1
|
Sambamoorthy S, Thamaraichelvan G, Karikalan A, Kumar SS. Heterocyclic fluorescent Schiff base chemosensors for the detection of Fe(III) and Cu(II) ions. LUMINESCENCE 2024; 39:e4739. [PMID: 38685743 DOI: 10.1002/bio.4739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
Two new Schiff bases were synthesized from 1-(2,4-dihydroxyphenyl)ethanone and pyridine derivatives. Both compounds were characterized using infrared, UV-Vis., 1H NMR, 13C NMR and mass spectral studies. Density functional theory (DFT) calculations were performed for both the Schiff bases with 6-31G(d, p) as the basis set. Vibrational frequencies calculated using the theoretical method were in good agreement with the experimental values. Both the Schiff bases were highly fluorescent in nature. The cation-recognizing profile of the compounds was investigated in aqueous methanol medium. The Schiff base 4-(1-(pyridin-4-ylimino)ethyl)benzene-1,3-diol (PYEB) was found to interact with Fe(III) and Cu(II) ions, whereas the Schiff base 4,4'-((pyridine-2,3-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(benzene-1,3-diol) (PDEB) was found to detect Cu(II) ions. The mechanism of recognition was established as combined excited state intramolecular proton transfer (ESIPT)-chelation-enhanced fluorescence (CHEF) effect and chelation-enhanced quenching (CHEQ) process for the detection of Fe(III) and Cu(II) ions, respectively. The stability constant of the metal complexes formed during the sensing process was determined. The limit of detection for Fe(III) and Cu(II) ions with respect to Schiff base PYEB was found to be 1.64 × 10-6 and 2.16 × 10-7 M, respectively. With respect to Schiff base PDEB, the limit of detection for Cu(II) ion was found to be 4.54 × 10-4 M. The Cu(II) ion sensing property of the Schiff base PDEB was applied in bioimaging studies for the detection of HeLa cells.
Collapse
Affiliation(s)
- Santhi Sambamoorthy
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Geetha Thamaraichelvan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Abinaya Karikalan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Saranya Srinivasa Kumar
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
2
|
Kumar B, Devi J, Dubey A, Tufail A, Antil N. Biological and computational investigation of transition metal(II) complexes of 2-phenoxyaniline-based ligands. Future Med Chem 2023; 15:1919-1942. [PMID: 37929611 DOI: 10.4155/fmc-2023-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Aim: In the 21st century, we are witness of continuous onslaughts of various pathogen deformities which are a major cause of morbidity and mortality worldwide. Therefore, to investigate the grave for these deformities, antioxidant, anti-inflammatory and antimicrobial biological activities were carried out against newly synthesized Schiff base ligands and their transition metal complexes, which are based on newly synthesized 2-phenoxyaniline and salicylaldehyde derivatives. Materials & methods: The synthesized compounds were characterized by various physiochemical studies, demonstrating the octahedral stereochemistry of the complexes. Results: The biological assessments revealed that complex 6 (3.01 ± 0.01 μM) was found to be highly active for oxidant ailments whereas complex 14 (7.14 ± 0.05 μM, 0.0041-0.0082 μmol/ml) was observed as highly potent for inflammation and microbial diseases. Conclusion: Overall, the biological and computational studies demonstrate that the nickel(II) complex 14 can act as an excellent candidate for pathogen deformities.
Collapse
Affiliation(s)
- Binesh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 600077, India
- Department of Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 201310, India
| | - Aisha Tufail
- Department of Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 201310, India
| | - Nidhi Antil
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
3
|
Rezk GN, El-Gammal OA, Alrefaee SH, Althagafi I, El-Bindary AA, El-Bindary MA. Synthesis, structural characterization, antioxidant, cytotoxic activities and docking studies of schiff base Cu(II) complexes. Heliyon 2023; 9:e21015. [PMID: 37867880 PMCID: PMC10587539 DOI: 10.1016/j.heliyon.2023.e21015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
By combining hydrazide with 2-Acetylpyridine, a hydrazone ligand (HL) was successfully created. Several copper (II) salts have been used to create three copper (II) hydrazone complexes (acetate, sulphate, and chloride). The hydrazide ligand and its copper (II) complexes (1-3) were studied via variety of analytical techniques, including elemental analysis, electronic, infrared, UV-vis Spectrum, XRD study, thermal analysis, also molar conductivity amounts. The spectrum results indicate that in all complexes, the ligand exhibits monobasic tridentate behavior. Octahedral geometries were present in all metal complexes. The Coats-Redfern equations were used to compute and describe the dynamics properties of several steps of TGA (Ea, A, ΔH*, ΔS*, and ΔG*). Calculations using the density functional theory (DFT) were done at the molecular studio software toward examine ligands agent's and its complexes' best structures. The MCF-7 in addition to HepG-2 cell lines was resistant to tumor-inducing effects of the copper (II) chelates. The in vitro antioxidant capacities of all complexes have been estimated via DPPH free radical scavenger assays. Furthermore, zones of inhibition length accustomed to test antimicrobial effect of particular complexes in vitro towards Staphylococcus aureus (Gram positive bacteria) E. coli (Gram negative bacteria). Both absorption spectra and viscosity measurements in calf thymus DNA binding have been used to study the complexes. In order to explore docking research of copper (II) chelates, the crystallographic construction of the SARS-active CoV-2's site protein (PDB ID:6XBH) was used (COVID-19) and breast cancer distorted (PDB ID: 3hb5).
Collapse
Affiliation(s)
- Ghada N. Rezk
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Ola A. El-Gammal
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35566, Egypt
| | - Salhah H. Alrefaee
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 30799, Saudi Arabia
| | - Ismail Althagafi
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Ashraf A. El-Bindary
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Mohamed A. El-Bindary
- Basic Science Department, Higher Institute of Engineering and Technology, Damietta 34517, Egypt
| |
Collapse
|
4
|
Cao S, Wang A, Li K, Lin Z, Yang H, Zhang X, Qiu J, Tai X. A novel tetranuclear Cu(ii) complex for DNA-binding and in vitro anticancer activity. RSC Adv 2023; 13:26324-26329. [PMID: 37671352 PMCID: PMC10476018 DOI: 10.1039/d3ra03624c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
A novel tetranuclear Cu(ii) complex (TNC) was successfully synthesized and characterized by X-ray single crystal diffraction. The interaction of the complex with calf thymus DNA (CT-DNA) has been studied by UV-vis absorption titration, fluorescence technology and molecular docking. The results indicated that TNC could bind to the DNA through an intercalative mode. The agarose gel electrophoresis experiment showed that TNC could cleave supercoiled plasmid DNA into linear DNA. The anticancer activity of TNC was tested on four cancer cell lines: MCF7, A549, 4T1 and HepG2. The results indicated that TNC shown significant activity against all of above cell lines.
Collapse
Affiliation(s)
- Shuhua Cao
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Anlin Wang
- Affiliated Beijing Chaoyang Hospital, Capital Medical University No. 8 Gongren Tiyuchang Nanlu, Chaoyang District Beijing 100020 P. R. China
| | - Kaoxue Li
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Zhiteng Lin
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Hongwei Yang
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Xiaolei Zhang
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Jianmei Qiu
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Xishi Tai
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| |
Collapse
|
5
|
Revathi N, Sankarganesh M, Dhaveethu Raja J, Johnson Raja S, Gurusamy S, Nandini Asha R, Jeyakumar TC. Synthesis, spectral, DFT calculation, antimicrobial, antioxidant, DNA/BSA binding and molecular docking studies of bio-pharmacologically active pyrimidine appended Cu(II) and Zn(II) complexes. J Biomol Struct Dyn 2023; 41:14914-14928. [PMID: 37021479 DOI: 10.1080/07391102.2023.2196696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/18/2023] [Indexed: 04/07/2023]
Abstract
A new pyrimidine derivative Schiff base (HL) [HL = 2-((4-amino-6-chloropyrimidin-2-ylimino)methyl)-4-nitrophenol] has been synthesized using 2,6-diamino-4-chloropyrimidine and 5-nitrosalicylaldehyde. Transition metal complexes of Cu(II) and Zn(II) complexes [CuL(OAc)] (1), [ZnL(OAc)] (2) are prepared with HL/metal(II) acetate with molar ratio of 1:1. The Schiff base (HL) and the complexes 1 and 2 are evaluated by UV-Visible, 1H-NMR, FT-IR, EI-MS and ESR spectral techniques. Complexes 1 and 2 are confirmed as square planar geometry. Electrochemical studies of the complexes 1 and 2 are used to analyse the quasi reversible process. Density Functional Theory (DFT) using the B3LYP/6-31++G(d,p) level basis set was used to get the optimised geometry and non-linear optical properties. The complexes 1 and 2 are good antimicrobial agents than Schiff base (HL). The interactions of the HL and complexes 1 and 2 with Calf Thymus (CT) DNA are investigated by electronic absorption methods and viscosity measurements. Various molecular spectroscopy techniques, such as UV absorption and fluorescence, were used to explore the mechanism of interaction between the BSA and the ligand HL and complexes 1 & 2 under physiological settings. Complexes 1 and 2 are act as potential antioxidants than free Schiff base (HL) by DPPH radical scavenging assay. Furthermore, the purpose of the molecular docking studies was to better understand how metal complexes interact with biomolecules (CT-DNA and BSA). From these biological analyses, complex 1 acts as good intercalator with CT DNA & BSA and potent antioxidant with DPPH radical than complex 2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nagaraj Revathi
- Department of Chemistry, Ramco Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
6
|
Jose PA, Sankarganesh M, Raja JD, Sakthivel A, Annaraj J, Jeyaveeramadhavi S, Girija A. Spectrophotometric and fluorometric detection of DNA/BSA interaction, antimicrobial, anticancer, antioxidant and catalytic activities of biologically active methoxy substituted pyrimidine-ligand capped copper nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120454. [PMID: 34666266 DOI: 10.1016/j.saa.2021.120454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
New Schiff base ligand (DPMN) was synthesized from the condensation of 2-hydroxy-5-nitrobenzaldehyde and 2-amino-4,6-dimethoxypyrimidine which was confirmed by spectroscopic and analytical methods. Solid air stable copper nanoparticles (DPMN-CuNPs) were synthesized from its copper chloride salt and it is stabilized by the prepared Schiff base ligand by phase transfer assisted synthesis which is a modified Brust-Schiffrin technique. The formation of ligand stabilized copper nanoparticles was confirmed by UV-Visible and FT-IR spectroscopic techniques. The size, surface morphology and quality of DPMN-CuNPs were analyzed by SEM and TEM techniques. Antioxidant activities of DPMN and DPMN-CuNPs with DPPH, SOD, peroxide and nitrous oxide were analyzed by electronic absorption spectroscopy. DNA interaction between DPMN and DPMN-CuNPs with CT-DNA was carried out using electronic absorption, fluorescence, viscometric measurements and cyclic voltammetric techniques. Interaction between BSA and the synthesized compounds analyzed by electronic absorption spectroscopy, Antimicrobial studies confirmed that the synthesized DPMN-CuNPs possess significant biological activities than DPMN. Anticancer results suggest that prepared DPMN-CuNPs have significant anticancer activity against different cancer cell lines and least toxic effect against the normal (NHDF) cell line. Other than the positive response in biological evaluation, our DPMN-CuNPs possess good catalytic activity in methyl orange reduction, methylene blue degradation and nitro phenol reduction.
Collapse
Affiliation(s)
- P Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College (Autonomous), Nagapattinum, Tamil Nadu 611 002, India
| | - M Sankarganesh
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - J Dhaveethu Raja
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India.
| | - A Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu 626 005, India
| | - J Annaraj
- Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | - S Jeyaveeramadhavi
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India
| | - A Girija
- Department of Chemistry, Velumanokaran Arts and Science College for Women, Ramanathapuram, Tamil Nadu 623 504, India
| |
Collapse
|
7
|
Synthesis, structural analysis, in vitro antioxidant, antimicrobial activity and molecular docking studies of transition metal complexes derived from Schiff base ligands of 4-(benzyloxy)-2-hydroxybenzaldehyde. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04644-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. DNA/BSA binding affinity studies of new Pd(II) complex with S-S and N-N donor mixed ligands via experimental insight and molecular simulation: Preliminary antitumor activity, lipophilicity and DFT perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|