1
|
Endo S, Morikawa Y, Suenami K, Sakai Y, Abe N, Matsunaga T, Hara A, Takasu M. Involvement of porcine and human carbonyl reductases in the metabolism of epiandrosterone, 11-oxygenated steroids, neurosteroids, and corticosteroids. J Steroid Biochem Mol Biol 2024; 243:106574. [PMID: 38945307 DOI: 10.1016/j.jsbmb.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Porcine carbonyl reductases (pCBR1 and pCBR-N1) and aldo-keto reductases (pAKR1C1 and pAKR1C4) exhibit hydroxysteroid dehydrogenase (HSD) activity. However, their roles in the metabolism of porcine-specific androgens (19-nortestosterone and epiandrosterone), 11-oxygenated androgens, neurosteroids, and corticosteroids remain unclear. Here, we compared the steroid specificity of the four recombinant enzymes by kinetic and product analyses. In C18/C19-steroids,11-keto- and 11β-hydroxy-5α-androstane-3,17-diones were reduced by all the enzymes, whereas 5α-dihydronandrolone (19-nortestosterone metabolite) and 11-ketodihydrotestosterone were reduced by pCBR1, pCBR-N1, and pAKR1C1, of which pCBR1 exhibited the lowest (submicromolar) Km values. Product analysis showed that pCBR1 and pCBR-N1 function as 3α/β-HSDs, in contrast to pAKR1C1 and pAKR1C4 (acting as 3β-HSD and 3α-HSD, respectively). Additionally, 17β-HSD activity was observed in pCBR1 and pCBR-N1 (toward epiandrosterone and its 11-oxygenated derivatives) and in pAKR1C1 (toward androsterone, 4-androstene-3,17-dione and their 11-oxygenated derivatives). The four enzymes also showed different substrate specificity for 3-keto-5α/β-dihydro-C21-steroids, including GABAergic neurosteroid precursors and corticosteroid metabolites. 5β-Dihydroprogesterone was reduced by all the enzymes, whereas 5α-dihydroprogesterone was reduced only by pCBR1, and 5α/β-dihydrodeoxycorticosterones by pCBR1 and pCBR-N1. The two pCBRs also reduced the 5α/β-dihydro-metabolites of cortisol, 11-deoxycortisol, cortisone, and corticosterone. pCBR1 exhibited lower Km values (0.3-2.9 μM) for the 3-keto-C21-steroids than pCBR-N1 (Km=10-36 μM). The reduced products of the 3-keto-C21-steroids by pCBR1 and pCBR-N1 were their 3α-hydroxy-metabolites. Finally, we found that human CBR1 has similar substrate specificity for the C18/C19/C21-steroids to pCBR-N1. Based on these results, it was concluded that porcine and human CBRs can be involved in the metabolism of the aforementioned steroids as 3α/β,17β-HSDs.
Collapse
Affiliation(s)
- Satoshi Endo
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1193, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1193, Japan; Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Himura R, Kawano S, Nagata Y, Kawai M, Ota A, Kudo Y, Yoshino Y, Fujimoto N, Miyamoto H, Endo S, Ikari A. Inhibition of aldo-keto reductase 1C3 overcomes gemcitabine/cisplatin resistance in bladder cancer. Chem Biol Interact 2024; 388:110840. [PMID: 38122923 DOI: 10.1016/j.cbi.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Systemic chemotherapy with gemcitabine and cisplatin (GC) has been used for the treatment of bladder cancer in which androgen receptor (AR) signaling is suggested to play a critical role. However, its efficacy is often limited, and the prognosis of patients who develop resistance is extremely poor. Aldo-keto reductase 1C3 (AKR1C3), which is responsible for the production of a potent androgen, 5α-dihydrotestosterone (DHT), by the reduction of 5α-androstane-3α,17β-dione (5α-Adione), has been attracting attention as a therapeutic target for prostate cancer that shows androgen-dependent growth. By contrast, the role of AKR1C3 in bladder cancer remains unclear. In this study, we examined the effect of an AKR1C3 inhibitor on androgen-dependent proliferation and GC sensitivity in bladder cancer cells. 5α-Adione treatment induced the expression of AR and its downstream factor ETS-domain transcription factor (ELK1) in both T24 cells and newly established GC-resistant T24GC cells, while it did not alter AKR1C3 expression. AKR1C3 inhibitor 2j significantly suppressed 5α-Adione-induced AR and ELK1 upregulation, as did an AR antagonist apalutamide. Moreover, the combination of GC and 2j in T24GC significantly induced apoptotic cell death, suggesting that 2j could enhance GC sensitivity. Immunohistochemical staining in surgical specimens further revealed that strong expression of AKR1C3 was associated with significantly higher risks of tumor progression and cancer-specific mortality in patients with muscle-invasive bladder cancer. These results suggest that AKR1C3 inhibitors as adjunctive agents enhance the efficacy of GC therapy for bladder cancer.
Collapse
Affiliation(s)
- Rin Himura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Shinya Kawano
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yujiro Nagata
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Atsumi Ota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hiroshi Miyamoto
- Departments of Pathology & Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu Pharmaceutical University, Gifu, 501-1193, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
3
|
Endo S, Morikawa Y, Matsunaga T, Hara A, Takasu M. Characterization of a novel porcine carbonyl reductase activated by glutathione: Relationship to carbonyl reductase 1, 3α/β-hydroxysteroid dehydrogenase and prostaglandin 9-ketoreductase. Chem Biol Interact 2023; 381:110572. [PMID: 37247810 DOI: 10.1016/j.cbi.2023.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
A porcine gene, LOC100622246, encodes carbonyl reductase [NADPH] 1 (pCBR-N1), whose function remains unknown. Previously, three porcine carbonyl reductases, carbonyl reductase 1 (pCBR1), 3α/β-hydroxysteroid dehydrogenase (p3α/β-HSD) and prostaglandine-9-keto reductase (pPG-9-KR), were purified from neonatal testis, adult testis and adult kidney, respectively. However, the relationship of pCBR-N1 with the three enzymes is still unknown. Here, we compare the properties of the recombinant pCBR-N1 and pCBR1. The two enzymes reduced various carbonyl compounds including 5α-dihydrotestosterone, which was converted to its 3α- and 3β-hydroxy-metabolites. Compared to pCBR1, pCBR-N1 exhibited higher Km and kcat values for most substrates, but more efficiently reduced prostaglandin E2. pCBR-N1 was inhibited by known inhibitors of p3α/β-HSD (hexestrol and indomethacin), but not by pCBR1 inhibitors. pCBR-N1 was highly expressed than pCBR1 in the several tissues of adult domestic and microminiature pigs. The results, together with partial amino acid sequence match between pCBR-N1 and pPG-9-KR, reveal that pCBR-N1 is identical to p3α/β-HSD and pPG-9-KR. Notably, pCBR-N1, but not pCBR1, reduced S-nitrosoglutathione and glutathione-adducts of alkenals including 4-oxo-2-nonenal with Km of 8.3-32 μM, and its activity toward non-glutathionylated substrates was activated 2- to 9-fold by 1 mM glutathione. Similar activation by glutathione was also observed for human CBR1. Site-directed mutagenesis revealed that the differences in kinetic constants and glutathione-mediated activation between pCBR-N1 and pCBR1 are due to differences in residue 236 and two glutathione-binding residues (at positions 97 and 193), respectively. Thus, pCBR-N1 is a glutathione-activated carbonyl reductase that functions in the metabolism of endogenous and xenobiotic carbonyl compounds.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Toshiyuki Matsunaga
- Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Masaki Takasu
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan; Institute for Advanced Study, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
4
|
Ota A, Kawai M, Kudo Y, Segawa J, Hoshi M, Kawano S, Yoshino Y, Ichihara K, Shiota M, Fujimoto N, Matsunaga T, Endo S, Ikari A. Artepillin C overcomes apalutamide resistance through blocking androgen signaling in prostate cancer cells. Arch Biochem Biophys 2023; 735:109519. [PMID: 36642262 DOI: 10.1016/j.abb.2023.109519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Prostate cancer has a relatively good prognosis, but most cases develop resistance to hormone therapy, leading to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) antagonists and a cytochrome P450 17A1 inhibitor have been used to treat CRPC, but cancer cells readily develop resistance to these drugs. In this study, to improve the therapy of CRPC, we searched for natural compounds which block androgen signaling. Among cinnamic acid derivatives contained in Brazilian green propolis, artepillin C (ArtC) suppressed expressions of androgen-induced prostate-specific antigen and transmembrane protease serine 2 in a dose-dependent manner. Reporter assays revealed that ArtC displayed AR antagonist activity, albeit weaker than an AR antagonist flutamide. In general, aberrant activation of the androgen signaling is involved in the resistance of prostate cancer cells to hormone therapy. Recently, apalutamide, a novel AR antagonist, has been in clinical use, but its drug-resistant cases have been already reported. To search for compounds which overcome the resistance to apalutamide, we established apalutamide-resistant prostate cancer 22Rv1 cells (22Rv1/APA). The 22Rv1/APA cells showed higher AR expression and androgen sensitivity than parental 22Rv1 cells. ArtC inhibited androgen-induced proliferation of 22Rv1/APA cells by suppressing the enhanced androgen signaling through blocking the nuclear translocation of AR. In addition, ArtC potently sensitized the resistant cells to apalutamide by inducing apoptotic cell death due to mitochondrial dysfunction. These results suggest that the intake of Brazilian green propolis containing ArtC improves prostate cancer therapy.
Collapse
Affiliation(s)
- Atsumi Ota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Manami Hoshi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Shinya Kawano
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu, 502-0071, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| |
Collapse
|
5
|
Kudo Y, Endo S, Tanio M, Saka T, Himura R, Abe N, Takeda M, Yamaguchi E, Yoshino Y, Arai Y, Kashiwagi H, Oyama M, Itoh A, Shiota M, Fujimoto N, Ikari A. Antiandrogenic Effects of a Polyphenol in Carex kobomugi through Inhibition of Androgen Synthetic Pathway and Downregulation of Androgen Receptor in Prostate Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms232214356. [PMID: 36430833 PMCID: PMC9696374 DOI: 10.3390/ijms232214356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer (PC) represents the most common cancer disease in men. Since high levels of androgens increase the risk of PC, androgen deprivation therapy is the primary treatment; however this leads to castration-resistant PC (CRPC) with a poor prognosis. The progression to CRPC involves ectopic androgen production in the adrenal glands and abnormal activation of androgen signaling due to mutations and/or amplification of the androgen receptor (AR) as well as activation of androgen-independent proliferative pathways. Recent studies have shown that adrenal-derived 11-oxygenated androgens (11-ketotestosterone and 11-ketodihydrotestosterone) with potencies equivalent to those of traditional androgens (testosterone and dihydrotestosterone) are biomarkers of CRPC. Additionally, dehydrogenase/reductase SDR family member 11 (DHRS11) has been reported to be a 17β-hydroxysteroid dehydrogenase that catalyzes the production of the 11-oxygenated and traditional androgens. This study was conducted to evaluate the pathophysiological roles of DHRS11 in PC using three LNCaP, C4-2 and 22Rv1 cell lines. DHRS11 silencing and inhibition resulted in suppression of the androgen-induced expression of AR downstream genes and decreases in the expression of nuclear AR and the proliferation marker Ki67, suggesting that DHRS11 is involved in androgen-dependent PC cell proliferation. We found that 5,7-dihydroxy-8-methyl-2-[2-(4-hydroxyphenyl)ethenyl]-4H-1-benzopyran-4-one (Kobochromone A, KC-A), an ingredient in the flowers of Carex kobomugi, is a novel potent DHRS11 inhibitor (IC50 = 0.35 μM). Additionally, KC-A itself decreased the AR expression in PC cells. Therefore, KC-A suppresses the androgen signaling in PC cells through both DHRS11 inhibition and AR downregulation. Furthermore, KC-A enhanced the anticancer activity of abiraterone, a CRPC drug, suggesting that it may be a potential candidate for the development of drugs for the prevention and treatment of CRPC.
Collapse
Affiliation(s)
- Yudai Kudo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Correspondence: ; Tel.: +81-58-230-8100; Fax: +81-58-230-8105
| | - Masatoshi Tanio
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tomofumi Saka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Rin Himura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mitsumi Takeda
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuki Arai
- Universal Corporation Co., Ltd., Gifu 502-0931, Japan
| | - Hirohito Kashiwagi
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Universal Corporation Co., Ltd., Gifu 502-0931, Japan
| | - Masayoshi Oyama
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
6
|
Shiota M, Endo S, Blas L, Fujimoto N, Eto M. Steroidogenesis in castration-resistant prostate cancer. Urol Oncol 2022; 41:240-251. [PMID: 36376200 DOI: 10.1016/j.urolonc.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022]
Abstract
Castration resistance is in part attributable to aberrant activation of androgen receptor (AR) signaling by the intracrine activation of androgen precursors derived from adrenal glands. To overcome this, novel AR pathway inhibitors (ARPIs) that suppress androgen synthesis by CYP17 inhibition or AR activation by antiandrogen effects have been developed. However, primary or acquired resistance to these ARPIs occurs; in turn attributable, at least in part, to the maintained androgen milieu despite intensive suppression of AR signaling similar to castration resistance. In addition to the classical pathway to produce potent androgens such as testosterone and dihydrotestosterone, the alternative pathway and the backdoor pathway which bypasses testosterone to produce dihydrotestosterone have been shown to play a role in intratumor steroidogenesis. Furthermore, the 11β-hydroxyandrostenedione pathway to produce the potent oxygenated androgens 11-ketotestosterone and 11-ketodihydrotestosterone has been suggested to be functional in prostate cancer. These steroidogenesis pathways produce potent androgens that promote tumor resistance to endocrine therapy including novel ARPIs. Here, we overview the current evidence on the pathological androgen milieu by altered metabolism and transport in prostate cancer, leading to resistance to endocrine therapy.
Collapse
|
7
|
Brandão SR, Carvalho F, Amado F, Ferreira R, Costa VM. Insights on the molecular targets of cardiotoxicity induced by anticancer drugs: A systematic review based on proteomic findings. Metabolism 2022; 134:155250. [PMID: 35809654 DOI: 10.1016/j.metabol.2022.155250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022]
Abstract
Several anticancer agents have been associated with cardiac toxic effects. The currently proposed mechanisms to explain cardiotoxicity differ among anticancer agents, but in fact, the specific modulation is not completely elucidated. Thus, this systematic review aims to provide an integrative perspective of the molecular mechanisms underlying the toxicity of anticancer agents on heart muscle while using a high-throughput technology, mass spectrometry (MS)-based proteomics. A literature search using PubMed database led to the selection of 27 studies, of which 13 reported results exclusively on animal models, 13 on cardiomyocyte-derived cell lines and only one included both animal and a cardiomyocyte line. The reported anticancer agents were the proteasome inhibitor carfilzomib, the anthracyclines daunorubicin, doxorubicin, epirubicin and idarubicin, the antimicrotubule agent docetaxel, the alkylating agent melphalan, the anthracenedione mitoxantrone, the tyrosine kinase inhibitors (TKIs) erlotinib, lapatinib, sorafenib and sunitinib, and the monoclonal antibody trastuzumab. Regarding the MS-based proteomic approaches, electrophoretic separation using two-dimensional (2D) gels coupled with tandem MS (MS/MS) and liquid chromatography-MS/MS (LC-MS/MS) were the most common. Overall, the studies highlighted 1826 differentially expressed proteins across 116 biological processes. Most of them were grouped in larger processes and critically analyzed in the present review. The selection of studies using proteomics on heart muscle allowed to obtain information about the anticancer therapy-induced modulation of numerous proteins in this tissue and to establish connections that have been disregarded in other studies. This systematic review provides interesting points for a comprehensive understanding of the cellular cardiotoxicity mechanisms of different anticancer drugs.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Endo S, Morikawa Y, Matsunaga T, Hara A, Nishinaka T. Porcine aldo-keto reductase 1C subfamily members AKR1C1 and AKR1C4: Substrate specificity, inhibitor sensitivity and activators. J Steroid Biochem Mol Biol 2022; 221:106113. [PMID: 35398259 DOI: 10.1016/j.jsbmb.2022.106113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 01/13/2023]
Abstract
Most members of the aldo-keto reductase (AKR) 1 C subfamily are hydroxysteroid dehydrogenases (HSDs). Similarly to humans, four genes for AKR1C proteins (AKR1C1-AKR1C4) have been identified in the pig, which is a suitable species for biomedical research model of human diseases and optimal organ donor for xenotransplantation. Previous study suggested that, among the porcine AKR1Cs, AKR1C1 and AKR1C4 play important roles in steroid hormone metabolism in the reproductive tissues; however, their biological functions are still unknown. Herein, we report the biochemical properties of the two recombinant enzymes. Kinetic and product analyses of steroid specificity indicated that AKR1C1 is a multi-specific reductase, which acts as 3α-HSD for 3-keto-5β-dihydro-C19/C21-steroids, 3β-HSD for 3-keto-5α-dihydro-C19-steroids including androstenone, 17β-HSD for 17-keto-C19-steroids including estrone, and 20α-HSD for progesterone, showing Km values of 0.5-11 µM. By contrast, AKR1C4 exhibited only 3α-HSD activity for 3-keto groups of 5α/β-dihydro-C19-steroids, 5β-dihydro-C21-steroids and bile acids (Km: 1.0-1.9 µM). AKR1C1 and AKR1C4 also showed broad substrate specificity for nonsteroidal carbonyl compounds including endogenous 4-oxo-2-nonenal, 4-hydroxy-nonenal, acrolein, isocaproaldehyde, farnesal, isatin and methylglyoxal, of which 4-oxo-2-nonenal was reduced with the lowest Km value of 0.9 µM. Moreover, AKR1C1 had the characteristic of reducing aliphatic ketones and all-trans-retinal. The enzymes were inhibited by flavonoids, synthetic estrogens, nonsteroidal anti-inflammatory drugs, triterpenoids and phenolphthalein, whereas only AKR1C4 was activated by bromosulfophthalein. These results suggest that AKR1C1 and AKR1C4 function as 3α/3β/17β/20α-HSD and 3α-HSD, respectively, in metabolism of steroid hormones and a sex pheromone androstenone, both of which also play roles in metabolism of nonsteroidal carbonyl compounds.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Toru Nishinaka
- Faculty of Pharmacy, Osaka-Ohtani University, Osaka 584-8540, Japan
| |
Collapse
|
9
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
10
|
Caron P, Turcotte V, Guillemette C. A quantitative analysis of total and free 11-oxygenated androgens and its application to human serum and plasma specimens using liquid-chromatography tandem mass spectrometry. J Chromatogr A 2021; 1650:462228. [PMID: 34090133 DOI: 10.1016/j.chroma.2021.462228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Bioactive 11-oxygenated C19 adrenal-derived steroids (11-oxy C19) are potentially relevant in diverse endocrine and metabolic contexts. We report the development and validation of a liquid chromatography electrospray ionization tandem mass spectrometric method (LC-ESI-MS/MS) for the simultaneous quantification of seven 11-oxy C19 using 200 µL of plasma or serum. Sample preparation involved chemical derivatization using hydroxylamine after liquid-liquid extraction to improve specificity and sensitivity. The method allowed the quantitation of total 11-oxy C19 (free + sulfate and glucuronide conjugates) following enzymatic hydrolysis. This included the abundant precursor 11-hydroxyandrostenedione (11OHA4) and the most potent androgenic derivatives 11-keto-testosterone (11KT) and 11-keto-dihydrotestosterone (11KDHT), their abundant metabolites 11-hydroxyandrosterone (11OHAST) and 11-keto-androsterone (11KAST) potentially feeding back into the pool of potent androgens, in addition to 11-keto-androstenedione (11KA4) and 11-hydroxytestosterone (11OHT). Stable isotopes were used as internal standards, and calibrators and quality controls were prepared in the same matrix as the study samples. Performance was validated against the Food and Drug Administration Criteria. The method was sensitive with lower limit of quantification (LLOQ) values of 10 and 20 pg/mL for free and total 11-oxy C19, respectively. The applicability was demonstrated in men and women adult donors that showed sex-differences. All steroids were quantified well above LLOQ, except 11KDHT that remained undetectable suggesting interfering endogenous molecules present in non-derivatized samples in which a peak was observed. By providing accurate and reliable quantitative data, this method will permit to evaluate how profiling of 11-oxy C19 will be most informative as diagnostic, prognostic and/or theranostic tools.
Collapse
Affiliation(s)
- Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec - Université Laval Research Center and Faculty of Pharmacy, Laval University, Québec city, QC, Canada
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec - Université Laval Research Center and Faculty of Pharmacy, Laval University, Québec city, QC, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec - Université Laval Research Center and Faculty of Pharmacy, Laval University, Québec city, QC, Canada; Canada Research Chair in Pharmacogenomics, Canada.
| |
Collapse
|
11
|
Zhang S, Xie L, Zheng S, Lu B, Tao W, Wang X, Kocher TD, Zhou L, Wang D. Identification, Expression and Evolution of Short-Chain Dehydrogenases/Reductases in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2021; 22:ijms22084201. [PMID: 33919636 PMCID: PMC8073704 DOI: 10.3390/ijms22084201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/31/2023] Open
Abstract
The short-chain dehydrogenases/reductases (SDR) superfamily is involved in multiple physiological processes. In this study, genome-wide identification and comprehensive analysis of SDR superfamily were carried out in 29 animal species based on the latest genome databases. Overall, the number of SDR genes in animals increased with whole genome duplication (WGD), suggesting the expansion of SDRs during evolution, especially in 3R-WGD and polyploidization of teleosts. Phylogenetic analysis indicated that vertebrates SDRs were clustered into five categories: classical, extended, undefined, atypical, and complex. Moreover, tandem duplication of hpgd-a, rdh8b and dhrs13 was observed in teleosts analyzed. Additionally, tandem duplications of dhrs11-a, dhrs7a, hsd11b1b, and cbr1-a were observed in all cichlids analyzed, and tandem duplication of rdh10-b was observed in tilapiines. Transcriptome analysis of adult fish revealed that 93 SDRs were expressed in more than one tissue and 5 in one tissue only. Transcriptome analysis of gonads from different developmental stages showed that expression of 17 SDRs were sexually dimorphic with 11 higher in ovary and 6 higher in testis. The sexually dimorphic expressions of these SDRs were confirmed by in situ hybridization (ISH) and qPCR, indicating their possible roles in steroidogenesis and gonadal differentiation. Taken together, the identification and the expression data obtained in this study contribute to a better understanding of SDR superfamily evolution and functions in teleosts.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Lang Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Xiaoshuang Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
- Correspondence: (L.Z.); (D.W.); Tel.: +86-23-68253702 (D.W.)
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
- Correspondence: (L.Z.); (D.W.); Tel.: +86-23-68253702 (D.W.)
| |
Collapse
|
12
|
Barnard L, du Toit T, Swart AC. Back where it belongs: 11β-hydroxyandrostenedione compels the re-assessment of C11-oxy androgens in steroidogenesis. Mol Cell Endocrinol 2021; 525:111189. [PMID: 33539964 DOI: 10.1016/j.mce.2021.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Adrenal steroidogenesis has, for decades, been depicted as three biosynthesis pathways -the mineralocorticoid, glucocorticoid and androgen pathways with aldosterone, cortisol and androstenedione as the respective end products. 11β-hydroxyandrostenedione was not included as an adrenal steroid despite the adrenal output of this steroid being twice that of androstenedione. While it is the end of the line for aldosterone and cortisol, as it is in these forms that they exhibit their most potent receptor activities prior to inactivation and conjugation, 11β-hydroxyandrostenedione is another matter entirely. The steroid, which is weakly androgenic, has its own designated pathway yielding 11-ketoandrostenedione, 11β-hydroxytestosterone and the potent androgens, 11-ketotestosterone and 11-ketodihydrotestosterone, primarily in the periphery. Over the last decade, these C11-oxy C19 steroids have once again come to the fore with the rising number of studies contradicting the generally accepted notion that testosterone and it's 5α-reduced product, dihydrotestosterone, are the principal potent androgens in humans. These C11-oxy androgens have been shown to contribute to the androgen milieu in adrenal disorders associated with androgen excess and in androgen dependant disease progression. In this review, we will highlight these overlooked C11-oxy C19 steroids as well as the C11-oxy C21 steroids and their contribution to congenital adrenal hyperplasia, polycystic ovarian syndrome and prostate cancer. The focus is on new findings over the past decade which are slowly but surely reshaping our current outlook on human sex steroid biology.
Collapse
Affiliation(s)
- Lise Barnard
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
13
|
Penning TM, Asangani IA, Sprenger C, Plymate S. Intracrine androgen biosynthesis and drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:912-929. [PMID: 35582223 PMCID: PMC8992556 DOI: 10.20517/cdr.2020.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 06/15/2023]
Abstract
Castration-resistant prostate cancer is the lethal form of prostate cancer and most commonly remains dependent on androgen receptor (AR) signaling. Current therapies use AR signaling inhibitors (ARSI) exemplified by abiraterone acetate, a P450c17 inhibitor, and enzalutamide, a potent AR antagonist. However, drug resistance to these agents occurs within 12-18 months and they only prolong overall survival by 3-4 months. Multiple mechanisms can contribute to ARSI drug resistance. These mechanisms can include but are not limited to germline mutations in the AR, post-transcriptional alterations in AR structure, and adaptive expression of genes involved in the intracrine biosynthesis and metabolism of androgens within the tumor. This review focuses on intracrine androgen biosynthesis, how this can contribute to ARSI drug resistance, and therapeutic strategies that can be used to surmount these resistance mechanisms.
Collapse
Affiliation(s)
- Trevor M. Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irfan A. Asangani
- Department Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Geriatric Research Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|