFO decreased. Serum 25(OH)VD and T-VDR are potentially valuable biomarkers for diagnosis and prognosis of DFU and DFO. .
Collapse
Affiliation(s)
- Ying Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Yixuan Huang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Li Luo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People’s Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui People’s Republic of China
| |
Collapse
|
10
|
Dou X, Yan D, Liu S, Gao N, Ma Z, Shi Z, Dong N, Shan A. Host Defense Peptides in Nutrition and Diseases: A Contributor of Immunology Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3125-3140. [PMID: 36753427 DOI: 10.1021/acs.jafc.2c08522] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Host defense peptides (HDPs) are primary components of the innate immune system with diverse biological functions, such as antibacterial ability and immunomodulatory function. HDPs are produced and released by immune and epithelial cells against microbial invasion, which are widely distributed in humans, animals, plants, and microbes. Notably, there are great differences in endogenous HDP distribution and expression in humans and animals. Moreover, HDP expression could be regulated by exogenous substances, such as nutrients, and different physiological statuses in health and disease. In this review, we systematically assessed the regulation of expression and mechanism of endogenous HDPs from nutrition and disease perspectives, providing a basis to identify the specificity and regularity of HDP expression. Furthermore, the regulation mechanism of HDP expression was summarized systematically, and the differences in the regulation between nutrients and diseases were explored. From this review, we provide novel ideas targeted the immune regulation of HDPs for protecting host health in nutrition and practical and effective new ideas using the immune regulation theory for further research on protecting host health from pathogenic infection and excessive immunity diseases under the global challenge of the antibiotic-abuse-induced series of problems, including food security and microbial resistance.
Collapse
Affiliation(s)
- Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Di Yan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Siqi Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Nan Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ziwen Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zixuan Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
11
|
Teoh CM, Cooper A, Renteria KM, Lane M, Zhu J, Koh GY. Supplementation of Methyl-Donor Nutrients to a High-Fat, High-Sucrose Diet during Pregnancy and Lactation Normalizes Circulating 25-Dihydroxycholecalciferol Levels and Alleviates Inflammation in Offspring. Metabolites 2022; 12:metabo12121252. [PMID: 36557290 PMCID: PMC9783000 DOI: 10.3390/metabo12121252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
A Western-style diet that is high in fat and sucrose has been shown to alter DNA methylation and epigenetically modify genes related to health risk in offspring. Here, we investigated the effect of a methyl-donor nutrient (MS) supplemented to a high-fat, high-sucrose (HFS) diet during pregnancy and lactation on vitamin D (VD) status and inflammatory response in offspring. After mating, 10-week-old female Sprague-Dawley (SD) rats (n = 10/group) were randomly assigned to one of the four dietary groups during pregnancy and lactation: (1) control diet (CON), (2) CON with MS (CON-MS), (3) HFS, and (4) HFS with MS (HFS-MS). Weanling offspring (three weeks old) were euthanized and sacrificed (n = 8-10/sex/group). The remaining offspring (n = 10/sex/group) were randomly assigned to either a CON or an HFS diet for 12 weeks and sacrificed at 15 weeks of age. Our results indicated that prenatal MS supplementation, but not postnatal diet, restored low vitamin D status and suppressed elevation of proinflammatory cytokine induced by maternal HFS in the offspring. Furthermore, both prenatal and postnatal diets modulated the abundance of Lactobacillus spp. and Bacteroides spp. in the offspring, a shift that was independent of vitamin D status. Collectively, our data support a role for MS in restoring the perturbation of VD status and normalizing maternal HFS-induced inflammation in the offspring. Further investigation is warranted to elucidate the methylation status of VD metabolism-related pathways in the offspring, as well as the immunomodulatory role of vitamin D during the progression of obesity.
Collapse
|
12
|
Cabalín C, Pérez-Mateluna G, Iturriaga C, Camargo CA, Borzutzky A. Oral vitamin D modulates the epidermal expression of the vitamin D receptor and cathelicidin in children with atopic dermatitis. Arch Dermatol Res 2022; 315:761-770. [PMID: 36273083 DOI: 10.1007/s00403-022-02416-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022]
Abstract
Although vitamin D (VD) is known to have multiple effects on the skin and immunity, its effects on atopic dermatitis (AD) severity remain unclear. We investigated whether oral cholecalciferol (VD3) supplementation changes stratum corneum expression of the vitamin D receptor (vdr), and the epidermal alarmins Cathelicidin Antimicrobial Peptide (camp/LL-37) and Thymic Stromal Lymphopoietin (tslp) in children with AD. We conducted an open-label supplementation study with weekly oral VD3 for six weeks in children with AD. Serum 25-hydroxyvitamin D (25OHD), lesional Staphylococcus aureus colonization, and AD severity evaluated by SCORAD index were evaluated before and after supplementation. Tape stripping (TS) was performed on non-lesional and lesional skin to measure mRNA expression of vdr, camp, and tslp through RT-qPCR and LL-37 peptide by ELISA. Twenty-two children with moderate-severe AD received weekly oral VD3 for six weeks. Total serum 25OHD increased from 45.1 ± 23 to 93.5 ± 24.3 nmoL/L (p < 0.0001), while SCORAD decreased from 41.4 ± 13.5 to 31.5 ± 15.8 (p < 0.0001). After treatment, epidermal gene expression of camp increased significantly in non-lesional (p = 0.014) and lesional (p = 0.0007) tape stripping samples, while vdr only increased in lesional skin samples (p < 0.0001). LL-37 peptide increased significantly only in lesional skin samples (p = 0.008). Gene expression of tslp did not change after oral VD3 treatment. In children with AD, oral VD3 supplementation was associated with improved VD status and AD severity, as well as increased VDR and Cathelicidin expression in lesional skin, which provide mechanistic clues on its effects.
Collapse
Affiliation(s)
- Carolina Cabalín
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 446, 8330034, Santiago, Chile
| | - Guillermo Pérez-Mateluna
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 446, 8330034, Santiago, Chile
| | - Carolina Iturriaga
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 446, 8330034, Santiago, Chile
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arturo Borzutzky
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 446, 8330034, Santiago, Chile. .,Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Tang W, Chen L, Ma W, Liu G, Chen D, Wang C, Gao Y, Ran X. Association of vitamin D status with all-cause mortality and outcomes among Chinese individuals with diabetic foot ulcers. J Diabetes Investig 2022; 14:122-131. [PMID: 36200877 PMCID: PMC9807158 DOI: 10.1111/jdi.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION The aim of this study was to examine the correlation between serum vitamin D concentrations and prognosis among Chinese individuals with diabetic foot ulcers (DFUs). MATERIALS AND METHODS We retrospectively recruited 488 adults with DFUs in West China Hospital from 1 January 2012 to 31 December 2019. After telephone follow up, 275 patients were finally included. We compared serum vitamin D concentrations among DFUs patients with different prognostic status, and examined the association of vitamin D status with prognostic variables by Kaplan-Meier analysis. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals for all-cause mortality. RESULTS The median concentration of serum vitamin D of patients with DFUs was 37.78 nmol/L (interquartile range 27.91-50.66 nmol/L), with 31.6% having vitamin D deficiency (<30 nmol/L) and 42.2% having insufficient vitamin D (<50 nmol/L). During a median follow-up period of 52 months, 65 patients died, with an all-cause mortality of 23.64%. Vitamin D deficiency was independently linked to increased all-cause mortality after multivariable adjustments (hazard ratio 0.565, 95% confidence interval 0.338-0.946, P = 0.030). There were no significant differences between vitamin D concentrations and other outcomes of DFUs. Patients who suffered amputations had a tendency of lower vitamin D concentrations (34.00 [interquartile range 26.90-41.81] vs 40.21 [interquartile range 29.60-53.96] nmol/L, P = 0.053). CONCLUSIONS Vitamin D deficiency was significantly associated with increased all-cause mortality in Chinese individuals with DFUs. Vitamin D supplementation might be a potential therapy for DFUs to prevent premature death and improve outcomes.
Collapse
Affiliation(s)
- Weiwei Tang
- Department of Endocrinology and Metabolism, Innovation Center for Wound Repair, Diabetic Foot Care Center, West China HospitalSichuan UniversityChengduChina
| | - Lihong Chen
- Department of Endocrinology and Metabolism, Innovation Center for Wound Repair, Diabetic Foot Care Center, West China HospitalSichuan UniversityChengduChina
| | - Wanxia Ma
- Department of Endocrinology and Metabolism, Innovation Center for Wound Repair, Diabetic Foot Care Center, West China HospitalSichuan UniversityChengduChina
| | - Guanjian Liu
- Chinese Cochrane Center, Chinese EBM Center, West China HospitalSichuan UniversityChengduChina
| | - Dawei Chen
- Department of Endocrinology and Metabolism, Innovation Center for Wound Repair, Diabetic Foot Care Center, West China HospitalSichuan UniversityChengduChina
| | - Chun Wang
- Department of Endocrinology and Metabolism, Innovation Center for Wound Repair, Diabetic Foot Care Center, West China HospitalSichuan UniversityChengduChina
| | - Yun Gao
- Department of Endocrinology and Metabolism, Innovation Center for Wound Repair, Diabetic Foot Care Center, West China HospitalSichuan UniversityChengduChina
| | - Xingwu Ran
- Department of Endocrinology and Metabolism, Innovation Center for Wound Repair, Diabetic Foot Care Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
Chopra D, Arens RA, Amornpairoj W, Lowes MA, Tomic-Canic M, Strbo N, Lev-Tov H, Pastar I. Innate immunity and microbial dysbiosis in hidradenitis suppurativa - vicious cycle of chronic inflammation. Front Immunol 2022; 13:960488. [PMID: 35967376 PMCID: PMC9368759 DOI: 10.3389/fimmu.2022.960488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Hidradenitis Suppurativa (HS) is a chronic multifactorial inflammatory skin disease with incompletely understood mechanisms of disease pathology. HS is characterized by aberrant activation of the innate immune system, resulting in activation of pathways that aim to protect against pathogenic microorganisms, and also contribute to failure to resolve inflammation. Imbalance in innate immunity is evident in deregulation of host antimicrobial peptides (AMPs) and the complement system associated with the microbiome dysbiosis. The pathology is further complicated by ability of pathogens associated with HS to overcome host immune response. Potential roles of major AMPs, cathelicidin, defensins, dermcidin, S100 proteins, RNAse 7 and complement proteins are discussed. Dysregulated expression pattern of innate immunity components in conjunction with bacterial component of the disease warrants consideration of novel treatment approaches targeting both host immunity and pathogenic microbiome in HS.
Collapse
Affiliation(s)
- Divya Chopra
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rachel A. Arens
- College of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Watcharee Amornpairoj
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michelle A. Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hadar Lev-Tov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
15
|
Eder K, Grundmann SM. Vitamin D in dairy cows: metabolism, status and functions in the immune system. Arch Anim Nutr 2022; 76:1-33. [PMID: 35249422 DOI: 10.1080/1745039x.2021.2017747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The function of vitamin D in calcium homoeostasis in dairy cows, such as in other vertebrates, is known for many years. In recent years, new and interesting, non-classical functions of vitamin D have been elucidated, including effects on the immune system. The major aim of this review is to provide an overview of effects of vitamin D or its metabolites on the immune system in dairy cows. The first part of the review provides an overview of vitamin D metabolism, with particular reference to the role of various proteins (25- and 1-hydroxylases, vitamin D binding protein, vitamin D receptor) in vitamin D signalling. The second part deals with the role of the concentration of 25-hydroxyvitamin D [25(OH)D] in plasma as an indicator of the vitamin D status in dairy cows, and its dependence on sunlight exposure and dietary vitamin D supplementation. In this part also the "free hormone hypothesis" is discussed, indicating that the concentration of free 25(OH)D might be a more valid indicator of the vitamin D status than the concentration of total 25(OH)D. The third part deals with classical and the non-classical functions of vitamin D. Among the non-classical functions which are based on an autocrine vitamin D signalling, particular reference is given to the effects of vitamin D and vitamin D metabolites on the immune system in bovine immune cells and in dairy cows. Recent findings provide some indication that vitamin D or its metabolite 25(OH)D could enhance the immune function in dairy cows and be useful for the prevention and therapy of mastitis. However, the number of studies reported so far in this respect is very limited. Thus, much more research is required to yield clear concepts for an optimised usage of vitamin D to improve the immune system and prevent infectious diseases in dairy cows.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
16
|
Su Y, Ganguli-Indra G, Bhattacharya N, Logan IE, Indra AK, Gombart AF, Wong SL, Xie J. Codelivery of 1α,25-Dihydroxyvitamin D 3 and CYP24A1 Inhibitor VID400 by Nanofiber Dressings Promotes Endogenous Antimicrobial Peptide LL-37 Induction. Mol Pharm 2022; 19:974-984. [PMID: 35179903 DOI: 10.1021/acs.molpharmaceut.1c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Surgical site infections represent a significant clinical problem. Herein, we report a nanofiber dressing for topical codelivery of immunomodulating compounds including 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and VID400, a CYP24A1 inhibitor in a sustained manner, for inducing the expression of the endogenous cathelicidin antimicrobial peptide (CAMP) gene encoding the hCAP18 protein, which is processed into the LL-37 peptide. Nanofiber wound dressings with coencapsulation of 1,25(OH)2D3 and VID400 were generated by electrospinning. Both 1,25(OH)2D3 and VID400 were coencapsulated into nanofibers with loading efficiencies higher than 90% and exhibited a prolonged release from nanofiber membranes longer than 28 days. Incubation with 1,25(OH)2D3/VID400-coencapsulated poly(ϵ-caprolactone) nanofiber membranes greatly induced the hCAP18/LL-37 gene expression in monocytes, neutrophils, and keratinocytes in vitro. Moreover, the administration of 1,25(OH)2D3/VID400-coencapsulated nanofiber membranes dramatically promoted the hCAP18/LL-37 expression in dermal wounds created in both human CAMP transgenic mice and human skin tissues. The 1,25(OH)2D3- and VID400-coencapsulated nanofiber dressings enhanced innate immunity via the more effective induction of antimicrobial peptide than the free drug alone or 1,25(OH)2D3-loaded nanofibers. Together, 1,25(OH)2D3/VID400-embedded nanofiber dressings presented in this study show potential in preventing surgical site infections.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Nilika Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Isabelle E Logan
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States.,Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Dermatology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Adrian F Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shannon L Wong
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
17
|
Amar Y, Schneider E, Köberle M, Seeholzer T, Musiol S, Hölge IM, Gschwendtner S, Krappmann D, Steiger K, Biedermann T, Schmidt-Weber CB, Alessandrini F. Microbial dysbiosis in a mouse model of atopic dermatitis mimics shifts in human microbiome and correlates with the key pro-inflammatory cytokines IL-4, IL-33 and TSLP. J Eur Acad Dermatol Venereol 2022; 36:705-716. [PMID: 35015907 DOI: 10.1111/jdv.17911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cutaneous bacterial dysbiosis is a characteristic hallmark of atopic dermatitis (AD) and it decisively influences the severity of the disease. Despite this, frequently used murine models of AD have not been characterized regarding the changes in skin microbiome communities. OBJECTIVE To analyze the skin microbiome of two frequently used murine models for AD for assessing their applicability in translational research. METHODS AD was induced in mice by topical application of calcipotriol, or oxazolone. Following comparable elicitation of AD-like dermatitis, including IgE induction, the skin microbial communities were analyzed and compared with human AD. RESULTS We detected critical differences in the microbiota composition of diseased skin. In contrast to calcipotriol treatment, application of oxazolone induced significant changes of the cutaneous microbiota and a drastic drop of bacterial richness. Furthermore, an expansion of Staphylococci, particularly S. xylosus was observed in the oxazolone group, also displaying positive correlations with AD key markers including pH, TEWL, IL-4, TSLP and IL-33. CONCLUSIONS In this article we show that i) the model of choice to investigate AD needs to be characterized for the cutaneous microbiota if applicable and ii) the oxazolone-mediated mixed Th1-Th2 immune response triggers microbiota-induced alterations which share similarities to dysbiosis in human AD and represents therefore a suitable model for translational research on AD if alterations of the microbiome are in the focus of the investigation.
Collapse
Affiliation(s)
- Y Amar
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - E Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - M Köberle
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - T Seeholzer
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Center München, German Research Center for Environmental Health, Neuherberg, Germany
| | - S Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany.,Eurofins BioPharma Product Testing Munich GmbH, Planegg, Germany
| | - I M Hölge
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - S Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Center München, German Research Center for Environmental Health, Neuherberg, Germany
| | - D Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Center München, German Research Center for Environmental Health, Neuherberg, Germany
| | - K Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - T Biedermann
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - C B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - F Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
18
|
Kurian SJ, Miraj SS, Benson R, Munisamy M, Saravu K, Rodrigues GS, Rao M. Vitamin D Supplementation in Diabetic Foot Ulcers: A Current Perspective. Curr Diabetes Rev 2021; 17:512-521. [PMID: 33045979 DOI: 10.2174/1573399816999201012195735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Diabetic foot ulcer (DFU) is a major complication of diabetes mellitus, as it can physically and emotionally impact the person. Its management can be challenging and expensive, depending on the severity of the wound and the presence of infection. BACKGROUND The fat-soluble molecule, vitamin D, has gained great importance ever since its pleiotropism has been recognized. Its efficacy could be attributed to the presence of vitamin D receptors in most of the body tissues. Vitamin D plays a significant role in cell proliferation, differentiation, and immune modulation. It modulates the T and B cells resulting in the suppression of the immunoglobulins, autoimmunity, and inflammation. METHODS We performed a literature search with the objective to highlight the role of vitamin D in peripheral vascular disease and peripheral neuropathy, which are the major risk factors for DFU, as well as evidences of its role in wound healing and management of DFU. RESULTS Preclinical and clinical studies have shown that vitamin D influences multiple phases of wound healing and thereby accelerates the process. It modulates various cells involved in proliferation and remodelling phases. Vitamin D also enhances the expression of antimicrobial peptides that help to eliminate the microbes, as well as suppress the proinflammatory responses while enhancing the anti-inflammatory responses. CONCLUSION This review concludes vitamin D to have a protective role in the immune and vascular system, improve glycaemic outcomes, and wound healing. Therefore, vitamin D could be a preferred adjuvant in the management of DFU.
Collapse
Affiliation(s)
- Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Ruby Benson
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Kavitha Saravu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Gabriel Sunil Rodrigues
- Department of Surgery, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
19
|
Cristelo C, Machado A, Sarmento B, Gama FM. The roles of vitamin D and cathelicidin in type 1 diabetes susceptibility. Endocr Connect 2021; 10:R1-R12. [PMID: 33263562 PMCID: PMC7923048 DOI: 10.1530/ec-20-0484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes has an increasingly greater incidence and prevalence with no cure available. Vitamin D supplementation is well documented to reduce the risk of developing type 1 diabetes. Being involved in the modulation of cathelicidin expression, the question whether cathelicidin may be one of the underlying cause arises. Cathelicidin has been implicated in both the development and the protection against type 1 diabetes by mediating the interplay between the gut microbiome, the immune system and β cell function. While its potential on type 1 diabetes treatment seems high, the understanding of its effects is still limited. This review aims to contribute to a more comprehensive understanding of the potential of vitamin D and cathelicidin as adjuvants in type 1 diabetes therapy.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CEB – Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - Alexandra Machado
- CEB – Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | | |
Collapse
|
20
|
Schrumpf JA, van der Does AM, Hiemstra PS. Impact of the Local Inflammatory Environment on Mucosal Vitamin D Metabolism and Signaling in Chronic Inflammatory Lung Diseases. Front Immunol 2020; 11:1433. [PMID: 32754156 PMCID: PMC7366846 DOI: 10.3389/fimmu.2020.01433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D plays an active role in the modulation of innate and adaptive immune responses as well as in the protection against respiratory pathogens. Evidence for this immunomodulatory and protective role is derived from observational studies showing an association between vitamin D deficiency, chronic airway diseases and respiratory infections, and is supported by a range of experimental studies using cell culture and animal models. Furthermore, recent intervention studies have now shown that vitamin D supplementation reduces exacerbation rates in vitamin D-deficient patients with chronic obstructive pulmonary disease (COPD) or asthma and decreases the incidence of acute respiratory tract infections. The active vitamin D metabolite, 1,25-dihydroxy-vitamin D (1,25(OH)2D), is known to contribute to the integrity of the mucosal barrier, promote killing of pathogens (via the induction of antimicrobial peptides), and to modulate inflammation and immune responses. These mechanisms may partly explain its protective role against infections and exacerbations in COPD and asthma patients. The respiratory mucosa is an important site of local 1,25(OH)2D synthesis, degradation and signaling, a process that can be affected by exposure to inflammatory mediators. As a consequence, mucosal inflammation and other disease-associated factors, as observed in e.g., COPD and asthma, may modulate the protective actions of 1,25(OH)2D. Here, we discuss the potential consequences of various disease-associated processes such as inflammation and exposure to pathogens and inhaled toxicants on vitamin D metabolism and local responses to 1,25(OH)2D in both immune- and epithelial cells. We furthermore discuss potential consequences of disturbed local levels of 25(OH)D and 1,25(OH)2D for chronic lung diseases. Additional insight into the relationship between disease-associated mechanisms and local effects of 1,25(OH)2D is expected to contribute to the design of future strategies aimed at improving local levels of 1,25(OH)2D and signaling in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
21
|
Bergman P, Raqib R, Rekha RS, Agerberth B, Gudmundsson GH. Host Directed Therapy Against Infection by Boosting Innate Immunity. Front Immunol 2020; 11:1209. [PMID: 32595649 PMCID: PMC7304486 DOI: 10.3389/fimmu.2020.01209] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
The innate immune system constitutes the first line of defense against invading pathogens, regulating the normal microbiota and contributes to homeostasis. Today we have obtained detailed knowledge on receptors, signaling pathways, and effector molecules of innate immunity. Our research constellation has focused on ways to induce the expression of antimicrobial peptides (AMPs), the production of oxygen species (ROS and NO), and to activate autophagy, during the last two decades. These innate effectors, with different mechanisms of action, constitute a powerful defense armament in phagocytes and in epithelial cells. Innate immunity does not only protect the host from invading pathogens, but also regulates the composition of the microbiota, which is an area of intense research. Notably, some virulent bacteria have the capacity to downregulate innate defenses and can thereby cause invasive disease. Understanding the detailed mechanisms behind pathogen-mediated suppression of innate effectors are currently in progress. This information can be of importance for the development of novel treatments based on counteraction of the downregulation; we have designated this type of treatment as host directed therapy (HDT). The concept to boost innate immunity may be particularly relevant as many pathogens are developing resistance against classical antibiotics. Many pathogens that are resistant to antibiotics are sensitive to the endogenous effectors included in early host defenses, which contain multiple effectors working in cooperation to control infections. Here, we review recent data related to downregulation of AMPs by pathogenic bacteria, induction of innate effector mechanisms, including cytokine-mediated effects, repurposed drugs and the role of antibiotics as direct modulators of host responses. These findings can form a platform for the development of novel treatment strategies against infection and/or inflammation.
Collapse
Affiliation(s)
- Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,The Immunodeficiency Unit, Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rokeya Sultana Rekha
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Agerberth
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|