1
|
Show S, Akhter R, Paul I, Das P, Bal M, Bhattacharya R, Bose D, Mondal A, Saha S, Halder G. Efficacy of exopolysaccharide in dye-laden wastewater treatment: A comprehensive review. CHEMOSPHERE 2024; 355:141753. [PMID: 38531498 DOI: 10.1016/j.chemosphere.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
The discharge of dye-laden wastewater into the water streams causes severe water and soil pollution, which poses a global threat to aquatic ecosystems and humans. A diverse array of microorganisms such as bacteria, fungi, and algae produce exopolysaccharides (EPS) of different compositions and exhibit great bioflocculation potency to sustainably eradicate dyes from water bodies. Nanomodified chemical composites of EPS enable their recyclability during dye-laden wastewater treatment. Nevertheless, the selection of potent EPS-producing strains and physiological parameters of microbial growth and the remediation process could influence the removal efficiency of EPS. This review will intrinsically discuss the fundamental importance of EPS from diverse microbial origins and their nanomodified chemical composites, the mechanisms in EPS-mediated bioremediation of dyes, and the parametric influences on EPS-mediated dye removal through sorption/bioflocculation. This review will pave the way for designing and adopting futuristic green and sustainable EPS-based bioremediation strategies for dye-laden wastewater in situ and ex situ.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Ramisa Akhter
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Riya Bhattacharya
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Debajyoti Bose
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Amita Mondal
- Department of Chemistry, Vedanta College, Kolkata, 700054, West Bengal, India
| | - Shouvik Saha
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India.
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
2
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
3
|
Malik S, Kumar D. Perspectives of nanomaterials in microbial remediation of heavy metals and their environmental consequences: A review. Biotechnol Genet Eng Rev 2024; 40:154-201. [PMID: 36871166 DOI: 10.1080/02648725.2023.2182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Nanomaterials (NMs) have diverse applications in various sectors, such as decontaminating heavy metals from drinking water, wastewater, and soil. Their degradation efficiency can be enhanced through the application of microbes. As microbial strain releases enzymes, which leads to the degradation of HMs. Therefore, nanotechnology and microbial-assisted remediation-based methods help us develop a remediation process with practical utility, speed, and less environmental toxicity. This review focuses on the success achieved for the bioremediation of heavy metals by nanoparticles and microbial strains and in their integrated approach. Still, the use of NMs and heavy metals (HMs) can negatively affect the health of living organisms. This review describes various aspects of the bioremediation of heavy materials using microbial nanotechnology. Their safe and specific use supported by bio-based technology paves the way for their better remediation. We discuss the utility of nanomaterials for removing heavy metals from wastewater, toxicity studies and issues to the environment with their practical implications. Nanomaterial assisted heavy metal degradation coupled with microbial technology and disposal issues are described along with detection methods. Environmental impact of nanomaterials is also discussed based on the recent work conducted by the researchers. Therefore, this review opens new avenues for future research with an impact on the environment and toxicity issues. Also, applying new biotechnological tools will help us develop better heavy metal degradation routes.
Collapse
Affiliation(s)
- Sachin Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| |
Collapse
|
4
|
Li S, Huang J, Tong L, Li Q, Zhou H, Deng X, Zhou J, Xie Z, Liu X, Liang Y. Insights into the biosynthesis of palladium nanoparticles for oxygen reduction reaction by genetically engineered bacteria of Shewanella oneidensis MR-1. Microb Biotechnol 2024; 17:e14469. [PMID: 38647123 PMCID: PMC11034004 DOI: 10.1111/1751-7915.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Owing to the increasing need for green synthesis and environmental protection, the utilization of biological organism-derived carbons as supports for noble-metal electrocatalysts has garnered public interest. Nevertheless, the mechanism by which microorganisms generate nanometals has not been fully understood yet. In the present study, we used genetically engineered bacteria of Shewanella oneidensis MR-1 (∆SO4317, ∆SO4320, ∆SO0618 and ∆SO3745) to explore the effect of surface substances including biofilm-associated protein (bpfA), protein secreted by type I secretion systems (TISS) and type II secretion systems (T2SS), and lipopolysaccharide in microbial synthesis of metal nanoparticles. Results showed Pd/∆SO4317 (the catalyst prepared with the mutant ∆SO4317) shows better performance than other biocatalysts and commercial Pd/C, where the mass activity (MA) and specific activity (SA) of Pd/∆SO4317 are 3.1 and 2.1 times higher than those of commercial Pd/C, reaching 257.49 A g-1 and 6.85 A m-2 respectively. It has been found that the exceptional performance is attributed to the smallest particle size and the presence of abundant functional groups. Additionally, the absence of biofilms has been identified as a crucial factor in the formation of high-quality bio-Pd. Because the absence of biofilm can minimize metal agglomeration, resulting in uniform particle size dispersion. These findings provide valuable mechanical insights into the generation of biogenic metal nanoparticles and show potential industrial and environmental applications, especially in accelerating oxygen reduction reactions.
Collapse
Affiliation(s)
- Shihui Li
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| | - Jingwen Huang
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| | - Linjun Tong
- Department of Automotive EngineeringFoshan PolytechnicFoshanChina
| | - Qingxin Li
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| | - Haikun Zhou
- School of Chemical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Xiaoting Deng
- College of Food and Chemical EngineeringShaoyang UniversityShaoyangChina
| | - Jin Zhou
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| | - Zhiyong Xie
- State Key Laboratory of Powder Metallurgy & Science and Technology on High Strength Structural Materials LaboratoryCentral South UniversityChangshaChina
| | - Xueduan Liu
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| | - Yili Liang
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| |
Collapse
|
5
|
Nadeem M, Pervez L, Khan AM, Burton RA, Ullah S, Nadhman A, Celli J. Microbial-mediated synthesis of gold nanoparticles—current insights and future vistas. GOLD BULLETIN 2023; 56:69-81. [DOI: 10.1007/s13404-023-00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/05/2023] [Indexed: 10/10/2024]
|
6
|
Yang J, Zhai X, Dong X, Zhao L, Zhang Y, Xiao H, Ju P, Duan J, Tang X, Hou B. Peroxidase-like phosphate hydrate nanosheets bio-synthesized by a marine Shewanella algae strain for highly sensitive dopamine detection. Colloids Surf B Biointerfaces 2023; 225:113248. [PMID: 36905834 DOI: 10.1016/j.colsurfb.2023.113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
The sensitive and rapid detection of dopamine (DA) is of great significance for early diagnosis of related diseases. Current detection strategies of DA are time-consuming, expensive and inaccurate, while biosynthetic nanomaterials were considered highly stable and environment friendly, which were promising on colorimetric sensing. Thus, in this study, novel zinc phosphate hydrate nanosheets (SA@ZnPNS) biosynthesized by Shewanella algae were designed for the detection of DA. SA@ZnPNS showed high peroxidase-like activity which catalyzed the oxidation reaction of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. Results showed that the catalytic reaction of SA@ZnPNS followed Michaelis-Menton kinetics, and catalytic process conformed to ping-pong mechanism with chief active species of hydroxyl radicals. The colorimetric detection of DA in human serum samples was performed based on SA@ZnPNS peroxidase-like activity. The linear range of DA detection was 0.1-40 μM, and the detection limit was 0.083 μM. This study provided a simple and practical method for the detection of DA and expanded the application of biosynthesized nanoparticles to biosensing fields.
Collapse
Affiliation(s)
- Jing Yang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China
| | - Xiaofan Zhai
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China; Sanya Institute of Ocean Eco-Environmental Engineering, Zhenzhou Road, Sanya 572000, PR China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning 530007, PR China.
| | - Xucheng Dong
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China
| | - Liuhui Zhao
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China; School of Bioengineering, Qilu University of Technology, No. 3501 Daxue Road, Jinan 250353, PR China
| | - Yu Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China.
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao 266061, PR China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China; Sanya Institute of Ocean Eco-Environmental Engineering, Zhenzhou Road, Sanya 572000, PR China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning 530007, PR China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266235, PR China; Sanya Institute of Ocean Eco-Environmental Engineering, Zhenzhou Road, Sanya 572000, PR China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, No. 98 Daling Road, Nanning 530007, PR China
| |
Collapse
|
7
|
Liang Y, Demir H, Wu Y, Aygun A, Elhouda Tiri RN, Gur T, Yuan Y, Xia C, Demir C, Sen F, Vasseghian Y. Facile synthesis of biogenic palladium nanoparticles using biomass strategy and application as photocatalyst degradation for textile dye pollutants and their in-vitro antimicrobial activity. CHEMOSPHERE 2022; 306:135518. [PMID: 35780993 DOI: 10.1016/j.chemosphere.2022.135518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Among biological applications, plant-mediated Pd NPs for multi-drug resistance (MDR) developed in pathogenic bacteria were synthesized with the help of biomass of lemon peel, a biological material, with a non-toxic, environmentally friendly, human-nature green synthesis method. Characterization of synthesized Pd NPs was carried out by UV-Vis spectrometry, Transmissive Electron Microscopy (TEM), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) techniques. According to TEM analysis, Pd NPs were confirmed to be in a spherical shape and the mean particle size was determined to be 4.11 nm. The crystal structure of Pd NPs was checked using XRD analysis and the mean particle size was observed to be 6.72 nm. Besides, the antibacterial activity of Pd NPs was determined against Escherichia coli (E. coli) (ATCC 8739), Bacillus subtilis (B. subtilis ATCC 6633), Staphylococcus aureus (S. aureus ATCC 6538), Klebsiella pneumoniae (K. pneumoniae ATCC 11296) and Serratia marcescens (S. marcescens ATCC) bacteria. Antibacterial activity was determined to be high in Pd NPs which is in conformance with the results acquired. The Pd NPs showed good photocatalytic activity, after 90 min illumination, about 81.55% and 68.45% of MB and MO respectively were catalysed by the Pd NPs catalyst, and 74.50% of RhB dyes were removed at 120 min of illumination. Within the scope of this project, it is recommended to use Pd NPs obtained by the green synthesis in the future as an antibacterial agent in biomedical use and for the cleaning of polluted waters.
Collapse
Affiliation(s)
- Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Halit Demir
- Division of Biochemistry, Department of Chemistry, Van Yuzuncu Yil University, 65090, Van, Turkey
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Aysenur Aygun
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey
| | - Tugba Gur
- Van Health Services Vocational School, Van Yuzuncu Yil University, 65090, Van, Turkey
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; DeHua TB New Decoration Materials Co., Ltd., Huzhou, Zhejiang, 313200, China.
| | - Canan Demir
- Van Health Services Vocational School, Van Yuzuncu Yil University, 65090, Van, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkey.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
8
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
9
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Egan-Morriss C, Kimber RL, Powell NA, Lloyd JR. Biotechnological synthesis of Pd-based nanoparticle catalysts. NANOSCALE ADVANCES 2022; 4:654-679. [PMID: 35224444 PMCID: PMC8805459 DOI: 10.1039/d1na00686j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 06/02/2023]
Abstract
Palladium metal nanoparticles are excellent catalysts used industrially for reactions such as hydrogenation and Heck and Suzuki C-C coupling reactions. However, the global demand for Pd far exceeds global supply, therefore the sustainable use and recycling of Pd is vital. Conventional chemical synthesis routes of Pd metal nanoparticles do not meet sustainability targets due to the use of toxic chemicals, such as organic solvents and capping agents. Microbes are capable of bioreducing soluble high oxidation state metal ions to form metal nanoparticles at ambient temperature and pressure, without the need for toxic chemicals. Microbes can also reduce metal from waste solutions, revalorising these waste streams and allowing the reuse of precious metals. Pd nanoparticles supported on microbial cells (bio-Pd) can catalyse a wide array of reactions, even outperforming commercial heterogeneous Pd catalysts in several studies. However, to be considered a viable commercial option, the intrinsic activity and selectivity of bio-Pd must be enhanced. Many types of microorganisms can produce bio-Pd, although most studies so far have been performed using bacteria, with metal reduction mediated by hydrogenase or formate dehydrogenase enzymes. Dissimilatory metal-reducing bacteria (DMRB) possess additional enzymes adapted for extracellular electron transport that potentially offer greater control over the properties of the nanoparticles produced. A recent and important addition to the field are bio-bimetallic nanoparticles, which significantly enhance the catalytic properties of bio-Pd. In addition, systems biology can integrate bio-Pd into biocatalytic processes, and processing techniques may enhance the catalytic properties further, such as incorporating additional functional nanomaterials. This review aims to highlight aspects of enzymatic metal reduction processes that can be bioengineered to control the size, shape, and cellular location of bio-Pd in order to optimise its catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan-Morriss
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| | - Richard L Kimber
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna 1090 Vienna Austria
| | | | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| |
Collapse
|
11
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
12
|
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. EMERGENT MATERIALS 2022; 5:1593-1615. [PMID: 35005431 PMCID: PMC8724657 DOI: 10.1007/s42247-021-00335-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/09/2021] [Indexed: 05/02/2023]
Abstract
Over the past few years, nanotechnology has been attracting considerable research attention because of their outstanding mechanical, electromagnetic and optical properties. Nanotechnology is an interdisciplinary field comprising nanomaterials, nanoelectronics, and nanobiotechnology, as three areas which extensively overlap. The application of metal nanoparticles (MNPs) has drawn much attention offering significant advances, especially in the field of medicine by increasing the therapeutic index of drugs through site specificity preventing multidrug resistance and delivering therapeutic agents efficiently. Apart from drug delivery, some other applications of MNPs in medicine are also well known such as in vivo and in vitro diagnostics and production of enhanced biocompatible materials and nutraceuticals. The use of metallic nanoparticles for drug delivery systems has significant advantages, such as increased stability and half-life of drug carrier in circulation, required biodistribution, and passive or active targeting into the required target site. Green synthesis of MNPs is an emerging area in the field of bionanotechnology and provides economic and environmental benefits as an alternative to chemical and physical methods. Therefore, this review aims to provide up-to-date insights on the current challenges and perspectives of MNPs in drug delivery systems. The present review was mainly focused on the greener methods of metallic nanocarrier preparations and its surface modifications, applications of different MNPs like silver, gold, platinum, palladium, copper, zinc oxide, metal sulfide and nanometal organic frameworks in drug delivery systems.
Collapse
Affiliation(s)
- V. Chandrakala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Valmiki Aruna
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| | - Gangadhara Angajala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnan Koil, 626126 Tamil Nadu India
| |
Collapse
|
13
|
Insights into the Biosynthesis of Nanoparticles by the Genus Shewanella. Appl Environ Microbiol 2021; 87:e0139021. [PMID: 34495739 DOI: 10.1128/aem.01390-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus Shewanella are able to couple the oxidation of various electron donors, including lactate, pyruvate, and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single-metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of Shewanella species. A mechanistic understanding of electron transfer-mediated bioreduction of metals into respective NPs by Shewanella is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using Shewanella species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of Shewanella as a model organism in the biosynthesis of a variety of NPs and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors, and future prospects.
Collapse
|
14
|
Banerjee A, Sarkar S, Govil T, González-Faune P, Cabrera-Barjas G, Bandopadhyay R, Salem DR, Sani RK. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front Microbiol 2021; 12:721365. [PMID: 34489911 PMCID: PMC8417407 DOI: 10.3389/fmicb.2021.721365] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.
Collapse
Affiliation(s)
- Aparna Banerjee
- Centro de investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación Y Posgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Shrabana Sarkar
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center, Rapid City, SD, United States
| | - Patricio González-Faune
- Escuela Ingeniería en Biotecnología, Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | | | - Rajib Bandopadhyay
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - David R. Salem
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Department of Materials and Metallurgical Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Rajesh K. Sani
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
15
|
Abstract
The past decade has witnessed a phenomenal rise in nanotechnology research due to its broad range of applications in diverse fields including food safety, transportation, sustainable energy, environmental science, catalysis, and medicine. The distinctive properties of nanomaterials (nano-sized particles in the range of 1 to 100 nm) make them uniquely suitable for such wide range of functions. The nanoparticles when manufactured using green synthesis methods are especially desirable being devoid of harsh operating conditions (high temperature and pressure), hazardous chemicals, or addition of external stabilizing or capping agents. Numerous plants and microorganisms are being experimented upon for an eco–friendly, cost–effective, and biologically safe process optimization. This review provides a comprehensive overview on the green synthesis of metallic NPs using plants and microorganisms, factors affecting the synthesis, and characterization of synthesized NPs. The potential applications of metal NPs in various sectors have also been highlighted along with the major challenges involved with respect to toxicity and translational research.
Collapse
|
16
|
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules 2021; 11:886. [PMID: 34203733 PMCID: PMC8246319 DOI: 10.3390/biom11060886] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nano-sized particles/structures (~100 nm) having a high surface-to-volume ratio that can modulate the physical, chemical and biological properties of the chemical compositions. In last few decades, nanoscience has attracted the attention of the scientific community worldwide due to its potential uses in the pharmacy, medical diagnostics and disease treatment, energy, electronics, agriculture, chemical and space industries. The properties of nanoparticles (NPs) are size and shape dependent. These characteristic features of nanoparticles can be explored for various other applications such as computer transistors, chemical sensors, electrometers, memory schemes, reusable catalysts, biosensing, antimicrobial activity, nanocomposites, medical imaging, tumor detection and drug delivery. Therefore, synthesizing nanoparticles of desired size, structure, monodispersity and morphology is crucial for the aforementioned applications. Recent advancements in nanotechnology aim at the synthesis of nanoparticles/materials using reliable, innoxious and novel ecofriendly techniques. In contrast to the traditional methods, the biosynthesis of nanoparticles of a desired nature and structure using the microbial machinery is not only quicker and safer but more environmentally friendly. Various microbes, including bacteria, actinobacteria, fungi, yeast, microalgae and viruses, have recently been explored for the synthesis of metal, metal oxide and other important NPs through intracellular and extracellular processes. Some bacteria and microalgae possess specific potential to fabricate distinctive nanomaterials such as exopolysaccharides, nanocellulose, nanoplates and nanowires. Moreover, their ability to synthesize nanoparticles can be enhanced using genetic engineering approaches. Thus, the use of microorganisms for synthesis of nanoparticles is unique and has a promising future. The present review provides explicit information on different strategies for the synthesis of nanoparticles using microbial cells; their applications in bioremediation, agriculture, medicine and diagnostics; and their future prospects.
Collapse
Affiliation(s)
- Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anil Kumar Poonia
- Centre for Plant Biotechnology, CCSHAU, Hisar 125004, Haryana, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
17
|
Al-khattaf FS. Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi J Biol Sci 2021; 28:3624-3631. [PMID: 34121906 PMCID: PMC8176005 DOI: 10.1016/j.sjbs.2021.03.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Metal nanoparticles were being used in different processes of developmental sectors like agriculture, industry, medical and pharmaceuticals. Nano-biotechnology along with sustainable organic chemistry has immense potential to reproduce innovative and key components of the systems to support surrounding environment, human health, and industry sustainably. Different unconventional methods were being used in green chemistry to synthesize gold and silver nanoparticles from various microbes. So, we reviewed different biological processes for green synthesis of metal nanoparticles. We also studied the mechanism of the synthesis process and procedures to characterize them. Some metallic nanoparticles have shown their potential to act as antimicrobial agent against plant pathogens. Here, we outlined green nanoparticles synthesized from microbes and highlighted their role against plant disease management.
Collapse
Affiliation(s)
- Fatimah S. Al-khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Ghosh S, Ahmad R, Banerjee K, AlAjmi MF, Rahman S. Mechanistic Aspects of Microbe-Mediated Nanoparticle Synthesis. Front Microbiol 2021; 12:638068. [PMID: 34025600 PMCID: PMC8131684 DOI: 10.3389/fmicb.2021.638068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
In recent times, nanoparticles (NPs) have found increasing interest owing to their size, large surface areas, distinctive structures, and unique properties, making them suitable for various industrial and biomedical applications. Biogenic synthesis of NPs using microbes is a recent trend and a greener approach than physical and chemical methods of synthesis, which demand higher costs, greater energy consumption, and complex reaction conditions and ensue hazardous environmental impact. Several microorganisms are known to trap metals in situ and convert them into elemental NPs forms. They are found to accumulate inside and outside of the cell as well as in the periplasmic space. Despite the toxicity of NPs, the driving factor for the production of NPs inside microorganisms remains unelucidated. Several reports suggest that nanotization is a way of stress response and biodefense mechanism for the microbe, which involves metal excretion/accumulation across membranes, enzymatic action, efflux pump systems, binding at peptides, and precipitation. Moreover, genes also play an important role for microbial nanoparticle biosynthesis. The resistance of microbial cells to metal ions during inward and outward transportation leads to precipitation. Accordingly, it becomes pertinent to understand the interaction of the metal ions with proteins, DNA, organelles, membranes, and their subsequent cellular uptake. The elucidation of the mechanism also allows us to control the shape, size, and monodispersity of the NPs to develop large-scale production according to the required application. This article reviews different means in microbial synthesis of NPs focusing on understanding the cellular, biochemical, and molecular mechanisms of nanotization of metals.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
- Research and Development Office, Ashoka University, Sonepat, India
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kamalika Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakilur Rahman
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
19
|
Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front Microbiol 2021; 12:636588. [PMID: 33717030 PMCID: PMC7947885 DOI: 10.3389/fmicb.2021.636588] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins as a potential reducing agent for synthesizing NPs has increased rapidly in comparison to physical and chemical methods. It is a fast, environmentally safe, and cost-effective approach. Among the biogenic sources, fungi and bacteria are preferred not only for their ability to produce a higher titer of reductase enzyme to convert the ionic forms into their nano forms, but also for their convenience in cultivating and regulating the size and morphology of the synthesized NPs, which can effectively reduce the cost for large-scale manufacturing. Effective penetration through exopolysaccharides of a biofilm matrix enables the NPs to inhibit the bacterial growth. Biofilm is the consortia of sessile groups of microbial cells that are able to adhere to biotic and abiotic surfaces with the help extracellular polymeric substances and glycocalyx. These biofilms cause various chronic diseases and lead to biofouling on medical devices and implants. The NPs penetrate the biofilm and affect the quorum-sensing gene cascades and thereby hamper the cell-to-cell communication mechanism, which inhibits biofilm synthesis. This review focuses on the microbial nano-techniques that were used to produce various metallic and non-metallic nanoparticles and their "signal jamming effects" to inhibit biofilm formation. Detailed analysis and discussion is given to their interactions with various types of signal molecules and the genes responsible for the development of biofilm.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Hassan I. Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, Ganjam, Odisha, India
- Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
20
|
Wang R, Li H, Sun J, Zhang L, Jiao J, Wang Q, Liu S. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004051. [PMID: 33325567 DOI: 10.1002/adma.202004051] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Electrochemically active bacteria can transport their metabolically generated electrons to anodes, or accept electrons from cathodes to synthesize high-value chemicals and fuels, via a process known as extracellular electron transfer (EET). Harnessing of this microbial EET process has led to the development of microbial bio-electrochemical systems (BESs), which can achieve the interconversion of electrical and chemical energy and enable electricity generation, hydrogen production, electrosynthesis, wastewater treatment, desalination, water and soil remediation, and sensing. Here, the focus is on the current understanding of the microbial EET process occurring at both the bacteria-electrode interface and the biotic interface, as well as some attempts to improve the EET by using various nanomaterials. The behavior of nanomaterials in different EET routes and their influence on the performance of BESs are described. The inherent mechanisms will guide rational design of EET-related materials and lead to a better understanding of EET mechanisms.
Collapse
Affiliation(s)
- Ruiwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huidong Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinzhi Sun
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jia Jiao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingqing Wang
- School of Chemistry and Chemical Engineering, Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin, 150090, China
| | - Shaoqin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
21
|
Salem SS, Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Biol Trace Elem Res 2021; 199:344-370. [PMID: 32377944 DOI: 10.1007/s12011-020-02138-3] [Citation(s) in RCA: 376] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV-vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.
Collapse
Affiliation(s)
- Salem S Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
22
|
Green biogenic approach to optimized biosynthesis of noble metal nanoparticles with potential catalytic, antioxidant and antihaemolytic activities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Microbial cell lysate supernatant (CLS) alteration impact on platinum nanoparticles fabrication, characterization, antioxidant and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111292. [PMID: 32919653 DOI: 10.1016/j.msec.2020.111292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Microbial mediated biological synthesis of nanoparticles is of enormous interest to modern nanotechnology due to its simplicity and eco-friendliness. In the present study, a novel green method for the synthesis of platinum nanoparticles (PtNPs) has been developed using bio-derived product-cell lysate supernatant (CLS) from various microorganisms including Gram-negative bacteria: Pseudomonas kunmingensis ADR19, Psychrobacter faecalis FZC6, Vibrio fischeri NRRL B-11177, Gram-positive bacteria: Jeotgalicoccus coquinae ZC15, Sporosarcina psychrophila KC19, Kocuria rosea MN23, genetically engineered bacterium: Pseudomonas putida KT2440 and yeast: Rhodotorula mucilaginosa CCV1. The biogenic PtNPs were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). The UV-visible spectra showed a red shift in the absorbance of H2PtCl6.6H2O from 260 nm to 330 nm for all prepared PtNPs. The XRD patterns of the samples indicated the formation of high purity of the cubic phase. The FTIR spectra and EDS profiles of the samples demonstrated the existence of proteins on fabricated and stabilized PtNPs. The TEM and AFM images analysis showed the synthesis of smallest PtNPs by a bacterium strain (FZC6) and yeast while genetically engineered bacteria produced the largest NPs. Also, the HRTEM analysis showed the high crystallinity of PtNPs and the interplanar spacing of 0.2 nm, corresponds to the (1 1 1) of plane of PtNPs. The results of zeta potential indicated the high stability of PtNPs in neutral pH. Moreover, the suitability of PtNPs antioxidant and antibacterial activity was correlated to the size and zeta potential of microbe used for NPs biosynthesis. In conclusion, it was found that the type of microorganisms can have influences on PtNPs characteristics and properties as Gram-negatives produced smaller PtNPs while more negatively charged NPs were obtained by Gram-positives. These findings could facilitate the selection of appropriate green approaches for more effective biotechnological production of PtNPs.
Collapse
|
24
|
Ali MA, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum MM, Wang Y, An Q, Sun G, Li B. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1146. [PMID: 32545239 PMCID: PMC7353409 DOI: 10.3390/nano10061146] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/02/2023]
Abstract
A large number of metallic nanoparticles have been successfully synthesized by using different plant extracts and microbes including bacteria, fungi viruses and microalgae. Some of these metallic nanoparticles showed strong antimicrobial activities against phytopathogens. Here, we summarized these green-synthesized nanoparticles from plants and microbes and their applications in the control of plant pathogens. We also discussed the potential deleterious effects of the metallic nanoparticles on plants and beneficial microbial communities associated with plants. Overall, this review calls for attention regarding the use of green-synthesized metallic nanoparticles in controlling plant diseases and clarification of the risks to plants, plant-associated microbial communities, and environments before using them in agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Afsana Hossain
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
- Department of Plant Pathology and Seed Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| | - Md. Mahidul Islam Masum
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Qianli An
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.A.A.); (T.A.); (A.H.); (R.H.); (Q.A.)
| |
Collapse
|
25
|
Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-44176-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 2019; 9:12944-12967. [PMID: 35520790 PMCID: PMC9064032 DOI: 10.1039/c8ra10483b] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Metal nanoparticles have received great attention from researchers across the world because of a plethora of applications in agriculture and the biomedical field as antioxidants and antimicrobial compounds. Over the past few years, green nanotechnology has emerged as a significant approach for the synthesis and fabrication of metal nanoparticles. This green route employs various reducing and stabilizing agents from biological resources for the synthesis of nanoparticles. The present article aims to review the progress made in recent years on nanoparticle biosynthesis by microbes. These microbial resources include bacteria, fungi, yeast, algae and viruses. This review mainly focuses on the biosynthesis of the most commonly studied metal and metal salt nanoparticles such as silver, gold, platinum, palladium, copper, cadmium, titanium oxide, zinc oxide and cadmium sulphide. These nanoparticles can be used in pharmaceutical products as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, water electrolysis, waste water treatment, biosensors, biocatalysis, crop protection against pathogens, degradation of dyes etc. This review will discuss in detail various microbial modes of nanoparticles synthesis and the mechanism of their synthesis by various bioreducing agents such as enzymes, peptides, proteins, electron shuttle quinones and exopolysaccharides. A thorough understanding of the molecular mechanism of biosynthesis is the need of the hour to develop a technology for large scale production of bio-mediated nanoparticles. The present review also discusses the advantages of various microbial approaches in nanoparticles synthesis and lacuna involved in such processes. This review also highlights the recent milestones achieved on large scale production and future perspectives of nanoparticles.
Collapse
Affiliation(s)
- Geeta Gahlawat
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| | - Anirban Roy Choudhury
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| |
Collapse
|
27
|
Ali J, Ali N, Wang L, Waseem H, Pan G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J Microbiol Methods 2019; 159:18-25. [PMID: 30797020 DOI: 10.1016/j.mimet.2019.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Synthesis and application of reliable nanoscale materials is a progressive domain and the limelight of modern nanotechnology. Conventional physicochemical approaches for the synthesis of metal nanoparticles have become obsolete owing to costly and hazardous materials. There is a need to explore alternative, cost-effective and eco-friendly strategies for fabrication of nanoparticle (NPs). Green synthesis of noble metal nanoparticles has emerged as a promising approach in the last decade. Elucidation of the molecular mechanism is highly essential in the biological synthesis of noble metal nanoparticles (NPs) for the controlled size, shape, and monodispersity. Moreover, mechanistic insights will help to scale up the facile synthesis protocols and will enable biotransformation of toxic heavy metals hence also providing the detoxification effects. Therefore, the current review article has primarily targeted the mechanisms involved in the green synthesis of metal NPs, which have been reported during the last few years. Detailed mechanistic pathways have highlighted nitrate reductase as a principle reducing agent in the bacterial mediated synthesis and stabilization of NPs. Furthermore, we have highlighted the potential implications of these mechanisms in bioremediation and biomineralization processes, which can play a critical role in biogeochemical cycling and environmental impacts of heavy metals. We anticipate that this review article will help researchers to address the challenges of bioremediation and modern nanotechnology.
Collapse
Affiliation(s)
- Jafar Ali
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Naeem Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Pakistan.
| | - Lei Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China
| | - Hassan Waseem
- Department of Microbiology, Quaid-i-Azam University Islamabad, Pakistan
| | - Gang Pan
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, PR China; School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK.
| |
Collapse
|
28
|
Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of Metal Nanoparticles via Microbial Enzymes: A Mechanistic Approach. Int J Mol Sci 2018; 19:E4100. [PMID: 30567324 PMCID: PMC6321641 DOI: 10.3390/ijms19124100] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
During the last decade, metal nanoparticles (MtNPs) have gained immense popularity due to their characteristic physicochemical properties, as well as containing antimicrobial, anti-cancer, catalyzing, optical, electronic and magnetic properties. Primarily, these MtNPs have been synthesized through different physical and chemical methods. However, these conventional methods have various drawbacks, such as high energy consumption, high cost and the involvement of toxic chemical substances. Microbial flora has provided an alternative platform for the biological synthesis of MtNPs in an eco-friendly and cost effective way. In this article we have focused on various microorganisms used for the synthesis of different MtNPs. We also have elaborated on the intracellular and extracellular mechanisms of MtNP synthesis in microorganisms, and have highlighted their advantages along with their challenges. Moreover, due to several advantages over chemically synthesized nanoparticles, the microbial MtNPs, with their exclusive and dynamic characteristics, can be used in different sectors like the agriculture, medicine, cosmetics and biotechnology industries in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore 54000, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KPK), Chakdara 18000, Pakistan.
| | - Irshad Ahmad
- Department of Life sciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Susheel Kumar Nethi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|