1
|
Nie X, Li J, Cheng Y, Rangsinth P, Wu X, Zheng C, Shiu PHT, Li R, Xu N, He Y, Lau BWM, Seto SW, Zhang J, Lee SMY, Leung GPH. Characterization of a polysaccharide from Amauroderma rugosum and its proangiogenic activities in vitro and in vivo. Int J Biol Macromol 2024; 271:132533. [PMID: 38777026 DOI: 10.1016/j.ijbiomac.2024.132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Amauroderma rugosum (AR), also known as "Blood Lingzhi" in Chinese, is a basidiomycete belonging to the Ganodermataceae family. Four polysaccharide fractions were systematically isolated and purified from AR. Subsequently, their compositions were examined and analyzed via high-performance gel permeation chromatography (HPGPC), analysis of the monosaccharide composition, Fourier-transform infrared spectroscopy (FT-IR), and 1H nuclear magnetic resonance (NMR). The zebrafish model was then used to screen for proangiogenic activities of polysaccharides by inducing vascular insufficiency with VEGF receptor tyrosine kinase inhibitor II (VRI). The third fraction of AR polysaccharides (PAR-3) demonstrated the most pronounced proangiogenic effects, effectively ameliorating VRI-induced intersegmental vessel deficiency in zebrafish. Concurrently, the mRNA expression levels of vascular endothelial growth factor (VEGF)-A and VEGF receptors were upregulated by PAR-3. Moreover, the proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs) were also stimulated by PAR-3, consistently demonstrating that PAR-3 possesses favorable proangiogenic properties. The activation of the Akt, ERK1/2, p38 MAPK, and FAK was most likely the underlying mechanism. In conclusion, this study establishes that PAR-3 isolated from Amauroderma rugosum exhibits potential as a bioresource for promoting angiogenesis.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China; Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China.
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Yulin He
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Zhang S, Zhang Q, Wang T, Li C, Tang L, Xiao L. Response Surface Optimization of Polysaccharides from Jaboticaba (Myrciaria cauliflora [Mart.] O.Berg) Fruits: Ultrasound-Assisted Extraction, Structure Properties, and Antioxidant/Hypoglycemic Activities. Chem Biodivers 2024; 21:e202302070. [PMID: 38302826 DOI: 10.1002/cbdv.202302070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Ultrasound-assisted extraction (UAE) method proves to be more effective compared to traditional extraction methods. In the present study, response surface methodology (RSM) was used to determine the optimal process parameters for extracting polysaccharides (U-MCP) from jaboticaba fruit using UAE. The optimum extraction conditions were ultrasonic time 70 min, extraction temperature 60 °C, and power 350 W. Under these conditions, the sugar content of U-MCP was 52.8 %. The molecular weights of the ultrasound-assisted extracted U-MCP ranged from 9.52×102 to 3.27×103 Da, and consisted of five monosaccharides including mannose, galacturonic acid, glucose, galactose, and arabinose. Moreover, in vitro antioxidant and hypoglycaemic assay revealed that U-MCP has prominent anti-oxidant activities (1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals, hydroxyl radicals and 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic Acid Ammonium Salt) (ABTS) radicals scavenging activities) and hypoglycemic activities (α-amylase and α-glucosidase inhibition activities).
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tanggan Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Liqun Tang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Leyi Xiao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
3
|
Wang W, Liu X, Wang L, Song G, Jiang W, Mu L, Li J. Ficus carica polysaccharide extraction via ultrasound-assisted technique: Structure characterization, antioxidant, hypoglycemic and immunomodulatory activities. ULTRASONICS SONOCHEMISTRY 2023; 101:106680. [PMID: 37956509 PMCID: PMC10661605 DOI: 10.1016/j.ultsonch.2023.106680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
In this research, the ultrasound-assisted extraction (UAE) conditions of the water-soluble polysaccharide (FCPS) from Ficus carica fruits were optimized using the response surface methodology. The optimal FCPS yield was 7.97 % achieved by conducting ultrasound-assisted extraction four times at a solid-liquid ratio of 1:20 (g/mL) and an ultrasound temperature of 70 °C. Then, the structure, antioxidant properties, hypoglycemic effects, and immunomodulatory activities of FCPS were evaluated. FCPS was characterized as irregular, rough-surfaced, flaky materials consisting of pyran-type polysaccharides with α- and β-glycosidic linkages, and composed of multiple monosaccharides and only one homogeneous concentrated polysaccharide component (FCPS1) with a molecular weight of 4.224 × 104 Da. The results suggested FCPS exhibited remarkable antioxidant activity in vitro, as evidenced by improved cell viability and reduced the reactive oxygen species (ROS) levels. Meanwhile, FCPS effectively improved liver-related insulin resistance by promoting glucose consumption in hepatocytes and activated the immune response through activation of murine bone marrow-derived dendritic cells (DCs) and upregulation of interleukin 6 (IL6) and interleukin 12 (IL-12) expression. The findings demonstrate the efficacy of the UAE technique in isolating FCPS with biological functionality and FCPS could potentially serve as a beneficial organic antioxidant source and functional food, carrying important implications for future studies.
Collapse
Affiliation(s)
- Weilan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lixue Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Guirong Song
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Wei Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lihong Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
4
|
Huang Y, Wang L, Xie J, Chen H, Ou G, Zeng L, Li Y, Li W, Fan H, Zheng J. Exploring the chemical composition, medicinal benefits, and antioxidant activity of Plumula nelumbinis essential oil from different habitats in China. Saudi Pharm J 2023; 31:101829. [PMID: 37961070 PMCID: PMC10638055 DOI: 10.1016/j.jsps.2023.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Plumula nelumbinis, a widely used traditional Chinese medicine known for its calming and nerve-soothing properties, contains essential oil as a primary component. However, research on P. nelumbinis essential oil (PNEO) is limited. This study aimed to investigate PNEO components, network target analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and antioxidant activity of P. nelumbinis from ten different habitats. GC-MS analysis identified 14 compounds in the essential oil, with CP12 (β-Sitosterol) having the highest concentration. Five compounds were identified for the first time in P. nelumbinis, with three of them reported for the first time in the Nelumbo. Network target analysis revealed 185 potential targets for 11 compounds and GO and KEGG enrichment analyses showed that PNEO was mainly located in the plasma membrane and could regulate a variety of molecular functions. KEGG pathway enrichment analysis revealed that the essential oil was primarily enriched in pathways related to cancer and the nervous system. PNEO demonstrated strong antioxidant activity, with N8 (Fujiannanping) showing the highest ABTS scavenging capacity and N7 (Hunanxiangtan) showing the highest DPPH radical scavenging capacity. Cell experiments showed that CP4, CP5 and CP10 had protective effects against H2O2-induced oxidative damage. The study suggests that P. nelumbinis from different regions may have slightly different pharmacological effects due to the presence of unique compounds, and further research is necessary to explore the potential therapeutic benefits of PNEO.
Collapse
Affiliation(s)
- Yujing Huang
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Likang Wang
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Juntao Xie
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Haoming Chen
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guanrong Ou
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liya Zeng
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yexin Li
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weizhen Li
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxia Fan
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
5
|
Liao CH, Yen CC, Chen HL, Liu YH, Chen YH, Lan YW, Chen KR, Chen W, Chen CM. Novel Kefir Exopolysaccharides (KEPS) Mitigate Lipopolysaccharide (LPS)-Induced Systemic Inflammation in Luciferase Transgenic Mice through Inhibition of the NF-κB Pathway. Antioxidants (Basel) 2023; 12:1724. [PMID: 37760027 PMCID: PMC10525830 DOI: 10.3390/antiox12091724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
A novel kefir exopolysaccharides (KEPS) derived from kefir grain fermentation were found to have a small molecular weight (12 kDa) compared to the traditionally high molecular weight (12,000 kDa) of kefiran (KE). KE has been shown to possess antioxidant, blood pressure-lowering, and immune-modulating effects. In this study, we characterized KEPS and KE and evaluated their anti-inflammatory properties in vitro using RAW264.7 macrophages. The main monosaccharide components were identified as glucose (98.1 ± 0.06%) in KEPS and galactose (45.36 ± 0.16%) and glucose (47.13 ± 0.06%) in KE, respectively. Both KEPS and KE significantly reduced IL-6 secretion in lipopolysaccharide (LPS)-stimulated macrophages. We further investigated their effects in LPS-induced systemic injury in male and female NF-κB-luciferase+/+ transgenic mice. Mice received oral KEPS (100 mg/kg) or KE (100 mg/kg) for seven days, followed by LPS or saline injection. KEPS and KE inhibited NF-κB signaling, as indicated by reduced luciferase expression and phosphorylated NF-κB levels. LPS-induced systemic injury increased luciferase signals, especially in the kidney, spleen, pancreas, lung, and gut tissues of female mice compared to male mice. Additionally, it upregulated inflammatory mediators in these organs. However, KEPS and KE effectively suppressed the expression of inflammatory mediators, including p-MAPK and IL-6. These findings demonstrate that KEPS can alleviate LPS-induced systemic damage by inhibiting NF-κB/MAPK signaling, suggesting their potential as a treatment for inflammatory disorders.
Collapse
Affiliation(s)
- Chun-Huei Liao
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
| | - Chih-Ching Yen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
- Division of Pulmonary Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Hsiao-Ling Chen
- Department of Biomedical Science, Da-Yeh University, Changhua 515, Taiwan;
| | - Yu-Hsien Liu
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
- Department of Internal Medicine, Jen-Ai Hospital, Dali Branch, Taichung 402, Taiwan
| | - Yu-Hsuan Chen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
| | - Ying-Wei Lan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Ke-Rong Chen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Chuan-Mu Chen
- Department of Life Sciences, and Doctorial Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (C.-H.L.); (C.-C.Y.); (Y.-H.L.); (Y.-H.C.); (K.-R.C.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Lin Y, Gu H, Jia X, Wang W, Hong B, Zhang F, Yin H. Rhizoctonia solani AG1 IA extracellular polysaccharides: Structural characterization and induced resistance to rice sheath blight. Int J Biol Macromol 2023; 244:125281. [PMID: 37330100 DOI: 10.1016/j.ijbiomac.2023.125281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Sheath blight, caused by Rhizoctonia solani (R. solani), is one of the most serious diseases of rice. Extracellular polysaccharides (EPS) are complex polysaccharides secreted by microbes that have a pivotal role in the plant-microbe interaction. At present, many studies have been carried out on R. solani, but it is not very clear whether the EPS is secreted by R. solani exists. Therefore, we isolated and extracted the EPS from R. solani, two kinds of EPS (EW-I and ES-I) were obtained by DEAE-cellulose 52 and Sephacryl S-300HR column further purification, and their structures were characterized by FT-IR, UV, GC, and NMR analysis. The results showed that EW-I and ES-I had similar monosaccharide composition but different molar ratio, they were composed of fucose, arabinose, galactose, glucose, and mannose with a ratio of 7.49: 27.72: 2.98: 6.66: 55.15 and 3.81: 12.98: 6.15: 10.83: 66.23, and their backbone may be composed of →2)-α-Manp-(1→ residues, beside ES-I was highly branched compared to EW-I. The exogenous application of EW-I and ES-I had no effect on the growth of R. solani AG1 IA itself, but their pretreatment of rice induced plant defense through activation of the salicylic acid pathway, resulting in enhanced resistance to sheath blight.
Collapse
Affiliation(s)
- Yudie Lin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Hong
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 715299, China
| | - Fuyun Zhang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
Wang M, Hu WJ, Wang QH, Yang BY, Kuang HX. Extraction, purification, structural characteristics, biological activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. (lotus): A review. Int J Biol Macromol 2023; 226:562-579. [PMID: 36521698 DOI: 10.1016/j.ijbiomac.2022.12.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Nelumbo nucifera Gaertn. (lotus) is a widely distributed plant with a long history of cultivation and consumption. Almost all parts of the lotus can be used as foodstuff and nourishment, or as an herb. It is noteworthy that the polysaccharides obtained from lotus exhibit surprisingly and satisfying biological activities, which explains the various benefits of lotus to human health, including anti-diabetes, anti-osteoporosis, antioxidant, anti-inflammatory, anti-tumor, etc. Here, we systematically review the recent major studies on extraction and purification methods of polysaccharides from different parts (rhizome, seed, leaf, plumule, receptacle and stamen) of lotus, as well as the characterization of their chemical structure, biological activity and structure-activity relationship, and the applications of lotus polysaccharides in different fields. This article will give an updated and deeper understanding of lotus polysaccharides and provide theoretical basis for their further research and application in human health and manufacture development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
8
|
Xiao X, Luo F, Fu M, Jiang Y, Liu S, Liu B. Evaluating the therapeutic role of selected active compounds in Plumula Nelumbinis on pulmonary hypertension via network pharmacology and experimental analysis. Front Pharmacol 2022; 13:977921. [PMID: 36059960 PMCID: PMC9428143 DOI: 10.3389/fphar.2022.977921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are critical factors leading to vascular remodeling in pulmonary hypertension (PH). This study aimed to explore the effect and potential mechanism of Plumula Nelumbinis on PH by using network pharmacology and experimental analysis. Network pharmacology and molecular docking results indicated that the potential active components of Plumula Nelumbinis against PH were mainly alkaloid compounds, including neferine, liensinine, and isoliensinine. Subsequently, by constructing a Su5416 plus hypoxia (SuHx)-induced PH rat model, we found that the total alkaloids of Plumula Nelumbinis (TAPN) can reduce the right ventricular systolic pressure, delay the process of pulmonary vascular and right ventricular remodeling, and improve the right heart function in PH rats. In addition, TAPN can effectively reverse the upregulation of collagen1, collagen3, MMP2, MMP9, PCNA, PIM1, and p-SRC protein expression in lung tissue of PH rats. Finally, by constructing a hypoxia-induced PASMCs proliferation and migration model, we further found that TAPN, neferine, liensinine, and isoliensinine could inhibit the proliferation and migration of PASMCs induced by hypoxia; reverse the upregulation of collagen1, collagen3, MMP2, MMP9, PCNA, PIM1 and p-SRC protein expression in PASMCs. Based on these observations, we conclude that the alkaloid compounds extracted from Plumula Nelumbinis (such as neferine, liensinine, and isoliensinine) can inhibit the abnormal proliferation and migration of PASMCs by regulating the expression of p-SRC and PIM1, thereby delaying the progression of PH.
Collapse
Affiliation(s)
- Xinghua Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Fangmei Luo
- Department of Pharmacy, Hunan Children’s Hospital, Changsha, China
| | - Minyi Fu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Bin Liu,
| |
Collapse
|
9
|
Wu H, Shu L, Liang T, Li Y, Liu Y, Zhong X, Xing L, Zeng W, Zhao R, Wang X. Extraction optimization, physicochemical property, antioxidant activity, and α-glucosidase inhibitory effect of polysaccharides from lotus seedpods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4065-4078. [PMID: 34997594 DOI: 10.1002/jsfa.11755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/27/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lotus seedpods are an agricultural by-product of lotus (Nelumbo nucifera Gaertn.), which is widely cultivated in Southeast Asia and Australia. Most lotus seedpods are considered waste and are abandoned or incinerated, resulting in significant waste of resources and heavy environmental pollution. For recycling lotus seedpods, the extraction optimization, physicochemical properties, antioxidant activity, and α-glucosidase inhibitory effect of the polysaccharides contained therein were investigated in this study. RESULTS Hot water extraction of lotus seedpod polysaccharides was optimized by using a response surface methodology combined with a Box-Behnken design, with the optimum conditions being as follows: a liquid/solid ratio of 25.0 mL g-1 , an extraction temperature of 98.0 °C, and an extraction time of 138.0 min. Under these conditions, an experimental yield of 5.88 ± 0.06% was obtained. Physicochemical analyses suggested that lotus seedpod polysaccharides belong to acidic heteropolysaccharides and are principally composed of rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid. The polysaccharides content has a broad molecular weight distribution (2.15 × 105 to 1.77 × 107 Da), an α-configuration, and mainly possesses smooth and sheet-like structures. Biological evaluations showed that the polysaccharides possessed good scavenging activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 1,1-diphenyl-2-picryl-hydrozyl, and hydroxyl radicals, and exerted an obvious inhibitory effect on α-glucosidase activity. Moreover, the polysaccharides content was determined to be a mixed-type noncompetitive inhibitor of α-glucosidase. CONCLUSION The results indicate that lotus seedpod polysaccharides have potential as natural antioxidants and hypoglycaemic substitutes. This study provides the theoretical bases for the exploitation and application of polysaccharides from lotus seedpod by-product resources. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huwei Wu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Linping Shu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yuanxiang Liu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiuli Zhong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Lingyu Xing
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Wei Zeng
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Rui Zhao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
10
|
Feng JY, Xie YQ, Zhang P, Zhou Q, Khan A, Zhou ZH, Xia XS, Liu L. Hepatoprotective Polysaccharides from Geranium wilfordii: Purification, Structural Characterization, and Their Mechanism. Molecules 2022; 27:molecules27113602. [PMID: 35684541 PMCID: PMC9182495 DOI: 10.3390/molecules27113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Traditional Chinese Medicine is generally used as a decoction to guard health. Many active ingredients in the decoction are chemical ingredients that are not usually paid attention to in phytochemical research, such as polysaccharides, etc. Based on research interest in Chinese herbal decoction, crude polysaccharides from G. wilfordii (GCP) were purified to obtain two relatively homogeneous polysaccharides, a neutral polysaccharide (GNP), and an acid polysaccharide (GAP) by various chromatographic separation methods, which were initially characterized by GC-MS, NMR, IR, and methylation analysis. Studies on the hepatoprotective activity of GCP in vivo showed that GCP might be a potential agent for the prevention and treatment of acute liver injury by inhibiting the secretion levels of ALT, AST, IL-6, IL-1β, TNF-α, and MDA expression levels, increasing SOD, and the GSH-Px activity value. Further, in vitro assays, GNP and GAP, decrease the inflammatory response by inhibiting the secretion of IL-6 and TNF-α, involved in the STAT1/T-bet signaling pathway.
Collapse
Affiliation(s)
- Jia-Yi Feng
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Yan-Qing Xie
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Peng Zhang
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Qian Zhou
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Afsar Khan
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Zhi-Hong Zhou
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Xian-Song Xia
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
- Correspondence: (L.L.); (X.-S.X.)
| | - Lu Liu
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
- Correspondence: (L.L.); (X.-S.X.)
| |
Collapse
|
11
|
Zheng Q, Chen J, Yuan Y, Zhang X, Li L, Zhai Y, Gong X, Li B. Structural characterization, antioxidant, and anti-inflammatory activity of polysaccharides from Plumula Nelumbinis. Int J Biol Macromol 2022; 212:111-122. [PMID: 35594937 DOI: 10.1016/j.ijbiomac.2022.05.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/18/2022]
Abstract
A polysaccharide from Plumula Nelumbinis (PNP), was isolated and purified. PNP had a molecular weight of 450 kDa and consisted five monosaccharides, including rhamnose, galacturonic acid, xylose, galactose, and arabinose. The methylation and nuclear magnetic resonance (NMR) analysis revealed that the main glycosidic linkage types of PNP were →5)-α-L-Araf-(1→, →3)-β-D-Galp-(1→, β-D-Xylp-(→1, →3,4)-β-D-Rhap-(1→, →4)-β-D-GalpA-(1→. In the range of 25-1200 μg/mL, PNP had no cytotoxicity to RAW264.7 cells. PNP could protect RAW264.7 cell from oxidative damage by reducing the production of ROS and MDA and the secretion of LDH, enhancing the activity of SOD, CAT, and GSH-Px, and increasing the content of GSH. Anti-inflammatory activity experiments showed that PNP inhibited the expression of NO, TNF-α, INF-γ, IL-1β, and IL-6. PNP could inhibit the activation of MAPK/NF-κB cell pathways. PNP could be used as a potential natural antioxidant and anti-inflammatory substance in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan, 523808, China
| | - Yongzhen Zhai
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xiao Gong
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
The effects of enzymatic modification on the functional ingredient - Dietary fiber extracted from potato residue. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Zhang Y, Liang J, Jiang H, Qian M, Zhao W, Bai W. Protective effect of sterols extracted from Lotus plumule on ethanol-induced injury in GES-1 cells in vitro. Food Funct 2021; 12:12659-12670. [PMID: 34821900 DOI: 10.1039/d1fo02684d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, sterols were isolated from Lotus plumule by Soxhlet extraction and saponification and were further characterized by GC-MS analysis. The results showed that the sterols extracted from Lotus plumule mainly contained β-sitosterol, fucosterol, and campesterol. Models were established in vitro to investigate the protective effects of Lotus plumule sterols (LPSs) on ethanol-induced injury in human gastric epithelium (GES-1) cells. The results showed that appropriate concentrations of LPSs and β-sitosterol could protect GES-1 cells from ethanol-induced injury by reducing ROS levels, reducing calcium ion release, increasing antioxidant enzyme activity and maintaining mitochondrial membrane potential. Western blot experiment results also showed that appropriate concentrations of LPSs and β-sitosterol could up-regulate the expression of the anti-apoptotic protein Bcl-2 and down-regulate the pro-apoptotic proteins Bax and caspase-3 in GES-1 cells. Meanwhile, sterol pretreatment groups down-regulated the protein expression levels of p-P38 and p-JNK in ethanol-damaged GES-1 cells and up-regulated the expression level of p-ERK, suggesting that sterols protect GES-1 cells from ethanol-induced damage by regulating the MAPK signaling pathway. Taken together, Lotus plumule sterols could effectively prevent gastric cell damage in vitro and suggest the potential application of LPSs as bioactive ingredients for healthy foods.
Collapse
Affiliation(s)
- Ying Zhang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiao Liang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hao Jiang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Min Qian
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
14
|
Cao MX, Xie XD, Wang XR, Hu WY, Zhao Y, Chen Q, Ji L, Wei YY, Yu ML, Hu TJ. Separation, Purification, Structure Analysis, In Vitro Antioxidant Activity and circRNA-miRNA-mRNA Regulatory Network on PRV-Infected RAW264.7 Cells of a Polysaccharide Derived from Arthrospira platensis. Antioxidants (Basel) 2021; 10:1689. [PMID: 34829559 PMCID: PMC8615255 DOI: 10.3390/antiox10111689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
To investigate the structure of Arthrospira platensis polysaccharide (PAP) (intracellular polysaccharide) and the antioxidant activity of the first component of PAP (PAP-1) on pseudorabies virus (PRV) -infected RAW264.7 cells. The PAP was separated and purified by the Cellulose DE-52 chromatography column and Sephacryl S-200 high-resolution gel column to obtain PAP-1. The antioxidant activity and regulation of PAP-1 on PRV-infected RAW264.7 cells of circRNA-miRNA-mRNA network were investigated by chemical kit, Q-PCR, and ce-RNA seq. The results indicated that the molecular weight (Mw) of PAP-1, which was mainly composed of glucose and eight other monosaccharides, was 1.48 × 106 Da. The main glycosidic bond structure of PAP-1 was →4)-α-D-Glcp-(1→. PAP-1 may be increased the antioxidant capacity by regulating the circRNA-miRNA-mRNA network in PRV-infected RAW264.7 cells. This study provided a scientific foundation for further exploring the antioxidant activity of PAP-1 based on its structure.
Collapse
Affiliation(s)
- Mi-Xia Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Xiao-Dong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Xin-Rui Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Wen-Yue Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Qi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Lu Ji
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Mei-Ling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| |
Collapse
|
15
|
Okra ( Abelmoschus esculentus L.) as a Potential Functional Food Source of Mucilage and Bioactive Compounds with Technological Applications and Health Benefits. PLANTS 2021; 10:plants10081683. [PMID: 34451728 PMCID: PMC8399980 DOI: 10.3390/plants10081683] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
Abelmoschus esculentus has fruit popularly known as okra and belongs to the Malvaceae family. It is commonly used in cooking but also in traditional medicine in the treatment of worms, dysentery, inflammation, and also irritation of the stomach, intestines, and kidneys, as it is a potential functional food. Its mucilage is a highly viscous polysaccharide that is mostly composed of monosaccharides D-galactose, L-rhamnose, and galacturonic acid, as well as proteins and minerals. The functional properties of okra mucilage have been widely studied, mainly for its potential antidiabetic activity; thus, its use as adjuvant or nutraceutical therapy for diabetes is very promising. Due to its rheological properties, it is a potential resource for pharmaceutical and food applications. Okra mucilage can be extracted by several methods, which can directly influence its physicochemical characteristics and biological activity. Features such as low cost, non-toxicity, biocompatibility, and high availability in nature arouse the interest of researchers for the study of okra mucilage. The survey of research on the applications of okra mucilage highlights the importance of using this promising source of bioactive compounds with interesting technological properties. The potential of okra as a functional food, the properties of okra mucilage, and its technological applications are discussed in this review.
Collapse
|
16
|
Li Q, Li X, Zheng B, Zhao C. The optimization of ultrasonic-microwave assisted synergistic extraction of Lotus plumule extract rich in flavonoids and its hypoglycemic activity. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00063-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractLotus (Nelumbo nucifera Gaertn), a kind of perennial aquatic plant, is widely cultivated and consumed by people in Asian countries. Lotus plumule flavonoids (LPF) have been recognized as a hypoglycemic agent. LPF was optimally obtained using novel ultrasonic-microwave assisted synergistic extraction (UMSE) method by response surface methodology (RSM) on the basis of the results of single-factor experiments. Furthermore, the hypoglycemic activity of LPF was investigated by measuring the body weight, fasting blood glucose (FBG) level, and oral glucose tolerance test (OGTT) and analyzing the physiological indexes in streptozotocin-diabetic mice model. The optimum extraction conditions consisted of microwave power 355 W, ultrasonic power 423 W, extraction time 15 min, solid-liquid ratio 1:40, ultrasound/interval time 1/0, and ethanol concentration 70% with the maximum LPF yield of 2.62%. LPF supplementation significantly decreased the body weight, FBG, OGTT, serum total cholesterol (TC), serum total triglycerides (TG), and insulin levels, indicating the antidiabetic activity of LPF. This research verified that the UMSE technique was highly efficient to extract LPF to the maximum extent and the flavonoids from L. plumule exhibited hypoglycemic activity, which showed broad development and application prospects.
Collapse
|
17
|
Chen S, Li X, Wu J, Li J, Xiao M, Yang Y, Liu Z, Cheng Y. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113429. [PMID: 33011369 DOI: 10.1016/j.jep.2020.113429] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plumula Nelumbinis, the green embryo of the mature seeds of Nelumbo nucifera Gaertn, has a medical history of over 400 years. It is widely used for clearing the heart and heat, calming the mind, and promoting astringent essence and hemostasis in traditional Chinese medicine. Moreover, it usually dual use as food and medicine. This review aimed to evaluate the therapeutic potential of Plumula Nelumbinis by summarizing its botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. METHODS This review summarized published studies on Plumula Nelumbinis in the Chinese Pharmacopoeia and literature databases including PubMed, Web of Science, Baidu Scholar, Wiley and China Knowledge Resource Integrated Database (CNKI), and limits the different research articles in botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety about Plumula Nelumbinis. RESULTS Plumula Nelumbinis is used to treat hypertension, arrhythmia, severe aplastic anemia, insomnia, encephalopathy and gynecological disease in traditional Chinese medicine and clinical studies. More than 130 chemicals have been isolated and identified from Plumula Nelumbinis, including alkaloids, flavonoids, polysaccharides and volatile oil. In addition, pharmacological effects, such as protective effects against cardiovascular diseases, neurological diseases, lung and kidney injury, anti-inflammatory and anticancer activities, were also evaluated by in vitro and in vivo studies. Moreover, the potential signaling pathways regulated by Plumula Nelumbinis in cardiovascular and neurological diseases and perspectives on Plumula Nelumbinis research were discussed. CONCLUSION Plumula Nelumbinis, a commonly used Chinese medicine, has a variety of traditional and modern therapeutic uses. Some traditional uses, especially the treatment of cardiovascular and neurological diseases, have been verified by pharmacological investigation. However, the pharmacological molecular mechanisms, pharmacokinetics and toxicology of Plumula Nelumbinis are still incomplete. In the future, a series of systematic studies on active compounds identification, pharmacological mechanism clarification, quality and safety evaluation are necessary.
Collapse
Affiliation(s)
- Sixuan Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xuping Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Junxuan Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jingyan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mingzhu Xiao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
18
|
Dong L, Li R, Wang L, Lan X, Sun H, Zhao Y, Wang L. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. Int J Biol Macromol 2021; 172:289-298. [PMID: 33450341 DOI: 10.1016/j.ijbiomac.2021.01.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
The sensitive colorimetric detection of glucose using nanomaterials has been attracting considerable attention. To improve the detection sensitivity, highly stable lentinan stabilized platinum nanoclusters (Pt-LNT NCs) were prepared, in which lentinan was employed as a mild reductant and stabilizer. The size of platinum nanoclusters (Pt NCs) was only 1.20 ± 0.29 nm. Pt-LNT NCs catalyzed the oxidation of substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) to produce a blue oxidation product with absorption peak at 652 nm, indicating their peroxidase-like properties. Their enzymatic kinetics followed typical Michaelis-Menten theory. In addition, fluorescence experiments confirmed their ability to efficiently catalyze the decomposition of H2O2 to generate •OH, which resulted in the peroxidase-like mechanism of Pt-LNT NCs. Moreover, a colorimetric method for highly selective and sensitive detection of glucose was established by using Pt-LNT NCs and glucose oxidase. The linear range of glucose detection was 5-1000 μM and the detection limit was 1.79 μM. Finally, this method was further used for detection of glucose in human serum and human urine. The established colorimetric method may promote the development of biological detection and environmental chemistry in the future.
Collapse
Affiliation(s)
- Le Dong
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Liqiu Wang
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xifa Lan
- Department of Neurology, the First Hospital of Qinhuangdao, Qinhuangdao 066000, China.
| | - Haotian Sun
- Ocean NanoTech, LLC, San Diego, CA 92126, USA
| | - Yu Zhao
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
19
|
Hajji M, Falcimaigne-Gordin A, Ksouda G, Merlier F, Thomasset B, Nasri M. A water-soluble polysaccharide from Anethum graveolens seeds: Structural characterization, antioxidant activity and potential use as meat preservative. Int J Biol Macromol 2020; 167:516-527. [PMID: 33279565 DOI: 10.1016/j.ijbiomac.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
A novel water-soluble polysaccharide named AGP1 was successfully isolated from seeds of Anethum graveolens by hot water extraction and further purified by DEAE-Sepharose chromatography. AGP1 has a relative molecular weight of 2.1 104 Da determined by Ultra-high-performance liquid chromatography (UHPLC). The AGP1 characterization was investigated by chemical and instrumental analysis including gas chromatography mass spectrometry (GC-MS), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction. Results showed that AGP1 was mainly composed of glucose, galactose, mannose and arabinose in a molar percent of 54.3, 23.8, 14.7 and 7.2, respectively. The thermogravimetry analysis (TGA) and the differential scanning calorimetry (DSC) were used and showed that AGP1 has good thermal stability until 275 °C. Moreover, the purified polysaccharide demonstrated an appreciable in vitro antioxidant potential. The addition of the AGP1, particularly at 0.3% (w/w), in turkey sausages instead of ascorbic acid, as preservative, reduced the lipid peroxidation, preserved the pH and color and improved the bacterial stability during cold storage at 4 °C for 12 days. Overall, the results showed that the AGP1 deserves to be developed as functional and bioactive components for the food and nutraceutical industries.
Collapse
Affiliation(s)
- Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Aude Falcimaigne-Gordin
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Ghada Ksouda
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Franck Merlier
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| |
Collapse
|
20
|
Feriani A, Tir M, Hamed M, Sila A, Nahdi S, Alwasel S, Harrath AH, Tlili N. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. Int J Biol Macromol 2020; 165:2576-2587. [DOI: 10.1016/j.ijbiomac.2020.10.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
|
21
|
Samrot AV, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, Abubakar A, Selvarani JA, Kumar Subbiah S. Extraction, Purification, and Characterization of Polysaccharides of Araucaria heterophylla L and Prosopis chilensis L and Utilization of Polysaccharides in Nanocarrier Synthesis. Int J Nanomedicine 2020; 15:7097-7115. [PMID: 33061370 PMCID: PMC7524200 DOI: 10.2147/ijn.s259653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Plant gums consist of polysaccharides which can be used in the preparation of nanocarriers and provide a wide application in pharmaceutical applications including as drug delivery agents and the matrices for drug release. The objectives of the study were to collect plant gums from Araucaria heterophylla L and Prosopis chilensis L and to extract and characterize their polysaccharides. Then to utilize these plant gum-derived polysaccharides for the formulation of nanocarriers to use for drug loading and to examine their purpose in drug delivery in vitro. Methods Plant gum was collected, polysaccharide was extracted, purified, characterized using UV-Vis, FTIR, TGA and GCMS and subjected to various bioactive studies. The purified polysaccharide was used for making curcumin-loaded nanocarriers using STMP (sodium trimetaphosphate). Bioactivities were performed on the crude, purified and drug-loaded nanocarriers. These polysaccharide-based nanocarriers were characterized using UV-Vis spectrophotometer, FTIR, SEM, and AFM. Drug release kinetics were performed for the drug-loaded nanocarriers. Results The presence of glucose, xylose and sucrose was studied from the UV-Vis and GCMS analysis. Purified polysaccharides of both the plants showed antioxidant activity and also antibacterial activity against Bacillus sp. Purified polysaccharides were used for nanocarrier synthesis, where the size and shape of the nanocarriers were studied using SEM analysis and AFM analysis. The size of the drug-loaded nanocarriers was found to be around 200 nm. The curcumin-loaded nanocarriers were releasing curcumin slow and steady. Conclusion The extracted pure polysaccharide of A. heterophylla and P. chilensis acted as good antioxidants and showed antibacterial activity against Bacillus sp. These polysaccharides were fabricated into curcumin-loaded nanocarriers whose size was below 200 nm. Both the drug-loaded nanocarriers synthesized using A. heterophylla and P. chilensis showed antibacterial activity with a steady drug release profile. Hence, these natural exudates can serve as biodegradable nanocarriers in drug delivery.
Collapse
Affiliation(s)
- Antony V Samrot
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Teeshalini Kudaiyappan
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Ummu Bisyarah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Anita Mirarmandi
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Etel Faradjeva
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Amira Abubakar
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Jenifer A Selvarani
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Chennai, Tamil Nadu 600119, India
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.,Department of Biotechnology, BIHER, Bharath University, Selaiyur, India
| |
Collapse
|
22
|
Li Y, Qin G, Cheng C, Yuan B, Huang D, Cheng S, Cao C, Chen G. Purification, characterization and anti-tumor activities of polysaccharides from Ecklonia kurome obtained by three different extraction methods. Int J Biol Macromol 2020; 150:1000-1010. [PMID: 31751739 DOI: 10.1016/j.ijbiomac.2019.10.216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
To investigate and compare the effects of different extraction methods on the structure and anti-tumor activity of Ecklonia kurome polysaccharides (EP), three techniques, namely hot water extraction (HW), ultrasonic-assisted extraction (UA) and enzyme-assisted extraction (EA), were used to extract EP, and three crude EPs were purified by DEAE-cellulose and gel filtration chromatography. The significant antitumor active components in each method were screened by MTT assay and named as HW-EP5, UA-EP4 and EA-EP3, respectively. The molecular weight, FT-IR assay and NMR showed that HW-EP5, UA-EP4 and EA-EP3 were pyran polysaccharides with a molecular weight of 14,466, 15,922 and 16,947 Da, respectively. HW-EP5 contained the most monosaccharides and the highest content of sulfate and uronic acid. HW-EP5 had an even and smooth sheet-like appearance, while UA-EP4 and EA-EP3 exhibited irregular and rough fragments. All three polysaccharides can inhibit the migration of human breast cancer cells (MCF-7) and promote its apoptosis. All three polysaccharides promoted caspase activity during apoptosis. HW-EP5 and UA-EP4 up-regulated the expression of proapoptotic proteins Bax and p53, while EA-EP3 only up-regulated the expression of p53. These experimental results indicate that Ecklonia kurome polysaccharides, especially HW-EP5, have great potential as a natural medicine for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Gaoyixin Qin
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Chen Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Dechun Huang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Guitang Chen
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China.
| |
Collapse
|
23
|
Aipire A, Yuan P, Aimaier A, Cai S, Mahabati M, Lu J, Ying T, Zhang B, Li J. Preparation, Characterization, and Immuno-Enhancing Activity of Polysaccharides from Glycyrrhiza uralensis. Biomolecules 2020; 10:biom10010159. [PMID: 31963790 PMCID: PMC7022281 DOI: 10.3390/biom10010159] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/04/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Glycyrrhiza uralensis is a Chinese herbal medicine with various bioactivities. Three fractions (GUPS-I, GUPS-II and GUPS-III) of G. uralensis polysaccharides (GUPS) were obtained with molecular weights of 1.06, 29.1, and 14.9 kDa, respectively. The monosaccharide compositions of GUPS-II and GUPS-III were similar, while that of GUPS-I was distinctively different. The results of scanning electron microscopy, FT-IR, and NMR suggested that GUPS-II and GUPS-III were flaky with a smooth surface and contained α- and β-glycosidic linkages, while GUPS-I was granulated and contained only α-glycosidic linkages. Moreover, GUPS-II and GUPS-III exhibited better bioactivities on the maturation and cytokine production of dendritic cells (DCs) in vitro than that of GUPS-I. An in vivo experiment showed that only GUPS-II significantly enhanced the maturation of DCs. These results indicate that GUPS-II has the potential to be used in combination with cancer immunotherapy to enhance the therapeutic effect.
Collapse
Affiliation(s)
- Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Shanshan Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Mahepali Mahabati
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
| | - Jun Lu
- School of Science, and School of Interprofessional Health Studies, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (A.A.); (P.Y.); (A.A.); (S.C.); (M.M.)
- Correspondence: ; Tel.: +86-991-858-3259; Fax: +86-991-858-3517
| |
Collapse
|
24
|
Qin T, Liu X, Luo Y, Yu R, Chen S, Zhang J, Xu Y, Meng Z, Huang Y, Ren Z. Characterization of polysaccharides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress. Int J Biol Macromol 2019; 152:1265-1273. [PMID: 31759000 DOI: 10.1016/j.ijbiomac.2019.10.223] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
Abstract
In this study, the structure characteristic of the Hericium erinaceus polysaccharide (HEP) was investigated using Fourier transformed infrared spectrometry (FT-IR), gas chromatography-mass spectrometry (GC-MS), gel permeation chromatography (GPC), methylation and nuclear magnetic resonance (NMR). The results showed that HEP, with a molecular weight of 43 KDa, was mainly composed of glucose and rhamnose. The linkages of the sugar residues of HEP were → 6) β-d-Glcp-(1 → and → 2) -α-l-Rhap-(1 → residue at the end of the branches. The Fusarium toxin deoxynivalenol (DON)-induced cellular injury model for IPEC-J2 cells was established and used to investigate the protective effects of HEP against the oxidative stress. The results suggest that HEP could significantly protect IPEC-J2 cells from DON-induced oxidative stress, inhibit DON-induced apoptosis and reduce the production of reactive oxygen species (ROS). Overall, this study suggested that HEP could be explored as potential antioxidant agents for DON-induced intestinal mucosa injury.
Collapse
Affiliation(s)
- Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaopan Liu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yang Luo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ruihong Yu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shixiong Chen
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongde Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhen Meng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yifan Huang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
25
|
Cai L, Chen B, Yi F, Zou S. Optimization of extraction of polysaccharide from dandelion root by response surface methodology: Structural characterization and antioxidant activity. Int J Biol Macromol 2019; 140:907-919. [DOI: 10.1016/j.ijbiomac.2019.08.161] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022]
|
26
|
Liu M, Jiang Y, Liu R, Liu M, Yi L, Liao N, Liu S. Structural features guided “fishing” strategy to identification of flavonoids from lotus plumule in a self-built data “pool” by ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:122-134. [DOI: 10.1016/j.jchromb.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022]
|
27
|
Fang Z, Chen Y, Wang G, Feng T, Shen M, Xiao B, Gu J, Wang W, Li J, Zhang Y. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model. Food Funct 2019; 10:5531-5543. [DOI: 10.1039/c8fo02589d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Caenorhabditis elegans is an important model organism for studying stress response mechanisms. In this paper, C. elegans was used to evaluate the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides.
Collapse
Affiliation(s)
- Zhiyu Fang
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Yutao Chen
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Ge Wang
- College of Modern Science and Technology
- China Jiliang University
- Zhejiang Province
- China
| | - Tao Feng
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Meng Shen
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Bin Xiao
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Jingyi Gu
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Weimin Wang
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Jia Li
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Yongjun Zhang
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| |
Collapse
|
28
|
Radical Scavenging Activities of Novel Cationic Inulin Derivatives. Polymers (Basel) 2018; 10:polym10121295. [PMID: 30961220 PMCID: PMC6401882 DOI: 10.3390/polym10121295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Many saccharides are attractive targets for biomaterial applications, due to their abundance, biocompatibility, and biodegradability. In this article, a synthesis process of 6-N-substituted cationic inulin derivatives, including 6-pyridyl-6-deoxyinulin bromide (PIL), 6-(2-amino-pyridyl)-6-deoxyinulin bromide (2APIL), 6-(3-amino-pyridyl)-6-deoxyinulin bromide (3APIL), 6-(4-amino-pyridyl)-6-deoxyinulin bromide (4APIL), 6-(2,3-diamino-pyridyl)-6-deoxyinulin bromide (2,3DAPIL), 6-(3,4-diamino-pyridyl)-6-deoxyinulin bromide (3,4DAPIL), and 6-(2,6-diamino-pyridyl)-6-deoxyinulin bromide (2,6DAPIL) was described. The C6-OH of inulin was first activated by PPh3/N-bromosuccinimide (NBS) bromination. Then, pyridine and different kinds of amino-pyridine groups (different position and different numbers of amino) were grafted onto inulin, respectively, via nucleophilic substitution. Then, we confirmed their structure by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. After this, their radical scavenging activities against hydroxyl radical and diphenylpicryl phenylhydrazine (DPPH) radical were tested in vitro. Each derivative showed a distinct improvement in radical scavenging activity when compared to inulin. The hydroxyl-radical scavenging effect decreased in the following order: 3APIL > PIL > 3,4DAPIL > 4APIL > 2,3DAPIL > 2,6DAPIL > 2APIL. Amongst them, 3APIL revealed the most powerful scavenging effect on hydroxyl radicals, as well as DPPH radicals. At 1.6 mg/mL, it could completely eliminate hydroxyl radicals and could clear 65% of DPPH radicals. The results also showed that the steric hindrance effect and the substitute position of the amino group had an effect on the radical scavenging activity. Moreover, the application prospects of inulin derivatives as natural antioxidant biomaterials are scientifically proven in this paper.
Collapse
|