1
|
Slim R, Fisher R, Milhavet F, Hemida R, Rojas S, Rittore C, Bagga R, Aguinaga M, Touitou I. Biallelic NLRP7 variants in patients with recurrent hydatidiform mole: A review and expert consensus. Hum Mutat 2022; 43:1732-1744. [PMID: 35842788 DOI: 10.1002/humu.24439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Hydatidiform mole (HM) is an abnormal human pregnancy characterized by excessive growth of placental trophoblasts and abnormal early embryonic development. Following a first such abnormal pregnancy, the risk for women of successive molar pregnancies significantly increases. To date variants in seven maternal-effect genes have been shown to cause recurrent HMs (RHM). NLRP7 is the major causative gene for RHM and codes for NOD-like receptor (NLR) family pyrin domain containing 7, which belongs to a family of proteins involved in inflammatory disorders. Since its identification, all NLRP7 variants have been recorded in Infevers, an online registry dedicated to autoinflammatory diseases (https://infevers.umai-montpellier.fr/web/). Here, we reviewed published and unpublished recessive NLRP7 variants associated with RHM, scored their pathogenicity according to the American College of Medical Genetics classification, and recapitulated all functional studies at the level of both the patients and the conceptions. We also provided data on further variant analyses of 32 patients and genotypes of 36 additional molar pregnancies. This comprehensive review integrates published and unpublished data on NLRP7 and aims at guiding geneticists and clinicians in variant interpretation, genetic counseling, and management of patients with this rare condition.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Obstetrics Gynecology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rosemary Fisher
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Florian Milhavet
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France
| | - Reda Hemida
- Department of Obstetrics and Gynecology, Mansoura University, Mansoura, Egypt
| | - Samantha Rojas
- Department of Human Genetics, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Cécile Rittore
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France
| | - Rashmi Bagga
- Department of Obstetrics & Gynecology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Monica Aguinaga
- Genetics and Genomics Department, Instituto Nacional de Perinatologia, Ciudad de Mexico, Mexico
| | - Isabelle Touitou
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France.,Department of Medical Genetics, University of Montpellier (UM), INSERM (IRMB), Montpellier, France
| |
Collapse
|
2
|
Ji M, Shi X, Xiang Y, Cui Q, Zhao J. NLRP7 and KHDC3L variants in Chinese patients with recurrent hydatidiform moles. Jpn J Clin Oncol 2019; 49:620-627. [PMID: 31220306 DOI: 10.1093/jjco/hyz036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/07/2019] [Accepted: 02/26/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Recurrent hydatidiform moles are reportedly biparental complete moles and related to mutated NLRP7 and KHDC3L. This study was designed to identify mutations of gene NLRP7 and KHDC3L in biparental complete moles. METHODS In this study, we have screened NLRP7 and KHDC3L mutations in five patients with recurrent moles and five with sporadic moles. Molar tissues and blood samples were collected from patients and their partners. Genotypes of the molar tissues were determined based on short tandem repeat polymorphism. The coding exons of NLRP7 and KHDC3L were sequenced. RESULTS Two patients with recurrent moles had biparental complete moles, while all other patients had androgenetic complete moles. Three non-synonymous variants in NLRP7 (c.955 G>A, c.1280 T>C and c.1441 G>A) and one in KHDC3L (c.602 C>G) were identified in patients with recurrent moles. NLRP7 c.1441 G>A and c.1280 T>C were mutations found in the Chinese population, while c.1441 G>A was only detected in patients with biparental complete moles in this study. CONCLUSIONS Genotyping can be used to differentiate biparental complete moles from androgenetic moles and to predict the risk of recurrent moles in future pregnancies. NLRP7 c.1441 G>A may associate with biparental complete moles. Biparental complete moles exhibit genetic heterogeneity.
Collapse
Affiliation(s)
- Mingliang Ji
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Quancai Cui
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Jun Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
3
|
Nguyen NMP, Zhang L, Reddy R, Déry C, Arseneau J, Cheung A, Surti U, Hoffner L, Seoud M, Zaatari G, Bagga R, Srinivasan R, Coullin P, Ao A, Slim R. Comprehensive genotype-phenotype correlations between NLRP7 mutations and the balance between embryonic tissue differentiation and trophoblastic proliferation. J Med Genet 2014; 51:623-34. [PMID: 25097207 DOI: 10.1136/jmedgenet-2014-102546] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Hydatidiform mole (HM) is a human pregnancy with excessive trophoblastic proliferation and abnormal embryonic development that may be sporadic or recurrent. In the sporadic form, the HM phenotype is driven by an abnormal ratio of paternal to maternal genomes, whereas in the recurrent form, the HM phenotype is caused by maternal-recessive mutations, mostly in NLRP7, despite the diploid biparental origin of the HM tissues. In this study, we characterised the expression of the imprinted, maternally expressed gene, CDKN1C (p57(KIP2)), the genotype, and the histopathology of 36 products of conception (POC) from patients with two defective alleles in NLRP7 and looked for potential correlations between the nature of the mutations in the patients and the various HM features. METHODS/RESULTS We found that all the 36 POCs are diploid biparental and have the same parental contribution to their genomes. However, some of them expressed variable levels of p57(KIP2) and this expression was strongly associated with the presence of embryonic tissues of inner cell mass origin and mild trophoblastic proliferation, which are features of triploid partial HMs, and were associated with missense mutations. Negative p57(KIP2) expression was associated with the absence of embryonic tissues and excessive trophoblastic proliferation, which are features of androgenetic complete HMs and were associated with protein-truncating mutations. CONCLUSIONS Our data suggest that NLRP7, depending on the severity of its mutations, regulates the imprinted expression of p57(KIP2) and consequently the balance between tissue differentiation and proliferation during early human development. This role is novel and could not have been revealed by any other approach on somatic cells.
Collapse
Affiliation(s)
- Ngoc Minh Phuong Nguyen
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Li Zhang
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ramesh Reddy
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Christine Déry
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jocelyne Arseneau
- Department of Pathology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Annie Cheung
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh, Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
| | - Lori Hoffner
- Department of Pathology, University of Pittsburgh, Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
| | - Muhieddine Seoud
- Department of Obstetrics and Gynecology, American University of Beirut, Beirut, Lebanon
| | - Ghazi Zaatari
- Department of Pathology, American University of Beirut, Beirut, Lebanon
| | - Rashmi Bagga
- Department of Obstetrics & Gynecology, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Radhika Srinivasan
- Cytology & Gynecological Pathology, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Philippe Coullin
- INSERM U782, Endocrinologie et Génétique de la Reproduction et du Développement, Clamart, France
| | - Asangla Ao
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Nguyen NMP, Slim R. Genetics and Epigenetics of Recurrent Hydatidiform Moles: Basic Science and Genetic Counselling. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2014; 3:55-64. [PMID: 24533231 PMCID: PMC3920063 DOI: 10.1007/s13669-013-0076-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gestational trophoblastic disease (GTD) is a group of conditions that originate from the abnormal hyperproliferation of trophoblastic cells, which derive from the trophectoderm, the outer layer of the blastocyst that would normally develop into the placenta during pregnancy. GTDs encompass hydatidiform mole (HM) (complete and partial), invasive mole, gestational choriocarcinoma, placental-site trophoblastic tumor, and epithelioid trophoblastic tumor. Of these, the most common is HM, and it is the only one that has been reported to recur in the same patients from independent pregnancies, which indicates the patients' genetic predisposition. In addition, HM is the only GTD that segregates in families according to Mendel's laws of heredity, which made it possible to use rare familial cases of recurrent HMs (RHMs) to identify two maternal-effect genes, NLRP7 and KHDC3L, responsible for this condition. Here, we recapitulate current knowledge about RHMs and conclude with the role and benefits of testing patients for mutations in the known genes.
Collapse
Affiliation(s)
- Ngoc Minh Phuong Nguyen
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, Quebec Canada ; Department of Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montreal, Quebec Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, Quebec Canada ; Department of Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montreal, Quebec Canada ; Montreal General Hospital Research Institute, L3-121, 1650 Cedar Ave., Montreal, Quebec Canada H3G 1A4
| |
Collapse
|
5
|
Vrana PB, Shorter KR, Szalai G, Felder MR, Crossland JP, Veres M, Allen JE, Wiley CD, Duselis AR, Dewey MJ, Dawson WD. Peromyscus (deer mice) as developmental models. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:211-30. [PMID: 24896658 DOI: 10.1002/wdev.132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023]
Abstract
Deer mice (Peromyscus) are the most common native North American mammals, and exhibit great natural genetic variation. Wild-derived stocks from a number of populations are available from the Peromyscus Genetic Stock Center (PGSC). The PGSC also houses a number of natural variants and mutants (many of which appear to differ from Mus). These include metabolic, coat-color/pattern, neurological, and other morphological variants/mutants. Nearly all these mutants are on a common genetic background, the Peromyscus maniculatus BW stock. Peromyscus are also superior behavior models in areas such as repetitive behavior and pair-bonding effects, as multiple species are monogamous. While Peromyscus development generally resembles that of Mus and Rattus, prenatal stages have not been as thoroughly studied, and there appear to be intriguing differences (e.g., longer time spent at the two-cell stage). Development is greatly perturbed in crosses between P. maniculatus (BW) and Peromyscus polionotus (PO). BW females crossed to PO males produce growth-restricted, but otherwise healthy, fertile offspring which allows for genetic analyses of the many traits that differ between these two species. PO females crossed to BW males produce overgrown but severely dysmorphic conceptuses that rarely survive to late gestation. There are likely many more uses for these animals as developmental models than we have described here. Peromyscus models can now be more fully exploited due to the emerging genetic (full linkage map), genomic (genomes of four stocks have been sequenced) and reproductive resources.
Collapse
Affiliation(s)
- Paul B Vrana
- Peromyscus Genetic Stock Center & Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mahadevan S, Wen S, Balasa A, Fruhman G, Mateus J, Wagner A, Al-Hussaini T, Van den Veyver IB. No evidence for mutations in NLRP7 and KHDC3L in women with androgenetic hydatidiform moles. Prenat Diagn 2013; 33:1242-7. [PMID: 24105752 DOI: 10.1002/pd.4239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/23/2013] [Accepted: 09/04/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the mutational spectrum of NLRP7 and KHDC3L (C6orf221) in women with sporadic and recurrent androgenetic complete hydatidiform moles (AnCHM) and biparental hydatidiform moles (BiHM) to address the hypothesis that autosomal recessive mutations in these genes are only or primarily associated with BiHM. METHOD We recruited 16 women with suspected recurrent and sporadic AnCHM and five women with suspected BiHM in addition to their reproductive partners into our study. We then sequenced the coding exons of NLRP7 and KHDC3L from DNA isolated from either blood or saliva from the study subjects. RESULTS Sequence analysis of NLRP7 and KHDC3L revealed previously described single nucleotide polymorphisms in patients with AnCHM. However, in patients with BiHM, we identified a novel homozygous mutation and a previously described intragenic duplication of exons 2 to 5 in NLRP7, both of which are likely to be disease causing. We did not identify mutations in KHDC3L in patients with either form of hydatidiform moles. CONCLUSIONS The absence of mutations in women with AnCHM supports a role for NLRP7 or KHDC3L in BiHM only. The absence of mutations in KHDC3L in women with BiHM is consistent with its minor role in this disease compared with NLRP7, the major BiHM gene.
Collapse
Affiliation(s)
- Sangeetha Mahadevan
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Slim R, Wallace EP. NLRP7 and the Genetics of Hydatidiform Moles: Recent Advances and New Challenges. Front Immunol 2013; 4:242. [PMID: 23970884 PMCID: PMC3747449 DOI: 10.3389/fimmu.2013.00242] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023] Open
Abstract
NOD-like receptor proteins (NLRPs) are emerging key players in several inflammatory pathways in Mammals. The first identified gene coding for a protein from this family is Nlrp5 and was originally called Mater for “Maternal Antigen That Mouse Embryos Require” for normal development beyond the two-cell stage. This important discovery was followed by the identification of other NLRPs playing roles in inflammatory disorders and of the first maternal-effect gene in humans, NLRP7, which is responsible for an aberrant form of human pregnancy called hydatidiform mole (HM). In this review, we recapitulate the various aspects of the pathology of HM, highlight recent advances regarding NLRP7 and its role in HM and related forms of reproductive losses, and expand our discussion to other NLRPs with a special emphasis on those with known roles in mammalian reproduction. Our aim is to facilitate the genetic complexity of recurrent fetal loss in humans and encourage interdisciplinary collaborations in the fields of NLRPs and reproductive loss.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, McGill University Health Centre , Montreal, QC , Canada ; Department of Obstetrics and Gynecology, McGill University Health Centre , Montreal, QC , Canada
| | | |
Collapse
|
8
|
Landolsi H, Rittore C, Philibert L, Hmissa S, Gribaa M, Touitou I, Yacoubi MT. NLRP7 mutation analysis in sporadic hydatidiform moles in Tunisian patients: NLRP7 and sporadic mole. Arch Pathol Lab Med 2012; 136:646-51. [PMID: 22646272 DOI: 10.5858/arpa.2011-0399-oa] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Hydatidiform mole, an aberrant human pregnancy, is commonly a nonrecurrent disease. Recently, a rare autosomal recessive form of familial and/or recurrent molar pregnancies was associated with mutations in the NLRP7 gene. OBJECTIVE To investigate whether NLRP7 mutations exist in Tunisian women with sporadic hydatidiform moles. DESIGN Genomic DNA from 38 unrelated Tunisian patients with sporadic hydatidiform moles were screened by sequencing all NLRP7 exons. A high-resolution melting curve analysis was performed on 170 DNA controls to analyze new sequence variants. RESULTS More than 13% of these patients were heterozygous for NLRP7 mutations. We found 2 novel missense mutations in the heterozygous state, c.544G>A (p.Val182Met) in 1 patient and c.1480G>A (p.Ala494Thr) in 2 patients, and 2 already reported mutations, c.1532A>G (p.Lys511Arg) and c.2156C>T (p.Ala719Val), in 2 patients. None of these mutations were identified in 170 controls except for 1 woman who was heterozygous for p.Val182Met. CONCLUSION As homozygous NLRP7 mutations are associated with recurrent hydatidiform mole or conception loss, the heterozygous state could represent a risk factor for nonrecurrent mole.
Collapse
Affiliation(s)
- Hanène Landolsi
- Laboratoire d’anatomie et decytologie pathologiques-CHU, Farhat Hached, Rue Ibn Eljazzar, Sousse 4000, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abdalla EM, Hayward BE, Shamseddin A, Nawar MM. Recurrent hydatidiform mole: detection of two novel mutations in the NLRP7 gene in two Egyptian families. Eur J Obstet Gynecol Reprod Biol 2012; 164:211-5. [PMID: 22770628 DOI: 10.1016/j.ejogrb.2012.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/23/2012] [Accepted: 06/12/2012] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hydatidiform mole is an aberrant pregnancy with hyperproliferative vesicular trophoblast and defective fetal development. In 2006, mutations in NLRP7 were found to be responsible for recurrent hydatidiform moles (RHM), but genetic heterogeneity has been demonstrated and mutations of C6orf221 were later reported in several families. Here we report a new Egyptian family in which two sisters had eleven and four molar pregnancies, respectively. The objective was to present the results of the mutation analysis of NLRP7 and C6orf221 genes in Egyptian women with RHM. STUDY DESIGN Three women from two unrelated Egyptian families; two sisters and a previously described sporadic case, all presenting with RHM, were enrolled. The cases were subjected to detailed history taking, karyotyping and screening for mutations in NLRP7 and C6orf221. RESULTS Two NLRP7 mutations have been detected, one in each family. In the first family, sequencing identified a homozygous 2 bp deletion in the seventh coding exon of NLRP7, while a homozygous G-to-A substitution in the third coding exon of NLRP7 was detected in the second family. Both of them result in a truncated protein. The two mutations have not been previously described in the literature. No mutations in C6orf221 were found in any of the samples. CONCLUSION The detection of an NLRP7 mutation in both the familial and the apparently isolated case of RHM provides further evidence for the previously established role of NLRP7 mutations in the pathophysiology of RHM and increases the diversity of mutations described in the Egyptian population. Our results also expand further the spectrum of reproductive wastage associated with NLRP7 mutations to patients with recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Ebtesam M Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | | | | | | |
Collapse
|
10
|
Hoffner L, Surti U. The genetics of gestational trophoblastic disease: a rare complication of pregnancy. Cancer Genet 2012; 205:63-77. [DOI: 10.1016/j.cancergen.2012.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 11/28/2022]
|
11
|
Sebire NJ. Histopathological diagnosis of hydatidiform mole: contemporary features and clinical implications. Fetal Pediatr Pathol 2010; 29:1-16. [PMID: 20055560 DOI: 10.3109/15513810903266138] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gestational trophoblastic neoplasia (GTN) encompasses several entities including complete (CHM) and partial (PHM) hydatidiform mole (HM), malignant choriocarcinoma, and placental-site trophoblastic tumor. HMs are genetically abnormal, nonviable conceptions, which are associated with significantly increased risk for development of complications due to persistence of abnormal trophoblast (persistent GTN; pGTN), which occurs following 15% of CHM and 0.5% of PHM. Diagnostic histological features of HM are present in the first trimester but these features differ from those traditionally described in the later second trimester. The characteristic morphological findings of early HM include aspects of villous dysmorphism and abnormal villous trophoblast hyperplasia, with other specific features allowing reliable distinction between CHM and PHM. Optimal management of molar disease depends on its early histological identification and subsequent surveillance by measurement of maternal human chorionic gonoadotropin (hCG) for detection of pGTN based on rising or plateuing hCG levels such that early effective treatment is possible.
Collapse
Affiliation(s)
- N J Sebire
- Trophoblastic Disease Unit, Department of Medical Oncology, Charing Cross Hospital, London, UK.
| |
Collapse
|
12
|
Deveault C, Qian JH, Chebaro W, Ao A, Gilbert L, Mehio A, Khan R, Tan SL, Wischmeijer A, Coullin P, Xie X, Slim R. NLRP7 mutations in women with diploid androgenetic and triploid moles: a proposed mechanism for mole formation. Hum Mol Genet 2008; 18:888-97. [PMID: 19066229 DOI: 10.1093/hmg/ddn418] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hydatidiform mole is an aberrant pregnancy with abnormal embryonic development and hydropic placental villi. Common moles are sporadic, not recurrent and affect one in every 1500 pregnancies in Western societies. Approximately, half of common moles are complete and mostly diploid androgenetic, whereas the remaining are partial and mostly triploid diandric. NLRP7 has been found to be responsible for a recurrent form of molar pregnancies. Recently, we showed that patients with NLRP7 mutations have an impaired inflammatory response to various stimuli. To date, molar tissues analyzed from patients with NLRP7 mutations have been found to be diploid and biparental. In this study, we report 10 new non-synonymous variants and one stop codon found in patients and not in controls. We demonstrate the presence of different types of moles, diploid biparental, diploid androgenetic, triploid and tetraploid conceptions, in patients with NLRP7 variants. We document in vitro and in vivo early embryo cleavage abnormalities in three patients. We propose a two-hit mechanism at the origin of androgenetic moles. This mechanism consists of variable degrees of early embryo cleavage abnormalities leading to chaotic mosaic aneuploidies, with haploid, diploid, triploid and tetraploid blastomeres. Surviving embryonic cells that reach implantation are then subject to the maternal immune response. Because of the patients' impaired inflammatory response, androgenetic cells, which are complete allograft, are able to grow and proliferate. In women with normal immune system, chaotic mosaic aneuploidies may also occur during early cleavage, however, androgenetic cells would die after implantation or stay undetected, confined to a small portion of the placenta.
Collapse
Affiliation(s)
- Catherine Deveault
- Department of Human Genetics, McGill University Health Center, Montreal H3G 1A4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wiley CD, Matundan HH, Duselis AR, Isaacs AT, Vrana PB. Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation. PLoS One 2008; 3:e3572. [PMID: 18958286 PMCID: PMC2570336 DOI: 10.1371/journal.pone.0003572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/10/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Crosses between natural populations of two species of deer mice, Peromyscus maniculatus (BW), and P. polionotus (PO), produce parent-of-origin effects on growth and development. BW females mated to PO males (bwxpo) produce growth-retarded but otherwise healthy offspring. In contrast, PO females mated to BW males (POxBW) produce overgrown and severely defective offspring. The hybrid phenotypes are pronounced in the placenta and include POxBW conceptuses which lack embryonic structures. Evidence to date links variation in control of genomic imprinting with the hybrid defects, particularly in the POxBW offspring. Establishment of genomic imprinting is typically mediated by gametic DNA methylation at sites known as gDMRs. However, imprinted gene clusters vary in their regulation by gDMR sequences. METHODOLOGY/PRINCIPAL FINDINGS Here we further assess imprinted gene expression and DNA methylation at different cluster types in order to discern patterns. These data reveal POxBW misexpression at the Kcnq1ot1 and Peg3 clusters, both of which lose ICR methylation in placental tissues. In contrast, some embryonic transcripts (Peg10, Kcnq1ot1) reactivated the silenced allele with little or no loss of DNA methylation. Hybrid brains also display different patterns of imprinting perturbations. Several cluster pairs thought to use analogous regulatory mechanisms are differentially affected in the hybrids. CONCLUSIONS/SIGNIFICANCE These data reinforce the hypothesis that placental and somatic gene regulation differs significantly, as does that between imprinted gene clusters and between species. That such epigenetic regulatory variation exists in recently diverged species suggests a role in reproductive isolation, and that this variation is likely to be adaptive.
Collapse
Affiliation(s)
- Christopher D. Wiley
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Harry H. Matundan
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Amanda R. Duselis
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alison T. Isaacs
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Paul B. Vrana
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kou YC, Shao L, Peng HH, Rosetta R, del Gaudio D, Wagner AF, Al-Hussaini TK, Van den Veyver IB. A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod 2007; 14:33-40. [PMID: 18039680 DOI: 10.1093/molehr/gam079] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A complete hydatidiform mole (CHM) is an abnormal pregnancy with hyperproliferative vesicular trophoblast and no fetal development. Most CHM are sporadic and androgenetic, but recurrent HM have biparental inheritance (BiHM) with disrupted DNA methylation at differentially methylated regions (DMRs) of imprinted loci. Some women with recurrent BiHM have mutations in the NLRP7 gene on chromosome 19q13.42. Using bisulfite genomic sequencing at eight imprinted DMRs on DNA from two BiHMs, we found a pattern of failure to acquire or maintain DNA methylation at DMRs (PEG3, SNRPN, KCNQ1OT1, GNAS exon 1A) that normally acquire CpG methylation during oogenesis, but not at H19, which acquires CpG methylation during spermatogenesis. Secondary imprints at the GNAS locus showed variable abnormal patterns with both gain and loss of CpG methylation. We found novel missense and splice-site mutations in NLRP7 in women with non-familial recurrent BiHM. We identified and characterized a homozygous intragenic tandem duplication including exons 2 through 5 of NLRP7 that results in a predicted truncated protein in affected women of three unrelated Egyptian kindreds, suggesting a founder effect. Our findings firmly establish that NLRP7 mutations are a major cause of BiHM and confirm presence of a complex pattern of imprinting abnormalities in BiHM tissues.
Collapse
Affiliation(s)
- Y C Kou
- Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Room 721E, Mailstop BCM225, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
Imprinted genes comprise a small subset of the genome whose epigenetic reprogramming in the germ line is necessary for subsequent normal embryonic development. This reprogramming and resetting of the imprints, through an erasure/acquisition/maintenance cycle, is a subtle and tightly orchestrated phenomenon, involving specific genomic regions and methylation enzymes. Dysregulation of imprinted genes has indeed been shown to lead to several human disorders as well as to affect placental and fetal growth. There have been numerous and conflicting studies assessing the possible association of imprinting disorders with assisted reproductive techniques. This work analyzes all relevant and available reports with regard to the association between assisted reproductive techniques and imprinting disorders. It also discusses whether this possibly increased risk of imprinting disorders may be linked to specific steps of these reproductive techniques or already present in the gametes of infertile patients. A better understanding of epigenetic reprogramming in the germ line is absolutely necessary both to assess the safety of these methods and of the use of impaired spermatogenesis gametes for assisted reproduction.
Collapse
Affiliation(s)
- Ariane Paoloni-Giacobino
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.
| |
Collapse
|
17
|
Abstract
Hydatidiform mole (HM) is a human pregnancy with no embryo but cystic degeneration of chorionic villi. The common form of this condition occurs in 1 in every 1500 pregnancies in western societies and at a higher incidence in some geographic regions and populations. Recurrent moles account for 2% of all molar cases and a few of them occur in more than one family member. By studying a familial form of recurrent moles, a recessive maternal locus responsible for this condition was mapped to 19q13.4 and causative mutations identified. The defective protein, NALP7, is part of the CATERPILLAR protein family with roles in pathogen-induced inflammation and apoptosis. The exact role of NALP7 in the pathophysiology of molar pregnancies is unknown yet. NALP7 could have a role either in oogenesis or in the endometrium during trophoblast invasion and decidualization. In this review, we outlined recent advances in the field of HMs and reviewed the literature in the light of the new data.
Collapse
Affiliation(s)
- R Slim
- Departments of Human Genetics, McGill University Health Center, Montreal H3G 1A4, Canada.
| | | |
Collapse
|
18
|
Loschiavo M, Nguyen QK, Duselis AR, Vrana PB. Mapping and identification of candidate loci responsible for Peromyscus hybrid overgrowth. Mamm Genome 2007; 18:75-85. [PMID: 17242862 PMCID: PMC1794137 DOI: 10.1007/s00335-006-0083-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/19/2006] [Indexed: 12/30/2022]
Abstract
Crosses between two recently diverged rodent species of the genus Peromyscus result in dramatic parent-of-origin effects on growth and development. P. maniculatus females crossed with P. polionotus males yield growth-retarded conceptuses, whereas the reciprocal cross results in overgrowth and lethality. These hybrid effects are particularly pronounced in the placenta. We previously detected linkage to two regions of the genome involved in the overgrowth effects. One locus, termed Peal, is a paternally expressed autosomal locus mapping to a domain whose house mouse equivalent contains several clusters of imprinted genes. The other locus, termed Mexl, maps to a gene-poor region of the X chromosome. Here we use an advanced intercross line to verify and narrow the regions of linkage and identify candidate genes for Mexl and Peal. While we have previously shown that Mexl affects both pre-and postnatal growth, we show here that Peal affects only prenatal growth. Utilizing criteria such as mutant phenotypes and allelic expression, we identify the loci encoding the homeobox protein Esx1 and the zinc-finger protein Pw1/Peg3 as candidates. Both loci exhibit expression changes in the hybrids.
Collapse
Affiliation(s)
- Maria Loschiavo
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92799 USA
- Department of Dermatology, University of California Irvine, Irvine, CA 92697 USA
| | - Quang K. Nguyen
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92799 USA
| | - Amanda R. Duselis
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92799 USA
| | - Paul B. Vrana
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California 92799 USA
- Department of Biological Chemistry, Sprague Hall 312, School of Medicine, University of California Irvine, Irvine, CA 92799-1700 USA
| |
Collapse
|
19
|
Francis B, Hallam L, Kecskes Z, Ellwood D, Croaker D, Kent A. Placental mesenchymal dysplasia associated with hepatic mesenchymal hamartoma in the newborn. Pediatr Dev Pathol 2007; 10:50-4. [PMID: 17378624 DOI: 10.2350/06-03-0066.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/31/2006] [Indexed: 11/20/2022]
Abstract
Placental mesenchymal dysplasia is an uncommon disorder in which the placenta is enlarged with abnormal, large, and often cystic villi with dilated and/or thick-walled vessels. These placental changes can mimic a partial hydatidiform mole but in contrast to a partial mole can coexist with a fully viable fetus. Fetal anatomical and vascular anomalies frequently coexist with placental mesenchymal dysplasia. In this case, placental mesenchymal dysplasia was associated with preterm labor at 33 weeks' gestation, fetal compromise, and a large abdominal mass with a large hepatic cyst that was de-roofed at exploratory laparotomy. The neonate remained critically ill with hypoxic ischaemic encephalopathy and coagulopathy and died despite intensive care. Biopsy and autopsy findings showed a large cystic mesenchymal hamartoma affecting the left lobe of the liver. This appears to be the 3rd histologically confirmed association of placental mesenchymal dysplasia with mesenchymal hamartoma of the liver in the English language literature.
Collapse
Affiliation(s)
- Babu Francis
- Department of Neonatology, Fetal Medicine Unit, The Canberra Hospital, Woden, and Australian National University Medical School, Canberra, ACT, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Tycko B. Imprinted genes in placental growth and obstetric disorders. Cytogenet Genome Res 2006; 113:271-8. [PMID: 16575190 DOI: 10.1159/000090842] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/27/2005] [Indexed: 01/12/2023] Open
Abstract
Genomic imprinting has a special role in placental biology. Imprinted genes are often strongly expressed in the placenta, and the allelic expression bias due to imprinting is sometimes stronger in this extraembryonic organ than in the embryo and adult. Mutations, epimutations, and uniparental disomies affecting imprinted loci cause placental stunting or overgrowth in mice and humans, and placental neoplasms (complete hydatidiform moles) are androgenetic. Whether imprinted genes might also play a role in the more common medical conditions that affect the placenta, including preeclampsia and intrauterine growth restriction (IUGR), is an important question that is now receiving some attention. Here we review this area and describe recent data indicating altered expression of imprinted genes in the placental response to maternal vascular underperfusion associated with IUGR.
Collapse
Affiliation(s)
- B Tycko
- Institute for Cancer Genetics, Department of Pathology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Van den Veyver IB, Al-Hussaini TK. Biparental hydatidiform moles: a maternal effect mutation affecting imprinting in the offspring. Hum Reprod Update 2006; 12:233-42. [PMID: 16540529 DOI: 10.1093/humupd/dmk005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Highly recurrent hydatidiform moles (HMs) studied to date are not androgenetic but have biparental genomic contribution (BiHM). Affected women have an autosomal recessive mutation that causes their pregnancies to develop into HM. Although there is genetic heterogeneity, a major locus maps to chromosome 19q13.42, but a mutated gene has not yet been identified. Molecular studies have shown that maternal imprinting marks are deregulated in the BiHM trophoblast. The mutations that cause this condition are, therefore, hypothesized to occur in genes that encode transacting factors required for the establishment of imprinting marks in the maternal germline or for their maintenance in the embryo. Although only DNA methylation marks at imprinted loci have been studied in the BiHM, the mutation may affect genes that are essential for other forms of chromatin remodelling at imprinted loci and necessary for correct maternal allele-specific DNA methylation and imprinted gene expression. Normal pregnancies interspersed with BiHM have been reported in some of the pedigrees, but affected women repeatedly attempting pregnancy should be counselled about the risk for invasive trophoblastic disease with each subsequent BiHM.
Collapse
Affiliation(s)
- I B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 1709 Dryden, Suite 1100, Houston, TX 77030, USA.
| | | |
Collapse
|
22
|
Zhao J, Moss J, Sebire NJ, Cui QC, Seckl MJ, Xiang Y, Fisher RA. Analysis of the chromosomal region 19q13.4 in two Chinese families with recurrent hydatidiform mole. Hum Reprod 2005; 21:536-41. [PMID: 16239310 DOI: 10.1093/humrep/dei357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Familial recurrent hydatidiform mole is an extremely rare autosomal recessive condition in which affected individuals have a predisposition to molar pregnancies that are diploid but biparental, rather than androgenetic, in origin. A gene for this condition has been previously mapped to a 1.1 Mb region of chromosome 19q13.4. However, investigation of further families is needed to refine the location of the specific gene(s) involved. METHODS We have recently identified two novel Chinese families in which four affected women had recurrent pregnancy loss including 14 complete hydatidiform moles (CHM). Fluorescent microsatellite genotyping was used to determine the origin of CHM in both families. Using a panel of polymorphic microsatellite markers, genotyping and haplotype analysis of the 19q13.4 chromosomal region was performed in both families. RESULTS Genotyping of CHM from affected individuals confirmed their biparental origin and diagnosis of familial recurrent hydatidiform mole in both families. However, no significant homozygosity for the 19q13.4 candidate region was found in affected members of either family. CONCLUSION Genotyping and haplotype analysis has shown that a mutation in 19q13.4 is unlikely to be responsible for recurrent CHM in the two Chinese families investigated and provides further evidence to support the hypothesis that, although extremely rare, this condition shows genetic heterogeneity.
Collapse
Affiliation(s)
- J Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | | | | | | | | | | | | |
Collapse
|