1
|
Ren SY, Xia Y, Yu B, Lei QJ, Hou PF, Guo S, Wu SL, Liu W, Yang SF, Jiang YB, Chen JF, Shen KF, Zhang CQ, Wang F, Yan M, Ren H, Yang N, Zhang J, Zhang K, Lin S, Li T, Yang QW, Xiao L, Hu ZX, Mei F. Growth hormone promotes myelin repair after chronic hypoxia via triggering pericyte-dependent angiogenesis. Neuron 2024; 112:2177-2196.e6. [PMID: 38653248 DOI: 10.1016/j.neuron.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.
Collapse
Affiliation(s)
- Shu-Yu Ren
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Xia
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qi-Jing Lei
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng-Fei Hou
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sheng Guo
- Department of Immunology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Ling Wu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shao-Fan Yang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi-Bin Jiang
- Department of Neurobiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jing-Fei Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mi Yan
- Department of Pediatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China
| | - Hong Ren
- Department of Emergence, 5(th) People's Hospital of Chongqing, Chongqing 400062, China
| | - Nian Yang
- Department of Physiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Zhang
- Department of Neurobiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhang-Xue Hu
- Department of Pediatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China.
| | - Feng Mei
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
2
|
Sunny DE, Hammer E, Ittermann T, Krüger EL, Hübner S, Hartmann MF, Wudy SA, Völker U, Heckmann M. Fetal Zone Steroids and Estrogen Show Sex Specific Effects on Oligodendrocyte Precursor Cells in Response to Oxidative Damage. Int J Mol Sci 2021; 22:ijms22126586. [PMID: 34205405 PMCID: PMC8234485 DOI: 10.3390/ijms22126586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
Oxygen causes white matter damage in preterm infants and male sex is a major risk factor for poor neurological outcome, which speculates the role of steroid hormones in sex-based differences. Preterm birth is accompanied by a drop in 17β-estradiol (E2) and progesterone along with increased levels of fetal zone steroids (FZS). We performed a sex-based analysis on the FZS concentration differences in urine samples collected from preterm and term infants. We show that, in preterm urine samples, the total concentration of FZS, and in particular the 16α-OH-DHEA concentration, is significantly higher in ill female infants as compared to males. Since we previously identified Nup133 as a novel target protein affected by hyperoxia, here we studied the effect of FZS, allopregnanolone (Allo) and E2 on differentiation and Nup133 signaling using mouse-derived primary oligodendrocyte progenitor cells (OPCs). We show that the steroids could reverse the effect of hyperoxia-mediated downregulation of Nup133 in cultured male OPCs. The addition of FZS and E2 protected cells from oxidative stress. However, E2, in presence of 16α-OH-DHEA, showed a negative effect on male cells. These results assert the importance of sex-based differences and their potential implications in preterm stress response.
Collapse
Affiliation(s)
- Donna Elizabeth Sunny
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, 17475 Greifswald, Germany; (E.L.K.); (S.H.); (M.H.)
- Correspondence:
| | - Elke Hammer
- Department of Functional Genomics, University of Medicine Greifswald, 17475 Greifswald, Germany; (E.H.); (U.V.)
| | - Till Ittermann
- Institute for Community Medicine, University of Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elisabeth Luise Krüger
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, 17475 Greifswald, Germany; (E.L.K.); (S.H.); (M.H.)
| | - Stephanie Hübner
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, 17475 Greifswald, Germany; (E.L.K.); (S.H.); (M.H.)
| | - Michaela Friederike Hartmann
- Pediatric Endocrinology & Diabetology, Laboratory for Translational Hormone Analytics, Steroid Research & Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany; (M.F.H.); (S.A.W.)
| | - Stefan Alexander Wudy
- Pediatric Endocrinology & Diabetology, Laboratory for Translational Hormone Analytics, Steroid Research & Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany; (M.F.H.); (S.A.W.)
| | - Uwe Völker
- Department of Functional Genomics, University of Medicine Greifswald, 17475 Greifswald, Germany; (E.H.); (U.V.)
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, 17475 Greifswald, Germany; (E.L.K.); (S.H.); (M.H.)
| |
Collapse
|
3
|
Satué K, Fazio E, Muñoz A, Medica P. Endocrine and Electrolyte Balances during Periovulatory Period in Cycling Mares. Animals (Basel) 2021; 11:ani11020520. [PMID: 33671405 PMCID: PMC7922651 DOI: 10.3390/ani11020520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary This study provides new evidence on the physiological mechanisms involved in the electrolyte balance during periovulatory period in cycling mares. The interrelationships among adrenocorticotropic hormone (ACTH), cortisol (CORT), aldosterone (ALD) and electrolytes (sodium—Na+, potassium—K+ and chloride—Cl−) were evaluated. The simultaneous increase in ACTH, CORT and ALD toward the time of ovulation could suggest the involvement of the adrenocortical pituitary axis in the ovulatory mechanisms, contributing at the same time to the maintenance of electrolyte homeostasis. Abstract In cycling females, the periovulatory period is characterized by stimulation of the hypothalamic pituitary adrenal (HPA) axis. The aim of present study was to analyze the pattern and interrelationships among adrenocorticotropic hormone (ACTH), cortisol (CORT), aldosterone (ALD) and electrolytes (sodium—Na+, potassium—K+ and chloride—Cl−) during periovulatory period in cycling mares. Venous blood samples were obtained daily from a total of 23 Purebred Spanish broodmares, aged 7.09 ± 2.5 years, from day −5 to day +5 of estrous cycle, considering day 0, the day of ovulation. Plasma ACTH was measured by a fluorescent immunoassay kit, serum CORT and ALD by means of a competitive ELISA immunoassay, and plasma Na+, K+ and Cl− were quantified by an analyzer with selective electrodes for the three ions. ACTH showed higher concentrations at day 0 compared to days −5 to −1 and +1 to +3 (p < 0.05). CORT showed higher concentrations at day 0 compared to days −5 to −2 and +1 to +5 (p < 0.05). ALD showed higher concentrations at day 0 compared to days −5 to −2 (p < 0.05) and +2 (p < 0.05). Na+ and Cl− showed higher concentrations at day 0, compared to day −5 and +5. K+ showed lower concentrations at day 0 compared to day +1 (p < 0.05). The significant correlations obtained between ACTH and CORT (r = 0.20) and between ACTH and ALD (r = 0.32) suggest that although ACTH may have an effect both on CORT and ALD, there are other very important determinants that could be considered. Hence, it is possible to presume that the pituitary adrenocortical response and ALD may be involved in the ovulatory mechanisms without a direct relation with electrolyte pattern.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, 46115 Valencia, Spain
- Correspondence: ; Tel.: +96-136-900066020
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy; (E.F.); (P.M.)
| | - Ana Muñoz
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, University of Córdoba, 14014 Córdoba, Spain;
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy; (E.F.); (P.M.)
| |
Collapse
|
4
|
Qiu W, Hodges TE, Clark EL, Blankers SA, Galea LAM. Perinatal depression: Heterogeneity of disease and in animal models. Front Neuroendocrinol 2020; 59:100854. [PMID: 32750403 DOI: 10.1016/j.yfrne.2020.100854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
Perinatal depression (PND) can have either an antepartum or postpartum onset. Although the greatest risk factor for PND is previous depression history,de novoPND occurs with the majority of cases occurring in the postpartum. Timing of depression can impact etiology, prognosis, and response to treatment. Thus, it is crucial to study the impact of the heterogeneity of PND for better health outcomes. In this review, we outline the differences between antepartum and postpartum depression onset of PND. We discuss maternal physiological changes that differ between pregnancy and postpartum and how these may differentially impact depression susceptibility. We highlight changes in the maternal steroid and peptide hormone levels, immune signalling, serotonergic tone, metabolic factors, brain morphology, and the gut microbiome. Finally, we argue that studying the heterogeneity of PND in clinical and preclinical models can lead to improved knowledge of disease etiopathology and treatment outcomes.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Travis E Hodges
- Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Emily L Clark
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
5
|
Almanza-Sepulveda ML, Fleming AS, Jonas W. Mothering revisited: A role for cortisol? Horm Behav 2020; 121:104679. [PMID: 31927022 DOI: 10.1016/j.yhbeh.2020.104679] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
This selective review first describes the involvement of the maternal hypothalamic-pituitary-adrenal (HPA) axis during pregnancy and the postpartum period, and the relation between peripartum HPA axis function and maternal behavior, stress reactivity and emotional dysregulation in human mothers. To provide experimental background to this correlational work, where helpful, animal studies are also described. It then explores the association between HPA axis function in mothers and their infants, under ongoing non-stressful conditions and during stressful challenges, the moderating role of mothers' sensitivity and behavior in the mother-child co-regulation and the effects of more traumatic risk factors on these relations. The overarching theme being explored is that the HPA axis - albeit a system designed to function during periods of high stress and challenge - also functions to promote adaptation to more normative processes, shown in the new mother who experiences both high cortisol and enhanced attraction and attention to and recognition of, their infants and their cues. Hence the same HPA system shows positive relations with behavior at some time points and inverse ones at others. However, the literature is not uniform and results vary widely depending on the number, timing, place, and type of samplings and assessments, and, of course, the population being studied and, in the present context, the state, the stage, and the stress levels of mother and infant.
Collapse
Affiliation(s)
- Mayra L Almanza-Sepulveda
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Alison S Fleming
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| | - Wibke Jonas
- Department of Women's and Children's Health, Karolinska Institutet, Widerströmska Huset, Tomtebodavägen 18a, 171 77 Stockholm, Sweden.
| |
Collapse
|
6
|
Fleiss B, Wong F, Brownfoot F, Shearer IK, Baud O, Walker DW, Gressens P, Tolcos M. Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury. Front Endocrinol (Lausanne) 2019; 10:188. [PMID: 30984110 PMCID: PMC6449431 DOI: 10.3389/fendo.2019.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a complex global healthcare issue. Concerted research and clinical efforts have improved our knowledge of the neurodevelopmental sequelae of IUGR which has raised the profile of this complex problem. Nevertheless, there is still a lack of therapies to prevent the substantial rates of fetal demise or the constellation of permanent neurological deficits that arise from IUGR. The purpose of this article is to highlight the clinical and translational gaps in our knowledge that hamper our collective efforts to improve the neurological sequelae of IUGR. Also, we draw attention to cutting-edge tools and techniques that can provide novel insights into this disorder, and technologies that offer the potential for better drug design and delivery. We cover topics including: how we can improve our use of crib-side monitoring options, what we still need to know about inflammation in IUGR, the necessity for more human post-mortem studies, lessons from improved integrated histology-imaging analyses regarding the cell-specific nature of magnetic resonance imaging (MRI) signals, options to improve risk stratification with genomic analysis, and treatments mediated by nanoparticle delivery which are designed to modify specific cell functions.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
- *Correspondence: Bobbi Fleiss
| | - Flora Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Clayton, VIC, Australia
| | - Fiona Brownfoot
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
| | - Isabelle K. Shearer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Olivier Baud
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Division of Neonatal Intensive Care, University Hospitals of Geneva, Children's Hospital, University of Geneva, Geneva, Switzerland
| | - David W. Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Pierre Gressens
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
- PremUP, Paris, France
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Rabaglino MB, Keller‐Wood M, Wood CE. A transcriptomics model of estrogen action in the ovine fetal hypothalamus: evidence for estrogenic effects of ICI 182,780. Physiol Rep 2018; 6:e13871. [PMID: 30221477 PMCID: PMC6139289 DOI: 10.14814/phy2.13871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/13/2023] Open
Abstract
Estradiol plays a critical role in stimulating the fetal hypothalamus-pituitary-adrenal axis at the end of gestation. Estradiol action is mediated through nuclear and membrane receptors that can be modulated by ICI 182,780, a pure antiestrogen compound. The objective of this study was to evaluate the transcriptomic profile of estradiol and ICI 182,780, testing the hypothesis that ICI 182,780 antagonizes the action of estradiol in the fetal hypothalamus. Chronically catheterized ovine fetuses were infused for 48 h with: vehicle (Control, n = 6), 17β-estradiol 500 μg/kg/day (Estradiol, n = 4), ICI 182,780 5 μg/kg/day (ICI 5 μg, n = 4) and ICI 182,780 5 mg/kg/day (ICI 5 mg, n = 5). Fetal hypothalami were collected afterward, and gene expression was measured through microarray. Statistical analysis of transcriptomic data was performed with Bioconductor-R and Cytoscape software. Unexpectedly, 35% and 15.5% of the upregulated differentially expressed genes (DEG) by Estradiol significantly overlapped (P < 0.05) with upregulated DEG by ICI 5 mg and ICI 5 μg, respectively. For the downregulated DEG, these percentages were 29.9% and 15.5%, respectively. There was almost no overlap for DEG following opposite directions between Estradiol and ICI ICI 5 mg or ICI 5 μg. Furthermore, most of the genes in the estrogen signaling pathway - after activation of the epidermal growth factor receptor - followed the same direction in Estradiol, ICI 5 μg or ICI 5 mg compared to Control. In conclusion, estradiol and ICI 182,780 have estrogenic genomic effects in the developing brain, suggesting the possibility that the major action of estradiol on the fetal hypothalamus involves another receptor system rather than estrogen receptors.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Maureen Keller‐Wood
- PharmacodynamicsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Charles E. Wood
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
8
|
Jackson EN, Rowland-Faux L, James MO, Wood CE. Administration of low dose triclosan to pregnant ewes results in placental uptake and reduced estradiol sulfotransferase activity in fetal liver and placenta. Toxicol Lett 2018; 294:116-121. [PMID: 29772265 DOI: 10.1016/j.toxlet.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/04/2023]
Abstract
Sulfonation is a major pathway of estrogen biotransformation with a role in regulating estrogen homeostasis in humans and sheep. Previous in vitro studies found that triclosan is an especially potent competitive inhibitor of ovine placental estrogen sulfotransferase, with Kic of <0.1 nM. As the placenta is the main organ responsible for estrogen synthesis in pregnancy in both women and sheep, and the liver is another site of estrogen biotransformation, this study examined the effects of triclosan exposure of pregnant ewes on placental and hepatic sulfotransferase activity. Triclosan, 0.1 mg/kg/day, or saline vehicle was administered to late gestation fetal sheep for two days either by direct infusion into the fetal circulation or infusion into the maternal blood. On the third day, fetal liver and placenta were harvested and analyzed for triclosan and for cytosolic estradiol sulfotransferase activity. Placenta contained higher concentrations of triclosan than liver in each individual sheep in both treatment groups. There was a negative correlation between triclosan tissue concentration (pmol/g tissue) and cytosolic sulfotransferase activity (pmol/min/mg protein) towards estradiol. These findings demonstrated that in the sheep exposed to very low concentrations of triclosan, this substance is taken up into placenta and reduces estrogen sulfonation.
Collapse
Affiliation(s)
- Erin N Jackson
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Laura Rowland-Faux
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
9
|
Langford R, Hurrion E, Dawson PA. Genetics and pathophysiology of mammalian sulfate biology. J Genet Genomics 2017; 44:7-20. [DOI: 10.1016/j.jgg.2016.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022]
|
10
|
Walker DM, Gore AC. Epigenetic impacts of endocrine disruptors in the brain. Front Neuroendocrinol 2017; 44:1-26. [PMID: 27663243 PMCID: PMC5429819 DOI: 10.1016/j.yfrne.2016.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
The acquisition of reproductive competence is organized and activated by steroid hormones acting upon the hypothalamus during critical windows of development. This review describes the potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual differentiation of the hypothalamus by hormones. We examine disruption of these processes by endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex steroid hormone receptor expression throughout life. These receptors are necessary for brain sexual differentiation and their altered expression may underlie disrupted reproductive physiology and behavior. Finally, we review the literature on histone modifications and non-coding RNA involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data into a sex and developmental context we conclude that perinatal EDC exposure alters the developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, and The University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Abstract
Stress is an integral part of life. Activation of the hypothalamus-pituitary-adrenal (HPA) axis in the adult can be viewed as mostly adaptive to restore homeostasis in the short term. When stress occurs during development, and specifically during periods of vulnerability in maturing systems, it can significantly reprogram function, leading to pathologies in the adult. Thus, it is critical to understand how the HPA axis is regulated during developmental periods and what are the factors contributing to shape its activity and reactivity to environmental stressors. The HPA axis is not a passive system. It can actively participate in critical physiological regulation, inducing parturition in the sheep for instance or being a center stage actor in the preparation of the fetus to aerobic life (lung maturation). It is also a major player in orchestrating mental function, metabolic, and cardiovascular function often reprogrammed by stressors even prior to conception through epigenetic modifications of gametes. In this review, we review the ontogeny of the HPA axis with an emphasis on two species that have been widely studied-sheep and rodents-because they each share many similar regulatory mechanism applicable to our understanding of the human HPA axis. The studies discussed in this review should ultimately inform us about windows of susceptibility in the developing brain and the crucial importance of early preconception, prenatal, and postnatal interventions designed to improve parental competence and offspring outcome. Only through informed studies will our public health system be able to curb the expansion of many stress-related or stress-induced pathologies and forge a better future for upcoming generations.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Wang X, Chen X, Feng X, Chang F, Chen M, Xia Y, Chen L. Triclosan causes spontaneous abortion accompanied by decline of estrogen sulfotransferase activity in humans and mice. Sci Rep 2015; 5:18252. [PMID: 26666354 PMCID: PMC4678904 DOI: 10.1038/srep18252] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/16/2015] [Indexed: 01/25/2023] Open
Abstract
Triclosan (TCS), an antibacterial agent, is identified in serum and urine of humans. Here, we show that the level of urinary TCS in 28.3% patients who had spontaneous abortion in mid-gestation were increased by 11.3-fold (high-TCS) compared with normal pregnancies. Oral administration of TCS (10 mg/kg/day) in mice (TCS mice) caused an equivalent urinary TCS level as those in the high-TCS abortion patients. The TCS-exposure from gestation day (GD) 5.5 caused dose-dependently fetal death during GD12.5-16.5 with decline of live fetal weight. GD15.5 TCS mice appeared placental thrombus and tissue necrosis with enhancement of platelet aggregation. The levels of placenta and plasma estrogen sulfotransferase (EST) mRNA and protein in TCS mice or high-TCS abortion patients were not altered, but their EST activities were significantly reduced compared to controls. Although the levels of serum estrogen (E2) in TCS mice and high-TCS abortion patients had no difference from controls, their ratio of sulfo-conjugated E2 and unconjugated E2 was reduced. The estrogen receptor antagonist ICI-182,780 prevented the enhanced platelet aggregation and placental thrombosis and attenuated the fetal death in TCS mice. The findings indicate that TCS-exposure might cause spontaneous abortion probably through inhibition of EST activity to produce placental thrombosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Xiaojiao Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiao Feng
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Fei Chang
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Minjian Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yankai Xia
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
del Pino J, Moyano-Cires PV, Anadon MJ, Díaz MJ, Lobo M, Capo MA, Frejo MT. Molecular Mechanisms of Amitraz Mammalian Toxicity: A Comprehensive Review of Existing Data. Chem Res Toxicol 2015; 28:1073-94. [DOI: 10.1021/tx500534x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Javier del Pino
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Paula Viviana Moyano-Cires
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Maria Jose Anadon
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Jesús Díaz
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Margarita Lobo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Miguel Andrés Capo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
14
|
Neuroprotection in preterm infants. BIOMED RESEARCH INTERNATIONAL 2015; 2015:257139. [PMID: 25650134 PMCID: PMC4306255 DOI: 10.1155/2015/257139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/22/2014] [Indexed: 01/05/2023]
Abstract
Preterm infants born before the 30th week of pregnancy are especially at risk of perinatal brain damage which is usually a result of cerebral ischemia or an ascending intrauterine infection. Prevention of preterm birth and early intervention given signs of imminent intrauterine infection can reduce the incidence of perinatal cerebral injury. It has been shown that administering magnesium intravenously to women at imminent risk of a preterm birth leads to a significant reduction in the likelihood of the infant developing cerebral palsy and motor skill dysfunction. It has also been demonstrated that delayed clamping of the umbilical cord after birth reduces the rate of brain hemorrhage among preterm infants by up to 50%. In addition, mesenchymal stem cells seem to have significant neuroprotective potential in animal experiments, as they increase the rate of regeneration of the damaged cerebral area. Clinical tests of these types of therapeutic intervention measures appear to be imminent. In the last trimester of pregnancy, the serum concentrations of estradiol and progesterone increase significantly. Preterm infants are removed abruptly from this estradiol and progesterone rich environment. It has been demonstrated in animal experiments that estradiol and progesterone protect the immature brain from hypoxic-ischemic lesions. However, this neuroprotective strategy has unfortunately not yet been subject to sufficient clinical investigation.
Collapse
|
15
|
Voltolini C, Petraglia F. Neuroendocrinology of pregnancy and parturition. HANDBOOK OF CLINICAL NEUROLOGY 2014; 124:17-36. [PMID: 25248577 DOI: 10.1016/b978-0-444-59602-4.00002-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During pregnancy, the maternal brain drives a series of adaptive mechanisms that are fundamental for allowing fetal growth and development, protecting both mother and fetus from adverse programming and timing of parturition. This neuroendocrine concept is even more complex as fetal brain and placenta also participate as regulators of maternal-placental-fetal physiology. The placenta is now seen as a neuroendocrine organ, acting as a source of several neuroactive factors that may exert their biologic effects either locally or by entering maternal and fetal circulation, thus acting in an autocrine, paracrine, and endocrine manner. A variety of hypothalamic neurohormones (GnRH, GHRH, somatostatin, CRH, oxytocin) are expressed in the placenta. When stress occurs during pregnancy, the maternal, fetal, and placental hypothalamic-pituitary-adrenal (HPA) axes are activated to stimulate a series of responses contributing to maintain physiologic conditions while at the same time avoiding the adverse effects of stress on the mother and offspring. However, when stress is excessive, a number of obstetric complications may occur, such as preterm birth, pre-eclampsia and intrauterine growth restriction, related to an impairment of the placental adaptive response.
Collapse
Affiliation(s)
- Chiara Voltolini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
16
|
Abstract
Estradiol and other estrogens are important modulators of fetal and maternal physiology in pregnancy. Much is known about the biosynthesis of estrogens in fetus and mother, and much is known about the role that estrogen plays in labor and delivery. However, much less is known about the regulation of estrogen biosynthesis throughout the latter half of gestation, and the role that estrogen plays in homeostatic and neuroendocrine control in the fetus. This review focuses on the biosynthesis and actions of estrogen in the fetal circulation, the role that it plays in the development of the fetus in the latter half of gestation, and the role that is played by the estrogen milieu in the control of the timing of birth. Estrogen circulates in fetal blood in both unconjugated and conjugated molecular forms, with the conjugated steroids far more abundant than the unconjugated steroids. This review therefore also addresses the biological significance of the variety of molecular forms of estrogen circulating in fetal and maternal blood.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 32610, Gainesville, FL, USA,
| |
Collapse
|
17
|
Rose'meyer R. A review of the serotonin transporter and prenatal cortisol in the development of autism spectrum disorders. Mol Autism 2013; 4:37. [PMID: 24103554 PMCID: PMC3852299 DOI: 10.1186/2040-2392-4-37] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/13/2013] [Indexed: 01/28/2023] Open
Abstract
The diagnosis of autism spectrum disorder (ASD) during early childhood has a profound effect not only on young children but on their families. Aside from the physical and behavioural issues that need to be dealt with, there are significant emotional and financial costs associated with living with someone diagnosed with ASD. Understanding how autism occurs will assist in preparing families to deal with ASD, if not preventing or lessening its occurrence. Serotonin plays a vital role in the development of the brain during the prenatal and postnatal periods, yet very little is known about the serotonergic systems that affect children with ASD. This review seeks to provide an understanding of the biochemistry and physiological actions of serotonin and its termination of action through the serotonin reuptake transporter (SERT). Epidemiological studies investigating prenatal conditions that can increase the risk of ASD describe a number of factors which elevate plasma cortisol levels causing such symptoms during pregnancy such as hypertension, gestational diabetes and depression. Because cortisol plays an important role in driving dysregulation of serotonergic signalling through elevating SERT production in the developing brain, it is also necessary to investigate the physiological functions of cortisol, its action during gestation and metabolic syndromes.
Collapse
Affiliation(s)
- Roselyn Rose'meyer
- School of Medical Sciences, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| |
Collapse
|
18
|
Abstract
Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition.
Collapse
Affiliation(s)
- Sunil Kumar Kota
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| | - Kotni Gayatri
- Department of Obstetrics and Gynecology, Riyadh Care Hospital, Riyadh, Saudi Arabia
| | - Sruti Jammula
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, Orissa, India
| | - Lalit Kumar Meher
- Department of Medicine, MKCG Medical College, Berhampur, Orissa, India
| | - Siva Krishna Kota
- Department of Anesthesia, Central Security Hospital, Riyadh, Saudi Arabia
| | - S. V. S. Krishna
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| | - Kirtikumar D. Modi
- Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
19
|
Tao S, Monteiro A, Thompson I, Hayen M, Dahl G. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. J Dairy Sci 2012; 95:7128-36. [DOI: 10.3168/jds.2012-5697] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/07/2012] [Indexed: 01/06/2023]
|
20
|
Müller MM, Middelanis J, Meier C, Surbek D, Berger R. 17β-estradiol protects 7-day old rats from acute brain injury and reduces the number of apoptotic cells. Reprod Sci 2012; 20:253-61. [PMID: 22875845 DOI: 10.1177/1933719112452471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To test a possible neuroprotective activity of 17β-estradiol in the neonatal rat brain exposed to hypoxic-ischemia (controlled hypoxia after unilateral carotid artery ligation). METHODS Seven-day-old Wistar rats underwent ligation of the left common carotid artery followed by 80 minutes hypoxia in 8% oxygen inducing an ipsilateral brain damage. Seven days later (d14), brains were analyzed quantitatively using a macroscopic and microscopic score for structural damage, hemisphere volumes were calculated, and immunohistochemistry for cleaved-caspase-3 (marker for apoptotic cells) was performed. Animals from the study group (n = 19) received 17β-estradiol (0.05 µg/g body weight intraperitoneally) before (-64, -40, and -16 hours) and after (+3 hours) the hypoxia (hour 0: start of the hypoxia) and the control group (n = 21) received mock treatment. RESULTS Of the 21 pups, 13 in the NaCl group had macroscopically a severe brain damage and 7 of 19 animals in the study group encountered only discrete to mild lesions. Microscopic brain damage in the study group was significantly lower (score 1.5 ± 0.7 vs 2.8 ± 0.8, P < .05). The determined volumes of the affected hemisphere were significantly lower in the NaCl group than in the treatment group. The numbers of apoptotic cells in both hemispheres was equal in the estradiol group, but in the control group, there were significantly more apoptotic cells in the affected hemisphere (control group: ipsilateral: 1435 ± 653 vs contralateral: 143 ± 57 cells, P < .05). DISCUSSION 17β-Estradiol protects newborn rat brains from hypoxic-ischemic injury, in terms of both microscopic cell injury and apoptosis.
Collapse
Affiliation(s)
- Martin M Müller
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
Rabaglino MB, Richards E, Denslow N, Keller-Wood M, Wood CE. Genomics of estradiol-3-sulfate action in the ovine fetal hypothalamus. Physiol Genomics 2012; 44:669-77. [PMID: 22570439 DOI: 10.1152/physiolgenomics.00127.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In fetal sheep during late gestation sulfoconjugated estrogens in plasma reach a concentration 40-100 times greater than unconjugated estrogens. The objective of the present study was to determine the genomics of estradiol-3-sulfate (E(2)S) action in the ovine fetal brain. The hypothesis was that E(2)S stimulates genes involved in the neuroendocrine pathways that direct or facilitate fetal development at the end of gestation. Four sets of chronically catheterized ovine twin fetuses were studied (gestational age: 120-127 days gestation) with one infused with E(2)S intracerebroventricularly (1 mg/day) and the other remaining untreated (control). After euthanasia, mRNA samples were extracted from fetal brains. Only hypothalamic samples were employed for this study given the important function of this brain region in the control of the hypothalamus-pituitary-adrenal axis. Microarray analysis was performed following the Agilent protocol for one-color 8 × 15 microarrays, designed for Ovis aries. A total of 363 known genes were significantly upregulated by the E(2)S treatment (P < 0.05). Network and enrichment analyses were performed using the Cytoscape/Bingo software, and the results validated by quantitative real-time PCR. The main overrepresented biological processes resulting from this analysis were feeding behavior, hypoxia response, and transforming growth factor signaling. Notably, the genes involved in the feeding behavior (neuropeptide Y and agouti-related protein) were the most strongly induced by the E(2)S treatment. In conclusion, E(2)S may be an important component of the mechanism for activating orexigenic, hypoxia responsiveness and neuroprotective pathways in the lamb as it approaches postnatal life.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Department of Animal Sciences, University of Florida College of Agriculture and Life Sciences, Gainesville, Florida 32610-0274, USA
| | | | | | | | | |
Collapse
|
22
|
Kohan-Ghadr H, Fecteau G, Smith L, Murphy B, Lefebvre R. Endocrine profiles of somatic nuclear transfer-derived pregnancies in dairy cattle. Theriogenology 2011; 76:911-20. [DOI: 10.1016/j.theriogenology.2011.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 03/16/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
|
23
|
Dawson PA. Sulfate in fetal development. Semin Cell Dev Biol 2011; 22:653-9. [PMID: 21419855 DOI: 10.1016/j.semcdb.2011.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 12/21/2022]
Abstract
Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies.
Collapse
Affiliation(s)
- Paul A Dawson
- Mater Medical Research Institute, South Brisbane, Queensland, Australia.
| |
Collapse
|
24
|
Dawson PA, Sim P, Simmons DG, Markovich D. Fetal loss and hyposulfataemia in pregnant NaS1 transporter null mice. J Reprod Dev 2011; 57:444-9. [PMID: 21403420 DOI: 10.1262/jrd.10-173k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfate is important for growth and development, and is supplied from mother to fetus throughout pregnancy. We used NaS1 sulfate transporter null (Nas1(-/-)) mice to investigate the role of NaS1 in maintaining sulfate homeostasis during pregnancy and to determine the physiological consequences of maternal hyposulfataemia on fetal, placental and postnatal growth. We show that maternal serum (≤0.5 mM), fetal serum (<0.1 mM) and amniotic fluid (≤0.5 mM) sulfate levels were significantly lower in pregnant Nas1(-/-) mice when compared with maternal serum (≍2.0 mM), fetal serum (≍1.5 mM) and amniotic fluid (≍1.7 mM) sulfate levels in pregnant Nas1(+/+) mice. After 12 days of pregnancy, fetal reabsorptions led to markedly reduced (by ≥50%) fetal numbers in Nas1(-/-) mice. Placental labyrinth and spongiotrophoblast layers were increased (by ≍140%) in pregnant Nas1(-/-) mice when compared to pregnant Nas1(+/+) mice. Birth weights of progeny from female Nas1(-/-) mice were increased (by ≍7%) when compared to progeny of Nas1(+/+) mice. These findings show that NaS1 is essential to maintain high maternal and fetal sulfate levels, which is important for maintaining pregnancy, placental development and normal birth weight.
Collapse
Affiliation(s)
- Paul Anthony Dawson
- School of Biomedical Sciences, University of Queensland, Brisbane QLD, Australia.
| | | | | | | |
Collapse
|
25
|
Wood CE, Keller-Wood M. Influence of estradiol and fetal stress on luteinizing hormone, follicle-stimulating hormone, and prolactin in late-gestation fetal sheep. Neonatology 2011; 100:155-61. [PMID: 21430392 PMCID: PMC3078270 DOI: 10.1159/000324431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypotension and reduced cerebral blood flow secondary to brachiocephalic occlusion (BCO) stimulate various homeostatic physiological and endocrine responses. Our previous studies have also suggested a role of estradiol in augmenting the fetal stress response to BCO. OBJECTIVES We tested the hypothesis that gonadotropins and/or prolactin (PRL) are upregulated in fetal pituitary in response to fetal stress and play a role in the response to BCO-induced stress. METHODS We performed 3 studies: one in which we measured ovine fetal pituitary PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) mRNA throughout the latter half of gestation in order to better understand the ontogenetic changes upon which dynamic responses are superimposed; one in which we measured these mRNA abundances in response to BCO and/or estrogen treatment, and one in which we measured plasma LH responses to BCO in chronically catheterized late-gestation fetal sheep. RESULTS PRL gene expression is increased dramatically in the last 20% of gestation. LH and FSH mRNAs were unchanged except for a transient dip in the expression of LH in the last few days before the normal time of spontaneous parturition. Chronic treatment with estradiol decreased LH and FSH mRNA, but increased PRL mRNA abundance after BCO. In contrast, BCO alone increases the abundance of LH, but not FSH or PRL mRNA in fetal pituitary. Plasma LH concentrations were not increased in response to BCO. CONCLUSIONS We conclude that the late-gestation fetal sheep responds to hypotensive stress with increases in LH mRNA but not LH secretion. LH, FSH and PRL changes are therefore unlikely to contribute to the fetal response to cerebral hypoperfusion.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology, University of Florida College of Medicine, Gainesville, Fla. 32610-0274, USA.
| | | |
Collapse
|
26
|
Abstract
The complex mechanisms controlling human parturition involves mother, fetus, and placenta, and stress is a key element activating a series of physiological adaptive responses. Preterm birth is a clinical syndrome that shares several characteristics with term birth. A major role for the neuroendocrine mechanisms has been proposed, and placenta/membranes are sources for neurohormones and peptides. Oxytocin (OT) is the neurohormone whose major target is uterine contractility and placenta represents a novel source that contributes to the mechanisms of parturition. The CRH/urocortin (Ucn) family is another important neuroendocrine pathway involved in term and preterm birth. The CRH/Ucn family consists of four ligands: CRH, Ucn, Ucn2, and Ucn3. These peptides have a pleyotropic function and are expressed by human placenta and fetal membranes. Uterine contractility, blood vessel tone, and immune function are influenced by CRH/Ucns during pregnancy and undergo major changes at parturition. Among the others, neurohormones, relaxin, parathyroid hormone-related protein, opioids, neurosteroids, and monoamines are expressed and secreted from placental tissues at parturition. Preterm birth is the consequence of a premature and sustained activation of endocrine and immune responses. A preterm birth evidence for a premature activation of OT secretion as well as increased maternal plasma CRH levels suggests a pathogenic role of these neurohormones. A decrease of maternal serum CRH-binding protein is a concurrent event. At midgestation, placental hypersecretion of CRH or Ucn has been proposed as a predictive marker of subsequent preterm delivery. While placenta represents the major source for CRH, fetus abundantly secretes Ucn and adrenal dehydroepiandrosterone in women with preterm birth. The relevant role of neuroendocrine mechanisms in preterm birth is sustained by basic and clinic implications.
Collapse
Affiliation(s)
- Felice Petraglia
- University of Siena, Policlinico, Division of Obstetrics and Gynecology, Department of Pediatrics, Obstetrics, and Reproductive Medicine, Viale Bracci, 53100 Siena, Italy.
| | | | | |
Collapse
|
27
|
James MO, Li W, Summerlot DP, Rowland-Faux L, Wood CE. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. ENVIRONMENT INTERNATIONAL 2010; 36:942-9. [PMID: 19299018 PMCID: PMC4789100 DOI: 10.1016/j.envint.2009.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/13/2009] [Accepted: 02/23/2009] [Indexed: 05/21/2023]
Abstract
The personal care product Triclosan, 5-chloro-2(2,4-dichlorophenoxy)-phenol, is widely used in consumer products as an antibacterial agent and is increasingly found in the environment as a contaminant of sewage sludge and wastewater. This compound has been identified in plasma and urine of people in the United States, Sweden and Australia. Triclosan is known to inhibit sulfonation of phenolic xenobiotics and is structurally related to inhibitors of estrogen sulfotransferase, such as polychlorobiphenylols. In pregnancy, the placenta is an important source of estrogen, which is needed for normal fetal development and successful parturition, and estrogen sulfotransferase is thought to play an important role in regulation of estrogen availability. In this study, we examined the effect of Triclosan on sheep placental cytosolic sulfotransferase activity with 17-beta-estradiol and estrone as substrates. For comparison, we studied the effects of 4-hydroxy-3,3',4',5-tetrachlorobiphenyl and 2'-hydroxytriclocarban on estradiol sulfonation. The apparent K(m) for placental cytosolic sulfotransferase activity with estradiol as substrate was 0.27 ± 0.06 nM (mean ± S.D., n = 3 individuals) and with estrone as substrate was 1.86 ± 0.22 nM. Partial substrate inhibition was observed with estradiol at concentrations higher than 10-20 nM, as is typical of estrogen sulfotransferases (SULT1E1) in other species. Studies of the effect of Triclosan on estrogen sulfotransferase activity were conducted with several concentrations (0.1-6 nM) of estradiol and with 2 nM estrone. Triclosan was a very potent inhibitor of both estradiol and estrone sulfonation. For estradiol the inhibition was shown to be mixed competitive/uncompetitive, with K(ic) of 0.09 ± 0.01 nM and K(iu) of 5.2 ± 2.9 nM. The IC(50) for inhibition of estrone sulfonation was 0.60 ± 0.06 nM. At an environmentally relevant concentration of 1 µM, Triclosan was not a substrate for glucuronidation in sheep placental microsomes. Triclosan could be sulfonated in placental cytosol with K(m) 1.14 ± 0.18 µM and V(max) 160 ± 26 pmol/min/mg protein, however the calculated rates of Triclosan sulfonation were negligible at the low nM concentrations that potently inhibit estrogen sulfonation. The high potency of Triclosan as an inhibitor of estrogen sulfotransferase activity raises concern about its possible effects on the ability of the placenta to supply estrogen to the fetus, and in turn on fetal growth and development.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, USA.
| | | | | | | | | |
Collapse
|
28
|
Buyukkayhan D, Ozturk MA, Kurtoglu S, Koklu E, Yikilmaz A. Effect of antenatal betamethasone use on adrenal gland size and endogenous cortisol and 17-hydroxyprogesterone in preterm neonates. J Pediatr Endocrinol Metab 2009; 22:1027-31. [PMID: 20101888 DOI: 10.1515/jpem.2009.22.11.1027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM To assess the effect of antenatal betamethasone use on adrenal gland size and adrenal hormones in preterm neonates who had gestational ages of 27-36 weeks. INFANTS AND METHODS Sixty-six neonates divided into two groups: betamethasone group, whose mothers received betamethasone 12 mg two times 24 h apart, and no betamethasone group, whose mothers did not receive any steroid agent during the antenatal period. Serum 17-hydroxyprogesterone (17-OHP) levels and cortisol levels were measured during the first six hours of life. In addition, adrenal gland length and width were determined on the first day of life. Hormone tests and ultrasonographic evaluation were repeated on the fifth day of life. RESULTS We found statistically significant reductions in 17-OHP and cortisol levels at birth in corticosteroid-exposed neonates (p < 0.05). There was no significant difference between the study groups with regard to adrenal gland length and width (p > 0.05). CONCLUSIONS This study demonstrates that betamethasone use in preterm neonates reduces endogenous 17-OHP and cortisol levels; however, it has no effect on adrenal gland size.
Collapse
Affiliation(s)
- Derya Buyukkayhan
- Department of Neonatology, Cumhuriyet University School of Medicine, Sivas, Turkey.
| | | | | | | | | |
Collapse
|
29
|
Gerstner B, Lee J, DeSilva TM, Jensen FE, Volpe JJ, Rosenberg PA. 17beta-estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J Neurosci Res 2009; 87:2078-86. [PMID: 19224575 DOI: 10.1002/jnr.22023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developing oligodendrocytes (pre-OLs) are highly vulnerable to hypoxic-ischemic injury and associated excitotoxicity and oxidative stress. 17beta-Estradiol plays an important role in the development and function of the CNS and is neuroprotective. The sudden drop in circulating estrogen after birth may enhance the susceptibility of developing OLs to injury. Estrogen receptor (ER)-alpha and ER-beta are both expressed in OLs. We examined the effect of 17beta-estradiol on oxygen-glucose deprivation and oxidative stress-induced cell death in rat pre-OLs in vitro and on hypoxic-ischemic brain injury in vivo. Pre-OLs in culture were subjected to oxygen-glucose deprivation (OGD) or glutathione depletion in the presence or absence of 17beta-estradiol. LDH release, the Alamar blue assay, and phase-contrast microscopy were used to assess cell viability. Hypoxic-ischemic injury was generated in 6-day-old rats (P6) by unilateral carotid ligation and hypoxia (6% O(2) for 1 hr). Rat pups received one intraperitoneal injection of 300 or 600 microg/kg 17beta-estradiol or vehicle 12 hr prior to the surgical procedure. Injury was assessed by myelin basic protein (MBP) immunocytochemistry at P10. 17beta-Estradiol produced significant protection against OGD-induced cell death in primary OLs (EC(50) = 1.3 +/- 0.46 x 10(-9) M) and against oxidative stress. Moreover, 17beta-estradiol attenuated the loss of MBP labeling in P10 pups ipsilateral to the carotid ligation. These results suggest a potential role for estrogens in attenuation of hypoxic-ischemic and oxidative injury to developing OLs and in the prevention of periventricular leukomalacia.
Collapse
Affiliation(s)
- Bettina Gerstner
- Department of Neurology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Imperatore A, Wei Li, Petraglia F, Challis JRG. Urocortin 2 Stimulates Estradiol Secretion From Cultured Human Placental Cells: An Effect Mediated by the Type 2 Corticotrophin-releasing Hormone (CRH) Receptor. Reprod Sci 2009; 16:551-8. [DOI: 10.1177/1933719109332830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Alberto Imperatore
- Department of Paediatrics, Obstetrics, and Reproductive Medicine, University of Siena, Italy, , Department of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Ontario, Canada
| | - Wei Li
- Department of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Ontario, Canada
| | - Felice Petraglia
- Department of Paediatrics, Obstetrics, and Reproductive Medicine, University of Siena, Italy
| | - John R. G. Challis
- Department of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
31
|
Abstract
Steroid hormones are essential for maintenance of pregnancy and fetal development. The expression and catalytic activity of the key steroidogenic enzymes involved in the production of progesterone and estrogens increase during pregnancy, and there is an intricate communication between the mother, the placenta, and the fetus in order to maintain a balanced supply of the steroid hormones essential for embryogenesis. This chapter describes methods for the measurement of the expression and catalytic activity of three key cytochrome P450 (CYP) enzymes involved in the production of progesterone and estrogens, aromatase (CYP19), steroid 17-hydroxylase/17,20-lyase (CYP17), and cholesterol side-chain cleavage (CYP11A).
Collapse
|
32
|
Schaub CE, Wood CE. Blockade of estrogen action upregulates estrogen receptor-alpha mRNA in the fetal brain. Neonatology 2009; 96:115-9. [PMID: 19279395 PMCID: PMC2793321 DOI: 10.1159/000208793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/08/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fetal neuroendocrine maturation in late gestation is critical for maintenance of fetal homeostasis, growth, and readiness for birth. Sheep express estrogen receptors (ERs) in various brain regions. However, little is known about the regulation of ER-alpha and ER-beta in the ovine brain prenatally. OBJECTIVE The present study was designed to test the hypothesis that the expression of ER is influenced by circulating estrogens in the late-gestation sheep fetus. METHODS Six chronically-catheterized twin fetal sheep were treated with vehicle or the ER blocker ICI 182,780 i.c.v. (0.25 microg/day). Fetuses were sacrificed 6-14 days after surgery and start of infusion. Brain regions were rapidly isolated and snap-frozen for later extraction of mRNA and protein. ER-alpha and ER-beta mRNA was measured using real-time PCR and protein was measured using Western blot. RESULTS Treatment with ICI 182,780 increased ER-alpha mRNA, especially in cerebellum and hippocampus. There were no changes in ER-alpha protein and no changes in ER-beta at either the mRNA or protein level. CONCLUSION Expression of ER-alpha is influenced by endogenous estrogens in the ovine fetal brain.
Collapse
Affiliation(s)
- Christine E Schaub
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610-0274, USA
| | | |
Collapse
|
33
|
Wood CE. Fetal stress. Focus on "effects of acute acidemia on the fetal cardiovascular defense to acute hypoxemia" by Thakor and Giussani. Am J Physiol Regul Integr Comp Physiol 2008; 296:R88-9. [PMID: 19020289 DOI: 10.1152/ajpregu.90861.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Gersting J, Schaub CE, Keller-Wood M, Wood CE. Inhibition of brain prostaglandin endoperoxide synthase-2 prevents the preparturient increase in fetal adrenocorticotropin secretion in the sheep fetus. Endocrinology 2008; 149:4128-36. [PMID: 18450957 PMCID: PMC2488234 DOI: 10.1210/en.2008-0123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maturation of the fetal hypothalamus-pituitary-adrenal axis is critical for the timely somatic development of the fetus and readiness for birth. Recently, we proposed that prostaglandin generation within the fetal central nervous system is critical for the modulation of hypotension-induced fetal ACTH secretion. The present study was designed to test the hypothesis that the preparturient increase in fetal ACTH secretion is dependent upon fetal central nervous system prostaglandin synthesis mediated by the activity of prostaglandin endoperoxide synthase (PGHS)-2 (cyclooxygenase-2) in the fetal brain. We performed two studies in chronically catheterized fetal sheep. In the first study, we infused nimesulide or vehicle intracerebroventricularly (i.c.v) into singleton fetal sheep and collected blood samples until spontaneous parturition. Nimesulide significantly delayed parturition, and inhibited fetal ACTH and proopiomelanocortin secretion but did not prevent the preparturient increase in fetal plasma cortisol concentration. In the second study, we used twin fetuses. One fetus received intracerebroventricular nimesulide and the other intracerebroventricular vehicle. Nimesulide reduced brain tissue concentrations of prostaglandin estradiol, while not affecting plasma prostaglandin E(2) concentrations, demonstrating an action restricted to the fetal brain. Nimesulide reduced PGHS-2 mRNA and increased PGHS-2 protein, while not altering PGHS-1 mRNA or protein in most brain regions, suggesting an effect of the inhibitor on PGHS-2 turnover and relative specificity for PGHS-2 in vivo. We conclude that the preparturient increase in fetal ACTH and proopiomelanocortin is dependent upon the activity of PGHS-2 in the fetal brain. However, we also conclude that the timing of parturition is not solely dependent upon ACTH in this species.
Collapse
Affiliation(s)
- Jason Gersting
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610-0274, USA
| | | | | | | |
Collapse
|
35
|
Gore AC. Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front Neuroendocrinol 2008; 29:358-74. [PMID: 18394690 PMCID: PMC2702520 DOI: 10.1016/j.yfrne.2008.02.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 01/01/2023]
Abstract
The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as develop the potential ability to intervene when development is disrupted.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, Institute for Neuroscience and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712, USA.
| |
Collapse
|
36
|
Wood CE, Keller-Wood M. Ontogeny of androgen receptor expression in the ovine fetal central nervous system and pituitary. Neurosci Lett 2008; 439:153-6. [PMID: 18514409 DOI: 10.1016/j.neulet.2008.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/08/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
Abstract
In fetal sheep, circulating androgens influence fetal stress responsiveness and the timing of parturition. Nevertheless, little is known about the presence and development of androgen receptors (ARs) in the fetal brain. The present study was undertaken to test the hypothesis that expression of androgen receptor occurs in fetal brain and pituitary, and that the abundance of the AR is ontogenetically regulated. We isolated mRNA from pituitary, hypothalamus, hippocampus, and brainstem in fetal sheep that were 80, 100, 120, 130, and 145-day gestation, and 1 and 7 days postnatal (n=4-5 per group). Using real-time RT-PCR, we measured mRNA expression levels of the receptor in these brain regions and pituitary. In a separate study, we isolated protein from the same brain regions in fetal sheep that were 80 (n=3), 120 (n=4), and 145 (n=4) days. AR mRNA expression in hypothalamus increased in late gestation, starting at 145 days, and increasing progressively after birth. A trend of increasing AR protein in hypothalamus was not significant. AR mRNA expression in pituitary was elevated after 80 days gestation, but with no further increases or decreases in late gestation, while AR protein increased significantly at the end of gestation. In hippocampus and brainstem AR mRNA was constant throughout the latter half of gestation, and AR protein was below the sensitivity of our Western blot assay. We conclude that the fetal brain and pituitary are target sites for circulating androgens or androgen precursors in fetal plasma, and we speculate that the increase in hypothalamic action of androgens immediately prior to birth might be integral to the timing of parturition.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610-0274, USA.
| | | |
Collapse
|
37
|
Development of ER-alpha and ER-beta expression in the developing ovine brain and pituitary. Gene Expr Patterns 2008; 8:457-463. [PMID: 18424193 DOI: 10.1016/j.gep.2008.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 03/02/2008] [Accepted: 03/06/2008] [Indexed: 11/22/2022]
Abstract
Fetal neuroendocrine development in late gestation is critical for maintenance of fetal homeostasis, growth, and readiness for birth. We designed the present study to identify the regional patterns of expression of the two main isoforms of the estrogen receptor, ER-alpha and ER-beta, in the developing ovine fetal brain. Fetal (80, 100, 120, 130, and 145 days gestation), neonatal (1 and 7 days), and adult sheep were euthanized and the following tissues were collected: pituitary, hypothalamus, hippocampus, cerebral cortex, and brainstem. Both ER's are expressed in the ovine brain as early as 80 days gestation, and the expression of both receptors appears to be developmentally regulated. We conclude that both forms of the estrogen receptor are expressed in fetal brain and pituitary throughout the latter half of gestation.
Collapse
|
38
|
Schaub CE, Keller-Wood M, Wood CE. Blockade of estrogen receptors decreases CNS and pituitary prostaglandin synthase expression in fetal sheep. Neuroendocrinology 2008; 87:121-8. [PMID: 17934250 PMCID: PMC2793319 DOI: 10.1159/000109664] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Both prostaglandin E2 (PGE2) and estradiol stimulate fetal ACTH secretion and augment fetal ACTH responses to stress. We have reported that estradiol increases prostaglandin endoperoxide synthase-2 (PGHS-2), and we have proposed that there is a positive feedback relationship between estrogen and fetal hypothalamus-pituitary-adrenal (HPA) axis activity that is dependent upon PGHS activity in the fetal brain. The present study was designed to test the hypothesis that blockade of estrogen receptors in the fetal brain decrease PGHS-2 expression and reduces fetal HPA axis activity. METHODS In study 1, six time-dated pregnant ewes with chronically-catheterized twin fetuses were used. In each pregnancy, one twin was treated intracerebroventricularly (icv) with the estrogen receptor antagonist ICI 182,780 (25 microg/day; n = 6) while the other twin served as an age-matched control. In study 2, plasma samples were drawn from 10 singleton chronically-catheterized fetuses on alternating days until the time of spontaneous parturition. RESULTS ICI infusion caused significantly decreased PGHS-2 mRNA abundance in fetal central nervous system and pituitary, with the greatest decreases occurring in hippocampus and pituitary. There were no statistically significant changes in PGHS-1 mRNA. ICI infusion did not significantly change fetal plasma concentrations of pro-opiomelanocortin (POMC), ACTH, or cortisol in fetuses 130-134 days ges- tation (study 1) but did decrease the preparturient rise in plasma pro-opiomelanocortin concentrations in study 2. CONCLUSION We conclude that PGHS-2 expression in the late-gestation fetal brain is in part stimulated by circulating estrogens in fetal plasma. Blockade of CNS estrogen receptors reduces preparturient plasma concentrations of POMC, but does not reduce fetal HPA axis activity in 130-134 day fetal sheep.
Collapse
Affiliation(s)
- Christine E. Schaub
- Department of Physiology and Functional Genomics, University of Florida College of Medicine
| | | | - Charles E. Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine
| |
Collapse
|
39
|
You X, Yang R, Tang X, Gao L, Ni X. Corticotropin-Releasing Hormone Stimulates Estrogen Biosynthesis in Cultured Human Placental Trophoblasts1. Biol Reprod 2006; 74:1067-72. [PMID: 16467490 DOI: 10.1095/biolreprod.105.049361] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Estrogens and corticotrophin-releasing hormone (CRH) produced by the placenta play pivotal roles in the control of parturition in human and other primates. There is a strong correlation between maternal CRH and estrogen concentrations throughout gestation. To investigate whether CRH produced locally in the placenta could modulate estrogen production, we obtained human placental trophoblasts from uncomplicated term pregnancies and cultured them for 72 h. Cells were then treated with CRH and with a CRH receptor antagonist, alpha-helical CRH9-41. The results showed that CRH stimulated, but alpha-helical CRH9-41 inhibited, the production of estradiol in a time- and dose-dependent manner. Consistent with this thesis, CRH increased whereas alpha-helical CRH decreased the mRNA levels of STS, CYP19A1, and HSD17B1, the key enzymes for estrogen synthesis. These results suggest that, in the placenta, endogenously produced CRH exhibits a tonic stimulatory effect on estrogen production.
Collapse
Affiliation(s)
- Xingji You
- Department of Physiology, Second Military Medical University, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Galea LAM, Spritzer MD, Barker JM, Pawluski JL. Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus 2006; 16:225-32. [PMID: 16411182 DOI: 10.1002/hipo.20154] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gonadal hormones modulate neurogenesis in the dentate gyrus (DG) of adult rodents in complex ways. Estradiol, the most potent estrogen, initially enhances and subsequently suppresses cell proliferation in the dentate gryus of adult female rodents. Much less is known about how estradiol modulates neurogenesis in the adult male rodent; however, recent evidence suggests that estradiol may have a moderate effect on cell proliferation but enhances cell survival in the DG of newly synthesized cells but only when estradiol is administered during a specific stage in the cell maturation cycle in the adult male rodent. Testosterone likely plays a role in adult neurogenesis, although there have been no direct studies to address this. However, pilot studies from our laboratory suggest that testosterone up-regulates cell survival but not cell proliferation in the DG of adult male rats. Progesterone appears to attenuate the estradiol-induced enhancement of cell proliferation. Neurosteroids such as allopregnalone decrease neurogenesis in adult rodents, while pregnancy and motherhood differentially regulate adult neurogenesis in the adult female rodent. Very few studies have investigated the effects of gonadal hormones on male rodents; however, studies have indicated that there is a gender difference in the response to hormone-regulated hippocampal neurogenesis in the adult. Clearly, more work needs to be done to elucidate the effects of gonadal hormones on neurogenesis in the DG of both male and female rodents.
Collapse
Affiliation(s)
- Liisa A M Galea
- Program in Neuroscience, Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | | | |
Collapse
|
41
|
Asimiadou S, Bittigau P, Felderhoff-Mueser U, Manthey D, Sifringer M, Pesditschek S, Dzietko M, Kaindl AM, Pytel M, Studniarczyk D, Mozrzymas JW, Ikonomidou C. Protection with estradiol in developmental models of apoptotic neurodegeneration. Ann Neurol 2005; 58:266-76. [PMID: 16049923 DOI: 10.1002/ana.20553] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Medical measures that bear no known danger for the adult brain may trigger active neuronal death in the developing brain. Pharmacological blockade of N-methyl-D-aspartate or activation of GABA(A) receptors, blockade of voltage-dependent sodium channels, and oxygen induce widespread apoptotic neurodegeneration during the period of rapid brain growth in rodents. Because such measures are often necessary in critically ill infants and toddlers, search for adjunctive neuroprotective strategies is warranted. We report that 17beta-estradiol ameliorates neurotoxicity of drugs that block N-methyl-D-aspartate receptors, activate GABA(A) receptors, or block voltage-gated sodium channels and reduces neurotoxicity of oxygen in the infant rat brain. This neuroprotective effect is reversed by tamoxifen and cannot be reproduced by 17alpha-estradiol. 17Beta-estradiol did not affect GABA(A) or N-methyl-D-aspartate currents in hippocampal neuronal cultures, indicating that direct modulation of neurotransmitter receptor/channel properties by this compound cannot explain neuroprotective effect. 17beta-Estradiol did, however, increase levels of phosphorylated extracellular signal-regulated kinase 1/2 and AKT, suggesting that activation of these prosurvival proteins may represent one mechanism for its neuroprotective action. 17Beta-estradiol and related compounds may be neuroprotective agents suitable for use in critically ill infants and toddlers. Its supplementation may particularly help to improve neurocognitive outcome in preterm infants who are prematurely deprived of maternal estrogen.
Collapse
Affiliation(s)
- Stiliani Asimiadou
- Neuroscience Research Center, Charité, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|