1
|
Brzozowska MM, Bliuc D, Mazur A, Baldock PA, Eisman JA, Greenfield JR, Center JR. Sex-differential testosterone response to long-term weight loss. Int J Obes (Lond) 2024; 48:1481-1488. [PMID: 39014246 PMCID: PMC11420080 DOI: 10.1038/s41366-024-01591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Obesity-associated gonadal dysfunction is a common comorbidity in patients seeking weight loss interventions. We examined the incremental effect of weight loss on gonadal axes in men and women over 3 years. Changes in sex hormones were compared between dietary intervention (Diet) and bariatric procedures: Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG) and laparoscopic adjustable gastric banding (LAGB). Additional analysis assessed changes in corticotropic, somatotropic and thyroid axes after weight loss interventions. METHODS This prospective, observational study included 61 adults with Body Mass Index >30 kg/m2, mean age 51 (SD = 11) years. Endocrine parameters were measured at baseline and at 6 timepoints over 36-months. RESULTS For each 1 kg of weight lost, between baseline and 36 months, total testosterone increased by 0.6% (95% CI: 0.2%, 1.0%, p = 0.002) in males and decreased by 0.8% (95% CI: -1.4%, -0.3%, p = 0.003) in females. These changes remained statistically significant when controlled for age and for menopausal status in females. At 36 months, in comparison with Diet, RYGB women had lower total testosterone by 54% (95% CI: -90%, -17%, p = 0.004), reduced free androgen index (FAI) by 65% (95% CI; -114%, -17%, p = 0.009) while SG had reduced FAI by 39% (95% CI; -77%, 0%, p = 0.05). No such differences between groups were noted for male subjects. Adrenocorticotropic hormone declined by 0.3% (95% CI: 0.0, -0.5%, p = 0.05), insulin-like growth factor-1 increased by 0.4% (95% CI; 0.2%, 0.7%, p = 0.005), without such thyrotrophin change for each 1 kg of weight loss, for entire cohort, over 36 months. CONCLUSIONS The testosterone changes observed in this study were proportional to the amount of weight loss. In females, reduction in androgens was independent of age and menopausal status and more pronounced after bariatric procedures. This study finding warrants further clinical research to explore an impact of androgen reduction on functional and cognitive status in postmenopausal women. The observed changes in pituitary hormones may contribute to the metabolic benefits of bariatric surgery.
Collapse
Affiliation(s)
- Malgorzata M Brzozowska
- Garvan institute of Medical Research, Darlinghurst, NSW, Australia.
- Sutherland and St George Hospitals, Caringbah, NSW, Australia.
- University of New South Wales Sydney, Faculty of Medicine, Sydney, NSW, Australia.
| | - Dana Bliuc
- Garvan institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales Sydney, Faculty of Medicine, Sydney, NSW, Australia
| | - Artur Mazur
- University of Rzeszow, Faculty of Medicine, Rzeszow, Poland
| | - Paul A Baldock
- Garvan institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales Sydney, Faculty of Medicine, Sydney, NSW, Australia
- University of Notre Dame Australia, School of Medicine Sydney, Sydney, NSW, Australia
| | - John A Eisman
- Garvan institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales Sydney, Faculty of Medicine, Sydney, NSW, Australia
- University of Notre Dame Australia, School of Medicine Sydney, Sydney, NSW, Australia
- St Vincent's Hospital Clinical School, Department of Endocrinology, Darlinghurst, NSW, Australia
| | - Jerry R Greenfield
- Garvan institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales Sydney, Faculty of Medicine, Sydney, NSW, Australia
- St Vincent's Hospital Clinical School, Department of Endocrinology, Darlinghurst, NSW, Australia
| | - Jacqueline R Center
- Garvan institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales Sydney, Faculty of Medicine, Sydney, NSW, Australia
- University of Notre Dame Australia, School of Medicine Sydney, Sydney, NSW, Australia
- St Vincent's Hospital Clinical School, Department of Endocrinology, Darlinghurst, NSW, Australia
| |
Collapse
|
2
|
Lame-Jouybari AH, Abbasalizad-Farhangi M. Effects of eight-week regular high-intensity interval training and hemp (Cannabis sativa L.) seed on total testosterone level among sedentary young males: double-blind, randomized, controlled clinical trial. Endocrine 2024; 84:273-286. [PMID: 38085421 DOI: 10.1007/s12020-023-03629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 04/04/2024]
Abstract
PURPOSE This study aimed to investigate the effects of high-intensity interval training (HIIT) alone or in combination with hemp seed on total testosterone (TT) levels, sex hormone-binding globulin (SHBG), body composition, oxidative stress, and antioxidant capacity in sedentary young males. METHODS Randomly, 48 young sedentary males were assigned among four groups (each comprising 12 individuals) as follows: HIIT + hemp seed (HH), HIIT + placebo (AT), hemp seed only (HS), and control. For eight weeks, exercise groups had HIIT three times per week. Hemp seed groups received 2 g of powder daily. The plasma levels of TT, SHBG, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and also body mass index (BMI), body fat percentage (BF%), and muscle mass percentage (MM%) were measured. The analysis was based on the intention-to-treat (ITT) and per-protocol (PP). RESULTS Based on ITT, BMI and BF% decreased, and MM% increased significantly post-intervention in HIIT groups (p < 0.05). TT increased significantly in the HH [mean difference 0.45, 95% CI 0.1 to 0.7, p = 0.005] and AT [mean difference 0.37, 95% CI 0.1 to 0.7, p = 0.01]. The whole hemp seed components showed a significant antioxidant potential. However, none of the SOD, CAT, and MDA indices showed significant changes post-interventions (p ≥ 0.05). CONCLUSION Finally, HIIT and hemp seed intake showed no significant effects on the antioxidant defense system. However, regular HIIT significantly increased TT levels and improved body composition in sedentary young males. TRIAL REGISTRATION Iranian Registry of Clinical Trials (registration code: IRCT20140907019082N10).
Collapse
Affiliation(s)
- Amir Hossein Lame-Jouybari
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Ken-Dror G, Fluck D, Fry CH, Han TS. Meta-analysis and construction of simple-to-use nomograms for approximating testosterone levels gained from weight loss in obese men. Andrology 2024; 12:297-315. [PMID: 37345263 DOI: 10.1111/andr.13484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Obesity-induced hypogonadism, which manifests as erectile dysfunction and a lack of libido, is a less visible and under-recognized obesity-related disorder in men. OBJECTIVE We examined the impact of weight loss on total (TT) and free testosterone (FT) levels, and constructed nomograms to provide an easy-to-use visual aid for clinicians. MATERIALS AND METHODS Meta-analysis was conducted using RevMan (v5.3) and expressed in standardized mean differences (SMD) for testosterone. Parallel-scale nomograms were constructed from baseline and target body mass index values to estimate the gain in testosterone. RESULTS In total, 44 studies were included, comprising 1,774 participants and 2,159 datasets, as some studies included several datasets at different time points. Weight loss was controlled by low calorie diet (LCD) in 19 studies (735 participants, 988 datasets), by bariatric surgery (BS) in 26 studies (1,039 participants, 1,171 datasets), and by both in one study. The median follow-up was 26 weeks (interquartile range = 12-52). The range of baseline mean age was 21-68 yr, BMI: 26.2-71.2 kg/m2 , TT: 7-20.2 nmol/L and FT: 140-583 pmol/L. TT levels increased after weight loss by LCD: SMD (95%CI) = 2.5 nmol/L (1.9-3.1) and by BS: SMD = 7.2 nmol/L (6.0-8.4); the combined TT gain was 4.8 nmol/L (3.9-5.6). FT levels increased after weight reduction by LCD: SMD = 19.9 pmol/L (7.3-32.5) and by BS: SMD = 58.0 pmol/L (44.3-71.7); the combined gain was 42.2 pmol/L (31.4-52.9). Greater amounts of total and free testosterone could be gained by weight loss in men with higher baseline BMI, or lower levels of SHBG, TT and FT, while gain in TT was relatively greater in older and FT in younger age. Age-stratified nomograms revealed that compared to older men (> 40 yr), younger men (≤ 40 yr) gained less TT but more FT for a given weight loss. DISCUSSION AND CONCLUSION Both TT and FT levels increased after weight loss, relatively greater with higher baseline BMI, or lower levels of SHBG, TT and FT. Nomograms constructed from a large number of participants with a wide range of BMI and testosterone values provide an evidence-based and simple-to-use tool in clinical practice.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Institute of Cardiovascular Research, Royal Holloway, University of London, Egham, Surrey, UK
| | - David Fluck
- Department of Cardiology, Ashford and St Peter's NHS Foundation Trust, Chertsey, Surrey, UK
| | - Christopher Henry Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Thang Sieu Han
- Institute of Cardiovascular Research, Royal Holloway, University of London, Egham, Surrey, UK
- Department of Endocrinology, Ashford and St Peter's NHS Foundation Trust, Chertsey, Surrey, UK
| |
Collapse
|
4
|
Abstract
In men > ~35 years, aging is associated with perturbations in the hypothalamus-pituitary-testicular axis and declining serum testosterone concentrations. The major changes are decreased gonadotropin-releasing hormone (GnRH) outflow and decreased Leydig cell responsivity to stimulation by luteinizing hormone (LH). These physiologic changes increase the prevalence of biochemical secondary hypogonadism-a low serum testosterone concentration without an elevated serum LH concentration. Obesity, medications such as opioids or corticosteroids, and systemic disease further reduce GnRH and LH secretion and might result in biochemical or clinical secondary hypogonadism. Biochemical secondary hypogonadism related to aging often remits with weight reduction and avoidance or treatment of other factors that suppress GnRH and LH secretion. Starting at age ~65-70, progressive Leydig cell dysfunction increases the prevalence of biochemical primary hypogonadism-a low serum testosterone concentration with an elevated serum LH concentration. Unlike biochemical secondary hypogonadism in older men, biochemical primary hypogonadism is generally irreversible. The evaluation of low serum testosterone concentrations in older men requires a careful assessment for symptoms, signs and causes of male hypogonadism. In older men with a body mass index (BMI) ≥ 30, biochemical secondary hypogonadism and without an identifiable cause of hypothalamus or pituitary pathology, weight reduction and improvement of overall health might reverse biochemical hypogonadism. For older men with biochemical primary hypogonadism, testosterone replacement therapy might be beneficial. Because aging is associated with decreased metabolism of testosterone and increased tissue-specific androgen sensitivity, lower dosages of testosterone replacement therapy are often effective and safer in older men.
Collapse
Affiliation(s)
- Bradley D Anawalt
- Department of Medicine, University of Washington School of Medicine, Department of Medicine, 1959 NE Pacific Avenue, Box 356420, Seattle, WA, 98195, USA.
| | - Alvin M Matsumoto
- Department of Medicine, University of Washington School of Medicine, Department of Medicine, 1959 NE Pacific Avenue, Box 356420, Seattle, WA, 98195, USA
- Geriatric Research, Education and Clinical Center VA Puget Sound Health Care System, 1660 South Columbian Way (S-182-GRECC), Seattle, WA, 98118, USA
| |
Collapse
|
5
|
Narinx N, David K, Walravens J, Vermeersch P, Claessens F, Fiers T, Lapauw B, Antonio L, Vanderschueren D. Role of sex hormone-binding globulin in the free hormone hypothesis and the relevance of free testosterone in androgen physiology. Cell Mol Life Sci 2022; 79:543. [PMID: 36205798 DOI: 10.1007/s00018-022-04562-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
According to the free hormone hypothesis, biological activity of a certain hormone is best reflected by free rather than total hormone concentrations. A crucial element in this theory is the presence of binding proteins, which function as gatekeepers for steroid action. For testosterone, tissue exposure is governed by a delicate equilibrium between free and total testosterone which is determined through interaction with the binding proteins sex hormone-binding globulin and albumin. Ageing, genetics and various pathological conditions influence this equilibrium, hereby possibly modulating hormonal exposure to the target tissues. Despite ongoing controversy on the subject, strong evidence from recent in vitro, in vivo and human experiments emphasizes the relevance of free testosterone. Currently, however, clinical possibilities for free hormone diagnostics are limited. Direct immunoassays are inaccurate, while gold standard liquid chromatography with tandem mass spectrometry (LC-MS/MS) coupled equilibrium dialysis is not available for clinical routine. Calculation models for free testosterone, despite intrinsic limitations, provide a suitable alternative, of which the Vermeulen calculator is currently the preferred method. Calculated free testosterone is indeed associated with bone health, frailty and other clinical endpoints. Moreover, the added value of free testosterone in the clinical diagnosis of male hypogonadism is clearly evident. In suspected hypogonadal men in whom borderline low total testosterone and/or altered sex hormone-binding globulin levels are detected, the determination of free testosterone avoids under- and overdiagnosis, facilitating adequate prescription of hormonal replacement therapy. As such, free testosterone should be integrated as a standard biochemical parameter, on top of total testosterone, in the diagnostic workflow of male hypogonadism.
Collapse
Affiliation(s)
- N Narinx
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium.,Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - K David
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - J Walravens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - P Vermeersch
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - F Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - T Fiers
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - B Lapauw
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - L Antonio
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - D Vanderschueren
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000, Leuven, Belgium. .,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Ostinelli G, Laforest S, Denham SG, Gauthier MF, Drolet-Labelle V, Scott E, Hould FS, Marceau S, Homer NZM, Bégin C, Andrew R, Tchernof A. Increased Adipose Tissue Indices of Androgen Catabolism and Aromatization in Women With Metabolic Dysfunction. J Clin Endocrinol Metab 2022; 107:e3330-e3342. [PMID: 35511873 PMCID: PMC9282357 DOI: 10.1210/clinem/dgac261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 02/02/2023]
Abstract
CONTEXT Body fat distribution is a risk factor for obesity-associated comorbidities, and adipose tissue dysfunction plays a role in this association. In humans, there is a sex difference in body fat distribution, and steroid hormones are known to regulate several cellular processes within adipose tissue. OBJECTIVE Our aim was to investigate if intra-adipose steroid concentration and expression or activity of steroidogenic enzymes were associated with features of adipose tissue dysfunction in individuals with severe obesity. METHODS Samples from 40 bariatric candidates (31 women, 9 men) were included in the study. Visceral (VAT) and subcutaneous adipose tissue (SAT) were collected during surgery. Adipose tissue morphology was measured by a combination of histological staining and semi-automated quantification. Following extraction, intra-adipose and plasma steroid concentrations were determined by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Aromatase activity was estimated using product over substrate ratio, while AKR1C2 activity was measured directly by fluorogenic probe. Gene expression was measured by quantitative PCR. RESULTS VAT aromatase activity was positively associated with VAT adipocyte hypertrophy (P valueadj < 0.01) and negatively with plasma high-density lipoprotein (HDL)-cholesterol (P valueadj < 0.01), while SAT aromatase activity predicted dyslipidemia in women even after adjustment for waist circumference, age, and hormonal contraceptive use. We additionally compared women with high and low visceral adiposity index (VAI) and found that VAT excess is characterized by adipose tissue dysfunction, increased androgen catabolism mirrored by increased AKR1C2 activity, and higher aromatase expression and activity indices. CONCLUSION In women, increased androgen catabolism or aromatization is associated with visceral adiposity and adipose tissue dysfunction.
Collapse
Affiliation(s)
- Giada Ostinelli
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- École de nutrition, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sofia Laforest
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- École de nutrition, Université Laval, Québec City, QC G1V 0A6, Canada
- University of Strathclyde, Glasgow G1 1XQ, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF, Cardiovascular Sciences, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Scott G Denham
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF, Cardiovascular Sciences, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Marie-Frederique Gauthier
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
| | | | - Emma Scott
- Faculté de médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Frédéric-Simon Hould
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- Faculté de médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Simon Marceau
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- Faculté de médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF, Cardiovascular Sciences, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Catherine Bégin
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- École de psychologie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Ruth Andrew
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF, Cardiovascular Sciences, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, EH16 4TJ, UK
- BHF/CVS, Queen’s Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - André Tchernof
- Correspondence: Andre Tchernof, PhD, Quebec Heart and Lung Institute, School of Nutrition, Laval University, 2725 Chemin Sainte-Foy (Y-4212), Québec, QC G1V 4G5, Canada.
| |
Collapse
|