1
|
Wang H, Li X, Wu Q, Chen W, Bei Y. Adult Cardiomyocyte-Derived Extracellular Vesicles: a Promising Therapy for Cardiac Fibrosis. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10554-2. [PMID: 39186225 DOI: 10.1007/s12265-024-10554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinpeng Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Qianwen Wu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Wei Chen
- Emergency Department, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Zabielska-Kaczorowska MA, Stawarska K, Kawecka A, Urbanowicz K, Smolenski RT, Kutryb-Zajac B. Nucleotide depletion in hypoxia experimental models of mouse myocardial slices. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-13. [PMID: 39047183 DOI: 10.1080/15257770.2024.2381791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES Experimental models to test the effective protection against cardiac ischemia injury are still challenging in pre-clinical studies. The use of myocardial slices creates a special link between testing isolated cardiomyocytes and whole-heart research. In this work, we investigated the effects of oxygen deprivation in a hypoxic chamber and treatment with cobalt chloride (CoCl2) on the nucleotide profile in isolated mouse myocardial slices. METHODS 200 μm-thick left ventricle myocardial slices were obtained from 3-month-old male C57Bl/6J mice using an oscillatory microtome. Slices were then exposed to 1% O2 atmosphere or 100 μM CoCl2 at 37 °C for 45 min and used for nucleotide measurements using ultra-high-performance liquid chromatography. The effects of two short-term experimental models of hypoxia were compared to 2'-deoxyglucose with oligomycin (2-DG + OLIGO) treatment, which inhibited both glycolysis and mitochondrial ATP synthesis. KEY FINDINGS A significant effect of hypoxia with 1% O2 was observed on adenosine triphosphate (ATP) and total adenine nucleotide (TAN) concentrations as well as on adenylate energy charge (AEC), ATP/ADP and ATP/AMP ratios. Oxygen deprivation caused changes almost as profound as 2-DG + OLIGO, emphasizing the critical role of mitochondrial oxidative phosphorylation in the energy metabolism of cultured heart slices. CoCl2 treatment that elicits hypoxia-like responses via HIF-1α stabilization only slightly affected nucleotide levels. This suggests that mechanisms induced by cobalt ions require more time to change the cardiac energy metabolism. CONCLUSIONS A short-term culture of myocardial slices in a hypoxic chamber seems to be an appropriate model of cardiac ischemia for testing new pharmacological approaches based on modulating the energy metabolism of cardiac cells.
Collapse
Affiliation(s)
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | | | | |
Collapse
|
3
|
Chen X, Chen H, Zhu L, Zeng M, Wang T, Su C, Vulugundam G, Gokulnath P, Li G, Wang X, Yao J, Li J, Cretoiu D, Chen Z, Bei Y. Nanoparticle-Patch System for Localized, Effective, and Sustained miRNA Administration into Infarcted Myocardium to Alleviate Myocardial Ischemia-Reperfusion Injury. ACS NANO 2024. [PMID: 39020456 DOI: 10.1021/acsnano.3c08811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Timely blood reperfusion after myocardial infarction (MI) paradoxically triggers ischemia-reperfusion injury (I/RI), which currently has not been conquered by clinical treatments. Among innovative repair strategies for myocardial I/RI, microRNAs (miRNAs) are expected as genetic tools to rescue damaged myocardium. Our previous study identified that miR-30d can provide protection against myocardial apoptosis and fibrosis to alleviate myocardial injury. Although common methods such as liposomes and viral vectors have been used for miRNA transfection, their therapeutic efficiencies have struggled with inefficient in vivo delivery, susceptible inactivation, and immunogenicity. Here, we establish a nanoparticle-patch system for miR-30d delivery in a murine myocardial I/RI model, which contains ZIF-8 nanoparticles and a conductive microneedle patch. Loaded with miR-30d, ZIF-8 nanoparticles leveraging the proton sponge effect enable miR-30d to escape the endocytic pathway, thus avoiding premature degradation in lysosomes. Meanwhile, the conductive microneedle patch offers a distinct advantage by intramyocardial administration for localized, effective, and sustained miR-30d delivery, and it simultaneously releases Au nanoparticles to reconstruct electrical impulses within the infarcted myocardium. Consequently, the nanoparticle-patch system supports the consistent and robust expression of miR-30d in cardiomyocytes. Results from echocardiography and electrocardiogram (ECG) revealed improved heart functions and standard ECG wave patterns in myocardial I/RI mice after implantation of a nanoparticle-patch system for 3 and 6 weeks. In summary, our work incorporated conductive microneedle patch and miR-30d nanodelivery systems to synergistically transcend the limitations of common RNA transfection methods, thus mitigating myocardial I/RI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hang Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Mengting Zeng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tianhui Wang
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chanyuan Su
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou ,Fujian 350001, China
| | - Gururaja Vulugundam
- Biologics Development, Sanofi, Framingham, Massachusetts 01701, United States
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Hangzhou 310053, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute of Mother and Child Health, Bucharest 020395, Romania
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou ,Fujian 350001, China
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Zheng K, Hao Y, Xia C, Cheng S, Yu J, Chen Z, Li Y, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Zhao J, Li R, Zong J, Zhang H, Lai L, Huang P, Zhou C, Xia J, Zhang X, Wu J. Effects and mechanisms of the myocardial microenvironment on cardiomyocyte proliferation and regeneration. Front Cell Dev Biol 2024; 12:1429020. [PMID: 39050889 PMCID: PMC11266095 DOI: 10.3389/fcell.2024.1429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Cheng
- Jingshan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Wang J, Liu S, Meng X, Zhao X, Wang T, Lei Z, Lehmann HI, Li G, Alcaide P, Bei Y, Xiao J. Exercise Inhibits Doxorubicin-Induced Cardiotoxicity via Regulating B Cells. Circ Res 2024; 134:550-568. [PMID: 38323433 PMCID: PMC11233173 DOI: 10.1161/circresaha.123.323346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to μMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to μMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Shuqin Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Xinxiu Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Tianhui Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Zhiyong Lei
- CDL Research (Z.L.)
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L.)
- UMC Utrecht Regenerative Medicine Center (Z.L.)
- University Medical Center, Utrecht University, the Netherlands (Z.L.)
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA (H.I.L., G.L.)
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA (H.I.L., G.L.)
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA (P.A.)
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| |
Collapse
|
6
|
Costa ADS, Ghouri I, Johnston A, McGlynn K, McNair A, Bowman P, Malik N, Hurren J, Bingelis T, Dunne M, Smith GL, Kemi OJ. Electrically stimulated in vitro heart cell mimic of acute exercise reveals novel immediate cellular responses to exercise: Reduced contractility and metabolism, but maintained calcium cycling and increased myofilament calcium sensitivity. Cell Biochem Funct 2023; 41:1147-1161. [PMID: 37665041 PMCID: PMC10947300 DOI: 10.1002/cbf.3847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Cardiac cellular responses to acute exercise remain undescribed. We present a model for mimicking acute aerobic endurance exercise to freshly isolated cardiomyocytes by evoking exercise-like contractions over prolonged periods of time with trains of electrical twitch stimulations. We then investigated immediate contractile, Ca2+ , and metabolic responses to acute exercise in perfused freshly isolated left ventricular rat cardiomyocytes, after a matrix-design optimized protocol and induced a mimic for acute aerobic endurance exercise by trains of prolonged field twitch stimulations. Acute exercise decreased cardiomyocyte fractional shortening 50%-80% (p < .01). This was not explained by changes to intracellular Ca2+ handling (p > .05); rather, we observed a weak insignificant Ca2+ transient increase (p = .11), while myofilament Ca2+ sensitivity increased 20%-70% (p < .05). Acidic pH 6.8 decreased fractional shortening 20%-70% (p < .05) because of 20%-30% decreased Ca2+ transients (p < .05), but no difference occurred between control and acute exercise (p > .05). Addition of 1 or 10 mM La- increased fractional shortening in control (1 mM La- : no difference, p > .05; 10 mM La- : 20%-30%, p < .05) and acute exercise (1 mM La- : 40%-90%, p < .01; 10 mM La- : 50%-100%, p < .01) and rendered acute exercise indifferent from control (p > .05). Intrinsic autofluorescence showed a resting NADstate of 0.59 ± 0.04 and FADstate of 0.17 ± 0.03, while acute exercise decreased NADH/FAD ratio 8% (p < .01), indicating intracellular oxidation. In conclusion, we show a novel approach for studying immediate acute cardiomyocyte responses to aerobic endurance exercise. We find that acute exercise in cardiomyocytes decreases contraction, but Ca2+ handling and myofilament Ca2+ sensitivity compensate for this, while acidosis and reduced energy substrate and mitochondrial ATP generation explain this.
Collapse
Affiliation(s)
- Ana Da Silva Costa
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Graduate School, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Iffath Ghouri
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Alexander Johnston
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Karen McGlynn
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Andrew McNair
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Peter Bowman
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Natasha Malik
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Johanne Hurren
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Tomas Bingelis
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Michael Dunne
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Godfrey L. Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ole J. Kemi
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
7
|
Meng D, Ai S, Spanos M, Shi X, Li G, Cretoiu D, Zhou Q, Xiao J. Exercise and microbiome: From big data to therapy. Comput Struct Biotechnol J 2023; 21:5434-5445. [PMID: 38022690 PMCID: PMC10665598 DOI: 10.1016/j.csbj.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise is a vital component in maintaining optimal health and serves as a prospective therapeutic intervention for various diseases. The human microbiome, comprised of trillions of microorganisms, plays a crucial role in overall health. Given the advancements in microbiome research, substantial databases have been created to decipher the functionality and mechanisms of the microbiome in health and disease contexts. This review presents an initial overview of microbiomics development and related databases, followed by an in-depth description of the multi-omics technologies for microbiome. It subsequently synthesizes the research pertaining to exercise-induced modifications of the microbiome and diseases that impact the microbiome. Finally, it highlights the potential therapeutic implications of an exercise-modulated microbiome in intestinal disease, obesity and diabetes, cardiovascular disease, and immune/inflammation-related diseases.
Collapse
Affiliation(s)
- Danni Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Songwei Ai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiaohui Shi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, Bucharest 020031, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest 011062, Romania
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Schulman-Geltzer EB, Collins HE, Hill BG, Fulghum KL. Coordinated Metabolic Responses Facilitate Cardiac Growth in Pregnancy and Exercise. Curr Heart Fail Rep 2023; 20:441-450. [PMID: 37581772 PMCID: PMC10589193 DOI: 10.1007/s11897-023-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW Pregnancy and exercise are systemic stressors that promote physiological growth of the heart in response to repetitive volume overload and maintenance of cardiac output. This type of remodeling is distinct from pathological hypertrophy and involves different metabolic mechanisms that facilitate growth; however, it remains unclear how metabolic changes in the heart facilitate growth and if these processes are similar in both pregnancy- and exercise-induced cardiac growth. RECENT FINDINGS The ability of the heart to metabolize a myriad of substrates balances cardiac demands for energy provision and anabolism. During pregnancy, coordination of hormonal status with cardiac reductions in glucose oxidation appears important for physiological growth. During exercise, a reduction in cardiac glucose oxidation also appears important for physiological growth, which could facilitate shuttling of glucose-derived carbons into biosynthetic pathways for growth. Understanding the metabolic underpinnings of physiological cardiac growth could provide insight to optimize cardiovascular health and prevent deleterious remodeling, such as that which occurs from postpartum cardiomyopathy and heart failure. This short review highlights the metabolic mechanisms known to facilitate pregnancy-induced and exercise-induced cardiac growth, both of which require changes in cardiac glucose metabolism for the promotion of growth. In addition, we mention important similarities and differences of physiological cardiac growth in these models as well as discuss current limitations in our understanding of metabolic changes that facilitate growth.
Collapse
Affiliation(s)
- Emily B Schulman-Geltzer
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kyle L Fulghum
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|