1
|
Zafar MN, Pitt WG, Husseini GA. Encapsulation and release of calcein from herceptin-conjugated eLiposomes. Heliyon 2024; 10:e27882. [PMID: 38524567 PMCID: PMC10958368 DOI: 10.1016/j.heliyon.2024.e27882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Achieving an optimal therapeutic level is crucial in effectively eradicating cancer cells during treatment. However, conventional chemotherapy-associated systemic administration of anticancer agents leads to many side effects. To achieve the desired control over the target site, active targeting of HER2-positive breast cancer cells can be achieved by conjugating liposomal vesicles with Human Epidermal growth factor Receptor 2 (HER2) and inducing release of the encapsulated drug using ultrasound. To further enhance the delivery efficiency, nanoemulsion droplets exhibiting responsiveness to low-frequency ultrasound are encapsulated within these lipid vesicles. In this study, we prepared four different liposomal formulations, namely pegylated liposomes, emulsion liposomes (eLiposomes), HER-conjugated liposomes, and HER-conjugated eLiposomes, each loaded with calcein and subjected to a thorough characterization process. Their sizes, phospholipid concentration, and amount of antibody conjugation were compared and analyzed. Cryogenic transmission electron microscopy was used to confirm the encapsulation of nanoemulsion droplets within the liposomes. The drug-releasing performance of Herceptin-conjugated eLiposomes was found to surpass that of other liposomal formulations with a notably higher calcein release and established it as a highly effective nanocarrier. The study showcases the efficacy of calcein-loaded and Herceptin-conjugated eLiposomes, which demonstrate rapid and efficient drug release among other liposomal formulations when subjected to ultrasound. This discovery paves the way for a more targeted, efficient, and humane approach to cancer therapy.
Collapse
Affiliation(s)
- Mah Noor Zafar
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A. Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
2
|
Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, Abdelnabi H, Odeh F, El-Tanani M, Alshaer W. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res 2024; 34:178-202. [PMID: 37378553 DOI: 10.1080/08982104.2023.2226216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Randa Atwan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hiba Abdelnabi
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Pawar K, Shaikh K. Design and Development of Ophthalmic Liposomes from the QbD Perspective. Curr Pharm Des 2024; 30:2364-2377. [PMID: 39021195 DOI: 10.2174/0113816128302570240627113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Due to significant lachrymation, drug washing out, and poor adhesion to the lipophilic outer layer of the precorneal and cornea membrane, topical ophthalmic solution drops have poor ocular bioavailability. The rate of transcorneal absorption is impacted in the case of hydrophilic drug molecules as brimonidine tartrate, timolol maleate, cyclosporine, etc. Ophthalmic solution administered in many doses is less patient-compliant. The limitation of multiple-dose and its negative effects can be overcome by the development of delayed- release liposomes. Liposomes are regulatory-approved novel drug delivery systems. Its vesicular form aids in delaying medication release, and its lipidic makeup enables it to stick to the cornea's lipophilic layer. As a result, it will prevent precorneal clearing, extend corneal contact time, and provide sufficient transcorneal absorption. The aim of this review article is to portray the benefits of liposomes for ophthalmic drug delivery and its formulation development in the light of QbD. The review discusses the composition, preparatory methods and quality aspects of ophthalmic liposomes. It then accordingly reasonably proposes the quality target product profile, critical quality attributes, critical material attributes and critical process parameters, involved in liposome development for ophthalmic drug delivery. This review shall help formulation scientists to formulate ophthalmic liposomes of desirable quality.
Collapse
Affiliation(s)
- Kaustubh Pawar
- Progressive Education Society's Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Karimunnisa Shaikh
- Progressive Education Society's Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
4
|
Singh CP, Rai PK, Kumar M, Tiwari V, Tiwari A, Sharma A, Sharma K. Emphasis on Nanostructured Lipid Carriers in the Ocular Delivery of Antibiotics. Pharm Nanotechnol 2024; 12:126-142. [PMID: 37519002 DOI: 10.2174/2211738511666230727102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Drug distribution to the eye is still tricky because of the eye's intricate structure. Systemic delivery, as opposed to more traditional methods like eye drops and ointments, is more effective but higher doses can be harmful. OBJECTIVE The use of solid lipid nanoparticles (SLNPs) as a method of drug delivery has been the subject of research since the 1990s. Since SLNPs are derived from naturally occurring lipids, they pose no health risks to the user. To raise the eye's absorption of hydrophilic and lipophilic drugs, SLNs can promote corneal absorption and improve the ocular bioavailability of SLNPs. METHODS To address problems related to ocular drug delivery, many forms of nano formulation were developed. Some of the methods developed are, emulsification and ultra-sonication, high-speed stirring and ultra-sonication, thin layer hydration, adapted melt-emulsification, and ultrasonication techniques, hot o/w micro-emulsion techniques, etc. Results: Nanostructured lipid carriers are described in this review in terms of their ocular penetration mechanism, structural characteristic, manufacturing process, characterization, and advantages over other nanocarriers. CONCLUSION Recent developments in ocular formulations with nanostructured bases, such as surfacemodified attempts have been made to increase ocular bioavailability in both the anterior and posterior chambers by incorporating cationic chemicals into a wide variety of polymeric systems.
Collapse
Affiliation(s)
- Chandra Pratap Singh
- Usha college of Pharmacy & Medical Sciences, Vijaygaon, Ambedkar Nagar, 224122, UP, India
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Pankaj Kumar Rai
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Kamini Sharma
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| |
Collapse
|
5
|
Sun T, Li C, Li X, Song H, Su B, You H, Zhang T, Jiang C. Pharmaceutical Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
6
|
Gusev AA, Zakharova OV, Vasyukova IA, Osmanov RE, Al-Makhdar YM. [Nanotechnologies in ophthalmology]. Vestn Oftalmol 2023; 139:107-114. [PMID: 37638580 DOI: 10.17116/oftalma2023139041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Application of new materials and methods in the diagnosis and treatment of eye diseases is one of the promising research areas in modern ophthalmology. Significant progress has been made in understanding the pathogenesis, diagnosis and treatment of eye diseases using nanotechnologies and nanomaterials. This paper presents the main achievements and results of original research on this issue. It has been shown that nanoparticles are able to overcome biological barriers, deliver drugs to the target site, and provide the required drug release rate. Modern nanotechnological approaches in tissue engineering are also being actively introduced into ophthalmology, making it possible to create nanoframeworks for growing three-dimensional cellular structures, including arrays of pigment epithelium cells and retinal ganglion cells for the treatment of retinal damage caused by degenerative diseases, injuries and infections.
Collapse
Affiliation(s)
- A A Gusev
- Tambov State University named after G.R. Derzhavin, Tambov, Russia
- National University of Science and Technology (MISIS), Moscow, Russia
| | - O V Zakharova
- Tambov State University named after G.R. Derzhavin, Tambov, Russia
- National University of Science and Technology (MISIS), Moscow, Russia
- Plekhanov Russian University of Economics, Moscow, Russia
| | - I A Vasyukova
- Tambov State University named after G.R. Derzhavin, Tambov, Russia
| | - R E Osmanov
- Tambov branch of S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Tambov, Russia
| | | |
Collapse
|
7
|
Hong J, Yoon S, Choi Y, Chu EA, Sik Jin K, Lee HY, Choi J. Rational Design of Nanoliposomes by Tuning their Bilayer Rigidity for the Controlled Release of Oxygen. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Moiseev R, Kaldybekov DB, Filippov SK, Radulescu A, Khutoryanskiy VV. Maleimide-Decorated PEGylated Mucoadhesive Liposomes for Ocular Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13870-13879. [PMID: 36327096 PMCID: PMC9671038 DOI: 10.1021/acs.langmuir.2c02086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Liposomes are promising spherical vesicles for topical drug delivery to the eye. Several types of vesicles were formulated in this study, including conventional, PEGylated, and maleimide-decorated PEGylated liposomes. The physicochemical characteristics of these liposomes, including their size, zeta potential, ciprofloxacin encapsulation efficiency, loading capacity, and release, were evaluated. The structure of these liposomes was examined using dynamic light scattering, transmission electron microscopy, and small angle neutron scattering. The ex vivo corneal and conjunctival retention of these liposomes were examined using the fluorescence flow-through method. Maleimide-decorated liposomes exhibited the best retention performance on bovine conjunctiva compared to other types of liposomes studied. Poor retention of all liposomal formulations was observed on bovine cornea.
Collapse
Affiliation(s)
- Roman
V. Moiseev
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DXReading, United Kingdom
| | - Daulet B. Kaldybekov
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DXReading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040Almaty, Kazakhstan
| | - Sergey K. Filippov
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DXReading, United Kingdom
| | - Aurel Radulescu
- Forschungszentrum
Jülich GmbH, Jülich Centre for Neutron Science (JCNS)
at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85748Garching, Germany
| | - Vitaliy V. Khutoryanskiy
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DXReading, United Kingdom
- . Phone: +44(0) 118 378 6119. Fax: +44(0) 118
378 4703
| |
Collapse
|
9
|
Lee K, Lee G, Lee S, Park CY. Advances in ophthalmic drug delivery technology for postoperative management after cataract surgery. Expert Opin Drug Deliv 2022; 19:945-964. [PMID: 35917497 DOI: 10.1080/17425247.2022.2109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cataract surgery is becoming more common due to an aging world population. Intraocular lenses and surgical technique have developed remarkably recently, but the development of postoperative medication to prevent postsurgery complications has been relatively delayed. We still largely depend on eye drops for the management of post-cataract-surgery patients. Mental and physical problems that often occur in elderly cataract patients make it difficult for patients to apply eye drops by themselves. It is necessary to develop new effective drug delivery methods. AREAS COVERED This updated review article provides a brief review of why drug management is needed following cataract surgery and an overview of current developments in new drug delivery methods for ophthalmic treatment. In particular, various novel drug delivery methods that can be used for post-cataract-surgery management and their current development stages are extensively reviewed. EXPERT OPINION Rapidly developing technologies, such as intraocular and external ophthalmic implants, polymers, and nanotechnology, are being actively applied to develop novel drug delivery systems for safe and effective management after cataract surgery. Their goal is to achieve sufficient drug release for the desired duration with a single application. These will largely replace the inconvenience of eye drops for elderly patients in the future.
Collapse
Affiliation(s)
- Kangmin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Gahye Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Soomin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
10
|
Sanap SN, Bisen AC, Mishra A, Biswas A, Agrawal S, Yadav KS, Krishna A, Chopra S, Mugale MN, Bhatta RS. QbD based antifungal drug-loaded ophthalmic liposomal formulation for the management of fungal keratitis: In vitro, ex vivo and in vivo pharmacokinetic studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ciprofloxacin-Loaded Zein/Hyaluronic Acid Nanoparticles for Ocular Mucosa Delivery. Pharmaceutics 2022; 14:pharmaceutics14081557. [PMID: 35893813 PMCID: PMC9332751 DOI: 10.3390/pharmaceutics14081557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/03/2023] Open
Abstract
Bacterial conjunctivitis is a worldwide problem that, if untreated, can lead to severe complications, such as visual impairment and blindness. Topical administration of ciprofloxacin is one of the most common treatments for this infection; however, topical therapeutic delivery to the eye is quite challenging. To tackle this, nanomedicine presents several advantages compared to conventional ophthalmic dosage forms. Herein, the flash nanoprecipitation technique was applied to produce zein and hyaluronic acid nanoparticles loaded with ciprofloxacin (ZeinCPX_HA NPs). ZeinCPX_HA NPs exhibited a hydrodynamic diameter of <200 nm and polydispersity index of <0.3, suitable for ocular drug delivery. In addition, the freeze-drying of the nanoparticles was achieved by using mannitol as a cryoprotectant, allowing their resuspension in water without modifying the physicochemical properties. Moreover, the biocompatibility of nanoparticles was confirmed by in vitro assays. Furthermore, a high encapsulation efficiency was achieved, and a release profile with an initial burst was followed by a prolonged release of ciprofloxacin up to 24 h. Overall, the obtained results suggest ZeinCPX_HA NPs as an alternative to the common topical dosage forms available on the market to treat conjunctivitis.
Collapse
|
12
|
González-Cela-Casamayor MA, López-Cano JJ, Bravo-Osuna I, Andrés-Guerrero V, Vicario-de-la-Torre M, Guzmán-Navarro M, Benítez-del-Castillo JM, Herrero-Vanrell R, Molina-Martínez IT. Novel Osmoprotective DOPC-DMPC Liposomes Loaded with Antihypertensive Drugs as Potential Strategy for Glaucoma Treatment. Pharmaceutics 2022; 14:pharmaceutics14071405. [PMID: 35890300 PMCID: PMC9317418 DOI: 10.3390/pharmaceutics14071405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a group of chronic irreversible neuropathies that affect the retina and the optic nerve. It is considered one of the leading causes of blindness in the world. Although it can be due to various causes, the most important modifiable risk factor is the elevated intraocular pressure (IOP). In this case, the treatment of choice consists of instilling antihypertensive formulations on the ocular surface. The chronicity of the pathology, together with the low bioavailability of the drugs that are applied on the ocular surface, make it necessary to instill the formulations very frequently, which is associated, in many cases, with the appearance of dry eye disease (DED). The objective of this work is the design of topical ocular formulations capable of treating glaucoma and, at the same time, preventing DED. For this, two liposome formulations, loaded with brimonidine or with travoprost, were Tadeveloped using synthetic phospholipids and enriched by the addition of compounds with osmoprotective activity. The proposed formulations not only presented physicochemical characteristics (size, pH, osmolarity, surface tension, and viscosity) and encapsulation efficiency values (EE% of 24.78% and ≥99.01% for brimonidine and travoprost, respectively) suitable for ocular surface administration, but also showed good tolerance in human corneal and conjunctival cell cultures, as well as an in vitro osmoprotective activity. The hypotensive effect of both liposomal formulations was evaluated in normotensive albino New Zealand rabbits, showing a faster and longer lasting reduction of intraocular pressure in comparison to the corresponding commercialized products used as control. According to these results, the hypotensive liposomal formulations combined with osmoprotective agents would result in a very promising platform for the treatment of glaucoma and the simultaneous protection of the ocular surface.
Collapse
Affiliation(s)
- Miriam Ana González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Guzmán-Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Facultad de Farmacia, Universidad de Alcalá, 28801 Madrid, Spain;
| | - José Manuel Benítez-del-Castillo
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Ocular Surface and Inflammation Unit (USIO), Departamento de Inmunología, Oftalmología y OLR, Hospital Clínico San Carlos, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (R.H.-V.); (I.T.M.-M.)
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (R.H.-V.); (I.T.M.-M.)
| |
Collapse
|
13
|
González Cela Casamayor MA, López Cano JJ, Andrés Guerrero V, Herrero Vanrell R, Benítez Del Castillo JM, Molina Martínez IT. A novel osmoprotective liposomal formulation from synthetic phospholipids to reduce in vitro hyperosmolar stress in dry eye treatments. J Liposome Res 2022:1-12. [PMID: 35706400 DOI: 10.1080/08982104.2022.2087083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dry eye disease (DED) is a worldwide, multifactorial disease mainly caused by a deficit in tear production or increased tear evaporation with an increase in tear osmolarity and inflammation. This causes discomfort and there is a therapeutic need to restore the homeostasis of the ocular surface. The aim of the present work was to develop a biodegradable and biocompatible liposomal formulation from the synthetic phospholipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) that is able to reduce the effects of hypertonic stress by helping to restore the lipid layer of the tear film. Liposomes were made using the lipid film hydration method with synthetic phospholipids (10 mg/mL) with and without 0.2% HPMC. They were characterised in terms of size, osmolarity, pH, surface tension, and viscosity. Additionally, the in vitro toxicity of the formulation at 1 and 4 h in human corneal epithelial cells (hTERT-HCECs) and human conjunctival cells (IM-HConEpiC) was determined. Furthermore, osmoprotective activity was tested in a corneal model of hyperosmolar stress. In vivo acute tolerance testing was also carried out in albino New Zealand rabbits by topical application of the ophthalmic formulations every 30 min for 6 h. All the assayed formulations showed suitable physicochemical characteristics for ocular surface administration. The liposomal formulations were well-tolerated in cell cultures and showed osmoprotective activity in a hyperosmolar model. No alterations or discomfort were reported when they were topically administered in rabbits. According to the results, the osmoprotective liposomal formulations developed in this work are promising candidates for the treatment of DED.
Collapse
Affiliation(s)
- Miriam Ana González Cela Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain
| | - José Javier López Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain
| | - Vanessa Andrés Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Rocío Herrero Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - José Manuel Benítez Del Castillo
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Ocular Surface and Inflammation Unit (USIO), Departamento de Inmunología, Oftalmología y OLR, Hospital Clínico San Carlos, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain
| | - Irene Teresa Molina Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
14
|
Soni PK, Saini TR. Formulation design and optimization of cationic-charged liposomes of brimonidine tartrate for effective ocular drug delivery by Design of Experiment (DoE) approach. Drug Dev Ind Pharm 2022; 47:1847-1866. [PMID: 35484943 DOI: 10.1080/03639045.2022.2070198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The present study was aimed to design and optimize brimonidine tartrate (BRT) loaded cationic-charged liposome formulation with enhanced trans-corneal drug permeation, prolonged corneal residence, and sustained drug release for effective ocular delivery. METHODS Design of experiment (DoE) based formulation optimization was done by 3-factor, 3-level Box-Behnken design selecting lipid, cholesterol, and drug content as independent variables and particle size (PS), PDI, zeta potential (ZP), entrapment efficiency (EE%), and cumulative % drug release (CDR) as response variables. The optimized formulation consisting of 79.2 mM lipid, 36.2 mM cholesterol, and 15.8 mg/ml drug was prepared by thin film hydration-sonication method using EPCS:DOTAP(1:1) as lipid component and characterized for all desired critical quality attributes (CQAs), drug release kinetics, TEM, DSC, XRD analysis, ex-vivo trans-corneal drug permeation, and physical stability studies. RESULTS The optimized liposome formulation exhibited experimentally observed responses close to predicted values having 150.4 nm (PS), 0.203 (PDI), 30.62 mV (ZP), and 55.17% (EE). The observed CDR(%) was 36.15% at 1h and 91.13% at 12h exhibiting sustained drug release profile and followed Higuchi drug release kinetics. The TEM, DSC, and XRD studies revealed spherical, nanosized, small unilamellar vesicles effectively entrapping BRT in liposomes. The ex-vivo permeation study across goat cornea recorded apparent permeability (Papp) 1.011 ± 0.07 cm.min-1 and steady-state flux (Jss) 17.63 ± 1.22 µg.cm-2.min-1 showing >2 fold enhanced drug permeation as compared to BRT solution. CONCLUSION The developed liposomal formulation possessed all recommended CQAs in optimal range with enhanced trans-corneal drug permeation and remained physically stable in 3 months stability study.
Collapse
Affiliation(s)
- Prakash K Soni
- Nanotechnology Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23- Park Road, Indore - 452003 (M.P.), India
| | - T R Saini
- Nanotechnology Research Lab, Department of Pharmacy, Shri G. S. Institute of Technology and Science, 23- Park Road, Indore - 452003 (M.P.), India
| |
Collapse
|
15
|
Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041372. [PMID: 35209162 PMCID: PMC8879473 DOI: 10.3390/molecules27041372] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.
Collapse
Affiliation(s)
- Peng Liu
- Correspondence: (P.L.); (J.Z.); Tel.: +86-1332-1952-664 (P.L.); +86-1891-7601-368 (J.Z.)
| | | | - Jingchen Zhang
- Correspondence: (P.L.); (J.Z.); Tel.: +86-1332-1952-664 (P.L.); +86-1891-7601-368 (J.Z.)
| |
Collapse
|
16
|
Pharmaceutical Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Narayana S, Ahmed MG, Gowda BHJ, Shetty PK, Nasrine A, Thriveni M, Noushida N, Sanjana A. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00331-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Angiogenic ocular diseases address the main source of vision impairment or irreversible vision loss. The angiogenesis process depends on the balance between the pro-angiogenic and anti-angiogenic factors. An imbalance between these factors leads to pathological conditions in the body. The vascular endothelial growth factor is the main cause of pathological conditions in the ocular region. Intravitreal injections of anti-angiogenic drugs are selective, safe, specific and revolutionized treatment for ocular angiogenesis. But intravitreal injections are invasive techniques with other severe complications. The area of targeting vascular endothelial growth factor receptors progresses with novel approaches and therapeutically based hope for best clinical outcomes for patients through the developments in anti-angiogenic therapy.
Main text
The present review article gathers prior knowledge about the vascular endothelial growth factor and associated receptors with other angiogenic and anti-angiogenic factors involved in ocular angiogenesis. A focus on the brief mechanism of vascular endothelial growth factor inhibitors in the treatment of ocular angiogenesis is elaborated. The review also covers various recent novel approaches available for ocular drug delivery by comprising a substantial amount of research works. Besides this, we have also discussed in detail the adoption of nanotechnology-based drug delivery systems in ocular angiogenesis by comprising literature having recent advancements. The clinical applications of nanotechnology in terms of ocular drug delivery, risk analysis and future perspectives relating to the treatment approaches for ocular angiogenesis have also been presented.
Conclusion
The novel ocular drug delivery systems involving nanotechnologies are of great importance in the ophthalmological sector to overcome traditional treatments with many drawbacks. This article gives a detailed insight into the various approaches that are currently available to be a road map for future research in the field of ocular angiogenesis disease management.
Collapse
|
18
|
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv 2021; 18:819-847. [PMID: 33412914 DOI: 10.1080/17425247.2021.1872542] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of ophthalmic formulations able to deliver hydrophilic and hydrophobic drugs to the inner structures of the eye and restore the preocular tear film has been a leading topic of discussion over the last few years. In this sense, liposomes represent a suitable strategy to achieve these objectives in ocular drug delivery.Areas covered: Knowledge of the different physiological and anatomical eye structures, and specially the ocular surface are critical to better understanding and comprehending the characteristics required for the development of topical ophthalmic liposomal formulations. In this review, several features of liposomes are discussed such as the main materials used for their fabrication, basic structure and preparation methods, from already established to novel techniques, allowing the control and design of special characteristics. Besides, physicochemical properties, purification processes and strategies to overcome delivery or encapsulation challenges are also presented. Expert opinion: Regarding ocular drug delivery of liposomes, there are some features that can be redesigned. Specific biocompatible and biodegradable materials presenting therapeutic properties, such as lipidic compounds or polymers significantly change the way of tackling ophthalmic diseases. Besides, liposomes entail an effective, safe and versatile strategy for the treatment of diseases in the clinical practice.
Collapse
Affiliation(s)
- José Javier López-Cano
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Miriam Ana González-Cela-Casamayor
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Vanessa Andrés-Guerrero
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Irene Teresa Molina-Martínez
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| |
Collapse
|
19
|
Feghhi M, Sharif Makhmalzadeh B, Farrahi F, Akmali M, Hasanvand N. Anti-microbial Effect and in Vivo Ocular Delivery of Ciprofloxacin-loaded Liposome through Rabbit’s Eye. Curr Eye Res 2020; 45:1245-1251. [DOI: 10.1080/02713683.2020.1728777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mostafa Feghhi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | | | - Fereydoun Farrahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Mohammad Akmali
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Nasim Hasanvand
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical, Sciences , Ahvaz, Iran
| |
Collapse
|
20
|
Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Camins Espuny A, Espina M, Garcia ML, Sánchez-López E. Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. Pharmaceutics 2019; 11:pharmaceutics11090460. [PMID: 31500106 PMCID: PMC6781321 DOI: 10.3390/pharmaceutics11090460] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The eye presents extensive perspectives and challenges for drug delivery, mainly because of the extraordinary capacity, intrinsic to this path, for drugs to permeate into the main circulatory system and also for the restrictions of the ocular barriers. Depending on the target segment of the eye, anterior or posterior, the specifications are different. The ocular route experienced in the last decades a lot of progresses related with the development of new drugs, improved formulations, specific-designed delivery and even new routes to administer a drug. Concomitantly, new categories of materials were developed and adapted to encapsulate drugs. With such advances, a multiplicity of parameters became possible to be optimized as the increase in bioavailability and decreased toxic effects of medicines. Also, the formulations were capable to easily adhere to specific tissues, increase the duration of the therapeutic effect and even target the delivery of the treatment. The ascending of new delivery systems for ocular targeting is a current focus, mainly because of the capacity to extend the normal time during which the drug exerts its therapeutic effect and, so, supplying the patients with a product which gives them fewer side effects, fewer number of applications and even more effective outcomes to their pathologies, surpassing the traditionally-used eye drops. Depending on the systems, some are capable of increasing the duration of the drug action as gels, emulsions, prodrugs, liposomes, and ocular inserts with hydrophilic properties, improving the absorption by the cornea. In parallel, other devices use as a strategy the capacity to sustain the release of the carried drugs by means of erodible and non-erodible matrices. This review discusses the different types of advanced formulations used for ocular delivery of therapeutics presenting the most recent patents according to the clinical applications.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-458 Coimbra, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-458 Coimbra, Portugal
| | - Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Antonio Camins Espuny
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Luisa Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-458 Coimbra, Portugal.
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
22
|
Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharm Sin B 2019; 9:858-870. [PMID: 31384544 PMCID: PMC6664103 DOI: 10.1016/j.apsb.2019.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Recently, liposomes have been widely used in cancer therapeutics, but their anti-tumor effects are suboptimal due to limited tumor penetration. To solve this problem, researchers have made significant efforts to optimize liposomal diameters and potentials, but little attention has been paid to liposomal membrane rigidity. Herein, we sought to demonstrate the effects of cholesterol-tuned liposomal membrane rigidity on tumor penetration and anti-tumor effects. In this study, liposomes composed of hydrogenated soybean phospholipids (HSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) and different concentrations of cholesterol were prepared. It was revealed that liposomal membrane rigidity decreased with the addition of cholesterol. Moderate cholesterol content conferred excellent diffusivity to liposomes in simulated diffusion medium, while excessive cholesterol limited the diffusion process. We concluded that the differences of the diffusion rates likely stemmed from the alterations in liposomal membrane rigidity, with moderate rigidity leading to improved diffusion. Next, the in vitro tumor penetration and the in vivo anti-tumor effects were analyzed. The results showed that liposomes with moderate rigidity gained excellent tumor penetration and enhanced anti-tumor effects. These findings illustrate a feasible and effective way to improve tumor penetration and therapeutic efficacy of liposomes by changing the cholesterol content, and highlight the importance of liposomal membrane rigidity.
Collapse
|
23
|
Zgadzaj A, Giebułtowicz J, Gubernator J, Podbielska M, Sommer S, Zaremba-Czogalla M, Nałęcz-Jawecki G. Multi- and unilamellar liposomal encapsulation of ciprofloxacin as ways to modify its phototoxicity and photodegradation. Eur J Pharm Sci 2019; 129:181-189. [DOI: 10.1016/j.ejps.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/19/2023]
|
24
|
The Role of Surface Active Agents in Ophthalmic Drug Delivery: A Comprehensive Review. J Pharm Sci 2019; 108:1923-1933. [PMID: 30684539 DOI: 10.1016/j.xphs.2019.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
With the significant advances made in nanotechnology, research efforts focused on developing novel drug delivery platforms that can overcome the multitude of challenges encountered in ophthalmic drug delivery. Surface active agents (SAAs) have been extensively used for the formulation of many of the dosage forms targeting ocular tissues. Novel ophthalmic carriers utilizing SAAs were broadly classified into particulate, vesicular, and controlled release drug delivery systems. Depending on their physicochemical properties, SAAs can perform a variety of roles ranging from wetting agents, emulsifiers, stabilizers, charge inducers, solubilizers, antimicrobial agents, corneal permeation enhancers, and gelling agents. Nevertheless, their use is limited by their potential toxicity and possible interactions with other formulation ingredients. This review provides a comprehensive analysis of the different functional roles of SAAs in novel ophthalmic drug delivery platforms, their mechanism of action, and limitations that need to be considered during formulation to maximize their potential benefit. Understanding the mechanisms by which they perform their different roles and the possible interactions between SAAs and other formulation ingredients can help orientate the choice of formulators toward the SAA most suitable for the intended ocular application at a concentration that is both safe and effective.
Collapse
|
25
|
Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target 2018; 27:742-761. [PMID: 30239255 DOI: 10.1080/1061186x.2018.1527337] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last decades, pharmaceutical interested researches aimed to develop novel and innovative drug delivery techniques in the medical and pharmaceutical fields. Recently, phospholipid vesicles (Liposomes) are the most known versatile assemblies in the drug delivery systems. The discovery of liposomes arises from self-forming enclosed phospholipid bilayer upon coming in contact with the aqueous solution. Liposomes are uni or multilamellar vesicles consisting of phospholipids produced naturally or synthetically, which are readily non-toxic, biodegradable, and are readily produced on a large scale. Various phospholipids, for instance, soybean, egg yolk, synthetic, and hydrogenated phosphatidylcholine consider the most popular types used in different kinds of formulations. This review summarises liposomes composition, characterisation, methods of preparation, and their applications in different medical fields including cancer therapy, vaccine, ocular delivery, wound healing, and some dermatological applications.
Collapse
Affiliation(s)
- Kamel S Ahmed
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , PR China.,b Department of Pharmaceutics , Faculty of Pharmacy, Minia University , Minia , Egypt
| | - Saied A Hussein
- c Department of Biomedical Engineering , College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan , PR China
| | - Abdelmoneim H Ali
- d State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Sameh A Korma
- d State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Qiu Lipeng
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , PR China
| | - Chen Jinghua
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Jiangnan University , Wuxi , PR China
| |
Collapse
|
26
|
Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0404-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, Mazumder B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur J Ophthalmol 2018; 29:113-126. [PMID: 29756507 DOI: 10.1177/1120672118769776] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Delivery of drugs to eyes is a great challenge to researchers because of a number of barriers in the eye preventing the actual dose from reaching the site. A number of ophthalmic delivery systems have been developed in the past couple of years that are not only new but also safe and reliable and help to overcome all those barriers in the eye which are responsible for the very less bioavailability of drugs. In this review, we tried to focus on current research in ocular delivery of drug substances giving special emphasis to liposomal delivery system. A brief analysis of other novel ocular delivery systems, ocular physiology, and microbial sources of disease are also highlighted herein. We analyzed the various research findings for churning a general idea for novel ocular delivery system and its future use. The novel formulations may overcome the addressed problems of ophthalmic medication and comply with the quality assurance issues. The liposomal delivery is advantageous as they have the ability to entrap both hydrophobic and hydrophilic drugs and are suitable for delivery to both the anterior and posterior segment of the eye. Therefore, the use of this alternative approach is quite a necessity.
Collapse
Affiliation(s)
| | - Pranab J Das
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Piya Adhikari
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Daphisha Marbaniang
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Paulami Pal
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Subhabrata Ray
- 2 Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India
| | - Bhaskar Mazumder
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
28
|
Pignatello R, Leonardi A, Fuochi V, Petronio Petronio G, Greco AS, Furneri PM. A Method for Efficient Loading of Ciprofloxacin Hydrochloride in Cationic Solid Lipid Nanoparticles: Formulation and Microbiological Evaluation. NANOMATERIALS 2018; 8:nano8050304. [PMID: 29734771 PMCID: PMC5977318 DOI: 10.3390/nano8050304] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 11/16/2022]
Abstract
The aim of the study was the production of solid lipid nanoparticles (SLN) loaded with ciprofloxacin (CIP) through two different production techniques, quasi-emulsion solvent diffusion (QESD) and solvent injection (SI). In order to efficaciously entrap the commercial salt form (hydrochloride) of the antibiotic in these lipid systems, a conversion of CIP hydrochloride to the free base was realized in situ, through the addition of triethylamine. To ensure physical stability to the carriers over time and ameliorate the interaction with bacterial cell membranes, positively charged SLN were produced by addition of the cationic lipid didecyldimethylammonium bromide (DDAB). Homogeneous SLN populations with a mean particle sizes of 250–350 nm were produced by both methods; drug encapsulation was over 85% for most samples. The SLN were physically stable for up to nine months both at 4 °C and 25 °C, although the former condition appears more suitable to guarantee the maintenance of the initial particle size distribution. As expected, CIP encapsulation efficiency underwent a slight reduction after nine months of storage, although the initial high drug content values would ensure a residual concentration of the antibiotic in the SLN still appropriate to exert an acceptable antibacterial activity. Selected SLN formulations were subjected to an in vitro microbiological assay against different bacterial strains, to verify the effect of nanoencapsulation on the cell growth inhibitory activity of CIP. In general, CIP-SLN produced without DDAB showed MIC values for CIP comparable to those of the free drug. Conversely, addition of increasing percentages of the cationic lipid, reflected by a progressive increase of the positive value of the Zeta potential, showed a variety of MIC values against the various bacterial strains, but with values 2–4 order of dilution lower than free CIP. An hypothesis of the effect of the cationic lipid upon the increased antibacterial activity of CIP in the nanocarriers is also formulated.
Collapse
Affiliation(s)
- Rosario Pignatello
- Section of Pharmaceutical Technology, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
- NANO-i, Research Centre on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy.
| | - Antonio Leonardi
- Section of Pharmaceutical Technology, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Virginia Fuochi
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, BIOMETEC, University of Catania, 95125 Catania, Italy.
| | - Giulio Petronio Petronio
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, BIOMETEC, University of Catania, 95125 Catania, Italy.
| | - Antonio S Greco
- Section of Pharmaceutical Technology, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Pio Maria Furneri
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, BIOMETEC, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
29
|
In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. Int J Pharm 2018; 539:83-94. [DOI: 10.1016/j.ijpharm.2018.01.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
|
30
|
Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018; 10:pharmaceutics10010028. [PMID: 29495528 PMCID: PMC5874841 DOI: 10.3390/pharmaceutics10010028] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed.
Collapse
|
31
|
Habib BA, Sayed S, Elsayed GM. Enhanced transdermal delivery of ondansetron using nanovesicular systems: Fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example. Eur J Pharm Sci 2018; 115:352-361. [PMID: 29407555 DOI: 10.1016/j.ejps.2018.01.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
Abstract
This study aimed to formulate suitable nanovesicles (NVs) for transdermal delivery of Ondansetron. It also illustrated a practical example for the importance of Box-Cox transformation. A 23 full factorial design was used to enable testing transfersomes, ethosomes, and transethosomes of Ondansetron simultaneously. The independent variables (IVs) studied were sodium taurocholate amount, ethanol volume in hydration medium and sonication time. The studied dependent variables (DVs) were: particle size (PS), zeta potential (ZP) and entrapment efficiency (EE). Polynomial equations were used to study the influence of IVs on each DV. Numerical multiple response optimization was applied to select an optimized formula (OF) with the goals of minimizing PS and maximizing ZP absolute value and EE. Box-Cox transformation was adopted to enable modeling PS raised to the power of 1.2 with an excellent prediction R2 of 1.000. ZP and EE were adequately represented directly with prediction R2 of 0.9549 and 0.9892 respectively. Response surface plots helped in explaining the influence of IVs on each DV. Two-sided 95% prediction interval test and percent deviation of actual values from predicted ones proved the validity of the elucidated models. The OF was a transfersomal formula with desirability of 0.866 and showed promising results in ex-vivo permeation study.
Collapse
Affiliation(s)
- Basant A Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Ghada M Elsayed
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
32
|
Balguri SP, Adelli GR, Tatke A, Janga KY, Bhagav P, Majumdar S. Melt-Cast Noninvasive Ocular Inserts for Posterior Segment Drug Delivery. J Pharm Sci 2017; 106:3515-3523. [PMID: 28778424 DOI: 10.1016/j.xphs.2017.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
Abstract
The objective of the present study was to evaluate the utility of melt-cast, topical, ocular inserts for delivery of drugs with different physicochemical properties. The model drugs tested include indomethacin (IN), ciprofloxacin hydrochloride, and prednisolone sodium phosphate. Melt-cast method was used to fabricate ophthalmic inserts. Polyethylene oxide N10, a semicrystalline thermoplastic polymer (polyethylene oxide N10; Mol. wt: 100 kDa) was used as the matrix-forming material. Polymeric insert units (4 × 2 × 0.2 mm) with a 10% w/w drug load were tested for in vitro release, transmembrane permeability, and in vivo ocular tissue distribution. Marketed ophthalmic solutions were used as control solutions. Drug content in all the formulations ranged between 93% and 102% of the theoretical value. Transmembrane flux of IN, prednisolone sodium phosphate, and ciprofloxacin hydrochloride was enhanced by ∼3.5-folds, ∼3.6-folds, and ∼2.9-folds, respectively, from the polymeric inserts compared with the control formulations, after 3 h. Moreover, ocular inserts generated significantly higher drug levels in all the ocular tissues, including the retina-choroid, compared with their control formulations. The melt-cast ophthalmic inserts show promise as an effective noninvasive ocular drug delivery platform, which will be highly beneficial in the intervention and treatment of a wide variety of ocular complications.
Collapse
Affiliation(s)
- Sai Prachetan Balguri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Goutham R Adelli
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Akshaya Tatke
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Karthik Yadav Janga
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Prakash Bhagav
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677; Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677.
| |
Collapse
|
33
|
Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. J Control Release 2017; 268:19-39. [PMID: 28756272 DOI: 10.1016/j.jconrel.2017.07.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022]
Abstract
Ocular discomforts involve anterior/posterior-segment diseases, symptomatic distress and associated inflammations and severe retinal disorders. Conventionally, the formulations such as eye drops, eye solutions, eye ointments and lotions, etc. were used as modalities to attain relief from such ocular discomforts. However, eye allows limited access to these traditional formulations due to its unique anatomical structure and dynamic ocular environment and therefore calls for improvement in disease intervention. To address these challenges, development of nanotechnology based nanomedicines and novel nanosystems (liposomes, cubosomes, polymeric and lipidic nanoparticles, nanoemulsions, spanlastics and nano micelles) are currently in progress (some of them are already marketed such as Eye-logic liposomal eye spray@Naturalife, Ireland). Today, it is one of the central concept in designing more accessible formulations for deeper segments of the eyes. These nanosystems has largely enabled the availability of medicaments at required site in a required concentration without inversely affecting the eye tissues; and therefore, attaining the excessive considerations from the formulation scientists and pharmacologists worldwide. The entrapment of drugs, genes, and proteins inside these novel systems is the basis that works at the bio-molecular level bestows greater potential to eradicate disease causatives. In this review, we highlighted the recent attempts of nanotechnology-based systems for treating and managing various ocular ailments. The progress described herein may pave the way to new, highly effective and vital ocular nanosystems.
Collapse
Affiliation(s)
- Lida Lalu
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Deepak Pradhan
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kritika Nayak
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Suchandra Bagchi
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
34
|
Balguri SP, Adelli GR, Janga KY, Bhagav P, Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. Int J Pharm 2017. [PMID: 28634139 DOI: 10.1016/j.ijpharm.2017.06.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ciprofloxacin (CIP) is an antibacterial agent prescribed for the treatment of ocular infections. The objective of the present project is to investigate the effect of surface PEG functionalization of the Nano structured lipid carriers (NLCs) on formulation stability, ocular penetration and distribution. CIP NLCs were tested with different molecular weight (poly ethylene glycol) PEGs ranging from (2K to 20K) grafted onto the phospholipid and with different chain lengths (14-18 carbons) of phospholipids derivatized with PEG-2K. Drug load in the formulations was maintained at 0.3%w/v. Formulations prepared were evaluated with respect to in vitro release, transcorneal permeation, autoclavability, morphological characteristics and in vivo ocular tissue distribution. Scanning Transmission electron microscopy (STEM) studies revealed that the PEG-CIP-NLCs were spherical in shape. Transcorneal penetration of CIP was optimum with PEG molecular weight in between 2K-10K. Carbon chain length of the phospholipid, however, did not affect transcorneal penetration of CIP. In vivo ocular tissue CIP concentrations attained from the various formulations was consistent with the in vitro data obtained. The results suggest that surface functionalization of PEGs, within a specified range of molecular weight and surface packing density, significantly enhance trans-ocular penetration and impart sterilization-stabilization characteristics into the formulations.
Collapse
Affiliation(s)
- Sai Prachetan Balguri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Goutham R Adelli
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Karthik Yadav Janga
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Prakash Bhagav
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, United States.
| |
Collapse
|
35
|
Mehanna MM, El-Kader NA, Samaha MW. Liposomes as potential carriers for ketorolac ophthalmic delivery: formulation and stability issues. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000216127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Khalil RM, Abdelbary GA, Basha M, Awad GEA, el-Hashemy HA. Enhancement of lomefloxacin Hcl ocular efficacy via niosomal encapsulation: in vitro characterization and in vivo evaluation. J Liposome Res 2016; 27:312-323. [DOI: 10.1080/08982104.2016.1191022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rawia M. Khalil
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt,
| | - Ghada A. Abdelbary
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt and
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt,
| | - Ghada E. A. Awad
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
37
|
Habib BA, AbouGhaly MHH. Combined mixture-process variable approach: a suitable statistical tool for nanovesicular systems optimization. Expert Opin Drug Deliv 2016; 13:777-88. [DOI: 10.1517/17425247.2016.1166202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Basant A. Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed H. H. AbouGhaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology 2016; 10:836-60. [PMID: 27027670 DOI: 10.3109/17435390.2016.1153165] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multifunctional nanomaterials are rapidly emerging for ophthalmic delivery of therapeutics to facilitate safe and effective targeting with improved patient compliance. Because of their extremely high area to volume ratio, nanomaterials often have physicochemical properties that are different from those of their larger counterparts. There exists a complex relationship between the physicochemical properties (composition, size, shape, charge, roughness, and porosity) of the nanomaterials and their interaction with the biological system. The eye is a very sensitive accessible organ and is subjected to intended and unintended exposure to nanomaterials. Currently, various ophthalmic formulations are available in the market, while some are underway in preclinical and clinical phases. However, the data on safety, efficacy, and toxicology of these advanced nanomaterials for ocular drug delivery are sparse. Focus of the present review is to provide a comprehensive report on the safety, biocompatibility and toxicities of nanomaterials in the eye.
Collapse
Affiliation(s)
- Neelesh K Mehra
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| | - Defu Cai
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| | - Lih Kuo
- b Department of Medical Physiology, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA ;,c Department of Surgery and Scott & White Eye Institute, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA
| | - Travis Hein
- c Department of Surgery and Scott & White Eye Institute, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA
| | - Srinath Palakurthi
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| |
Collapse
|
39
|
Gavini E, Bonferoni MC, Rassu G, Sandri G, Rossi S, Salis A, Porcu EP, Giunchedi P. Engineered microparticles based on drug-polymer coprecipitates for ocular-controlled delivery of Ciprofloxacin: influence of technological parameters. Drug Dev Ind Pharm 2015; 42:554-62. [PMID: 26482534 DOI: 10.3109/03639045.2015.1100201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ciprofloxacin is a drug active against a broad spectrum of aerobic Gram-positive and Gram-negative bacteria, for the therapy of ocular infections. It requires frequent administrations owing to rapid ocular clearance and it is a good candidate for ocular controlled release formulations. The preparation of such drug release systems is still a challenge. Ionic interactions between ciprofloxacin and the polyelectrolytes chondroitin sulfate or lambda carrageenan result in coprecipitates that can act as microparticulate controlled release systems from which the drug is released after being displaced by the medium's ions. In some formulations, Carbopol was added to improve the mucoadhesive properties. The aim of this research was the study of the influence of the technological parameters of the preparation method of coprecipitates on their particle size, with the goal of achieving particles engineered with a size suitable for the ocular administration. Technological parameters taken into account were: concentration of drug and polymer solutions utilized for the preparation of interaction products, possible use of surfactants (kind and concentration), temperature of the solutions and stirring during the process of preparation of the coprecipitates. Preliminary stability study tests were carried out to further characterize the leader formulation. Particle size in suspensions for ocular drug delivery is a critical parameter influencing the quality of the formulation. The results obtained from this study show that chondroitin sulfate coprecipitates present the best characteristics in terms of particle size suitable for ocular administration. A further improvement of the particle size characteristics has been obtained with the addition of surfactants.
Collapse
Affiliation(s)
- Elisabetta Gavini
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | | | - Giovanna Rassu
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Giuseppina Sandri
- b Department of Drug Sciences , University of Pavia , Pavia , Italy , and
| | - Silvia Rossi
- b Department of Drug Sciences , University of Pavia , Pavia , Italy , and
| | - Andrea Salis
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Elena Piera Porcu
- c PhD School of Experimental Medicine, University of Pavia , Pavia , Italy
| | - Paolo Giunchedi
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| |
Collapse
|
40
|
Nanomedicine approaches for corneal diseases. J Funct Biomater 2015; 6:277-98. [PMID: 25941990 PMCID: PMC4493512 DOI: 10.3390/jfb6020277] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023] Open
Abstract
Corneal diseases are the third leading cause of blindness globally. Topical nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, antibiotics and tissue transplantation are currently used to treat corneal pathological conditions. However, barrier properties of the ocular surface necessitate high concentration of the drugs applied in the eye repeatedly. This often results in poor efficacy and several side-effects. Nanoparticle-based molecular medicine seeks to overcome these limitations by enhancing the permeability and pharmacological properties of the drugs. The promise of nanomedicine approaches for treating corneal defects and restoring vision without side effects in preclinical animal studies has been demonstrated. Numerous polymeric, metallic and hybrid nanoparticles capable of transporting genes into desired corneal cells to intercept pathologic pathways and processes leading to blindness have been identified. This review provides an overview of corneal diseases, nanovector properties and their applications in drug-delivery and corneal disease management.
Collapse
|
41
|
Taha EI, Badran MM, El-Anazi MH, Bayomi MA, El-Bagory IM. Role of Pluronic F127 micelles in enhancing ocular delivery of ciprofloxacin. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, Ismail NM. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 2014; 23:1075-91. [DOI: 10.3109/10717544.2014.943336] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Renu Agarwal
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Igor Iezhitsa
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
- Research Institute of Pharmacology, Volgograd State Medical University, Volgograd, Russian Federation, and
| | - Puneet Agarwal
- Department of Ophthalmology, IMU Clinical School, International Medical University, Jalan Rasah, Seremban, Malaysia
| | - Nurul Alimah Abdul Nasir
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Norhafiza Razali
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| | - Renad Alyautdin
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
| | - Nafeeza Mohd Ismail
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia,
- Brain & Neuroscience, Communities of Research (Core), Research Management Institute (RMI), Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia,
| |
Collapse
|