1
|
Bhujbal S, Rupenthal ID, Agarwal P. Development and validation of a stability-indicating HPLC method for assay of tonabersat in pharmaceutical formulations. Methods 2024; 231:178-185. [PMID: 39368764 DOI: 10.1016/j.ymeth.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024] Open
Abstract
A stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed to assay tonabersat and assess its stability in pharmaceutical formulations. Chromatographic separation was achieved using a Kinetex® C18 column (2.6 µm, 150 x 3 mm, 100 Å) at 50 °C, with a 20 µL injection volume. A linear gradient of acetonitrile in water (5 - 33.5 %) was applied for 1 min, followed by a gradual increase to 100 % over 26 min at a flow rate of 0.5 mL/min. Tonabersat and its degradation products were detected at 275 nm and 210 nm, respectively. The optimized method was used to evaluate the stability of tonabersat in lipid-based pharmaceutical formulations at 5 ± 3 °C, 25 ± 2°C/60 ± 5 % RH, and 40 ± 2 °C/75 ± 5 % RH over 3 months. The method was validated as per ICH guidelines and demonstrated linearity in the range of 5 - 200 µg/mL (R2 = 0.99994) with good accuracy (98.25 - 101.58 % recovery) and precision (% RSD < 2.5 %). The limits of detection and quantitation were 0.8 µg/mL and 5 µg/mL, respectively. Forced degradation studies showed significant degradation on exposure to alkaline (90.33 ± 0.80 %), acidic (70.60 ± 1.57 %), and oxidative stress (33.95 ± 0.69 %) at 70 °C, but no degradation was observed on exposure to thermal or photolytic stress. No chemical degradation was observed in either formulation on storage. Thus, the method was sensitive, specific, and suitable for stability testing of tonabersat in pharmaceutical formulations.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Zhang N, Xu Y, Jia X, Li X, Ren J, Pan S, Fan G, Yang J. Purification and characterization of limonin D-ring lactone hydrolase from sweet orange (Citrus sinensis (L.) Osbeck) seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8181-8189. [PMID: 38847461 DOI: 10.1002/jsfa.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Citrus products often suffer from delayed bitterness, which is generated from the conversion of non-bitter precursors (limonoate A-ring lactone, LARL) to limonin under the catalysis of limonin D-ring lactone hydrolase (LDLH). In this study, LDLH was isolated and purified from sweet orange seeds, and a rapid and accurate high-performance liquid chromatography method to quantify LARL was developed and applied to analyze the activity and enzymatic properties of purified LDLH. RESULTS Purified LDLH (25.22 U mg-1) showed bands of 245 kDa and 17.5 kDa molecular weights in native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate PAGE analysis respectively. After a 24 h incubation under strongly acidic (pH 3) or strongly alkaline (pH 9) conditions, LDLH still retained approximately 100% activity. Moreover, LDLH activity was not impaired by thermal treatment at 50 °C for 120 min. Enzyme inhibition assays showed that LDLH was inactivated only after ethylenediaminetetraacetic acid treatment, and other enzyme inhibitors showed no significant effect on its activity. In addition, the LDLH activity of calcium ion (Ca2+) intervention was 108% of that in the blank group, and that of zinc ion (Zn2+) intervention was 71%. CONCLUSION LDLH purified in this study was a multimer containing 17.5 kDa monomer with a wide pH tolerance range (pH 3-9) and excellent thermal stability. Moreover, LDLH might be a metallopeptidase, and its activity was stimulated by Ca2+ and significantly inhibited by Zn2+. These findings improve our understanding of LDLH and provide some important implications for reducing the bitterness in citrus products in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nawei Zhang
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education/Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, Wuhan, China
| | - Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education/Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, Wuhan, China
| | - Xiao Jia
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education/Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, Wuhan, China
| | - Xiao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jingnan Ren
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education/Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, Wuhan, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education/Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, Wuhan, China
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education/Hubei Province Key Laboratory of Fruit & Vegetable Processing & Quality Control, Wuhan, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| |
Collapse
|
3
|
Al-Sabbah RA, Al-Tamimi SA, Alarfaj NA, El-Tohamy MF. Functionalized fennel extract-mediated alumina/cerium oxide nanocomposite potentiometric sensor for the determination of diclofenac sodium medication. Heliyon 2024; 10:e31425. [PMID: 38828354 PMCID: PMC11140610 DOI: 10.1016/j.heliyon.2024.e31425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
The current work suggests a new, ultrasensitive green functionalized sensor for the determination of anti-inflammatory medication diclofenac sodium (DCF). Alumina (Al2O3) and cerium oxide (CeO2) nanoparticles (NPs) have attracted great interest for their use as outstanding and electroactive nanocomposite in potentiometric and sensory research due to their ultrafunctional potential. The formed nanoparticles have been confirmed using various spectroscopic and microscopic techniques. The fennel extract-mediated Al2O3/CeO2 nanocomposite (Al2O3/CeO2 NCS) modified coated wire membrane sensor developed in this study was used to quantify DCF in bulk and commercial products. Diclofenac sodium was coupled with phosphomolybdic acid (PMA) to generate diclofenac phosphomolybdate (DCF-PM) as an active ion-pair in the existence of polyvinyl chloride (PVC) and o-nitrophenyl octyl ether (o-NPOE). Clear peaks at 270, and 303 nm with band gaps of 4.59 eV and 4.09 eV were measured using UV-vis spectroscopy of Al2O3 and CeO2, respectively. The crystallite sizes of the formed nanoparticles were XRD-determined to be 30.13 ± 8, 17.72 ± 3, and 35.8 ± 0.5 nm for Al2O3, CeO2, and Al2O3/CeO2 NCS, respectively. The developed sensor showed excellent response for the measurement and assay of DCF, with a linearity between 1.0 × 10-9 and 1.0 × 10-2 mol L-1. EmV = (57.76) log [DCF] +622.69 was derived. On the other hand, the typical type DCF-PM presented a potentiometric response range of 1.0 × 10-5-1.0 × 10-2 mol L-1 and a regression equation of EmV = (56.97) log [DCF]+367.16. The functionalized sensor that was proposed was successful in determining DCF in its commercial tablets with percent recovery 99.95 ± 0.3. Method validation has been used to improve the suitability of the suggested potentiometric technique, by studying various parameters with respect to the international council harmonization requirements for analytical methodologies.
Collapse
Affiliation(s)
- Rana A. Al-Sabbah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Salma A. Al-Tamimi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
4
|
Velagacherla V, Nayak Y, Bhaskar KV, Nayak UY. A stability indicating method development and validation of a rapid and sensitive RP-HPLC method for Nintedanib and its application in quantification of nanostructured lipid carriers. F1000Res 2024; 12:1389. [PMID: 38948504 PMCID: PMC11214665 DOI: 10.12688/f1000research.138786.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Background Nintedanib (NTB) is a multiple tyrosine kinase inhibitor, been investigated for many disease conditions like idiopathic pulmonary fibrosis (IPF), systemic sclerosis interstitial lung disease (SSc-ILD) and non-small cell lung cancer (NSCLC). NTB is available as oral capsule formulation, but its ability to detect degradants formed through oxidative, photolytic and hydrolytic processes makes it difficult to quantify. In the current work, a novel reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated. Methods The developed method is simple, precise, reproducible, stable and accurate. The inherent stability of NTB was evaluated using the proposed analytical method approach and force degradation studies were carried out. NTB was separated chromatographically on the Shimadzu C 18 column as stationary phase (250 ×4.6 mm, 5 µm) using an isocratic elution method with 0.1% v/v triethyl amine (TEA) in HPLC grade water and acetonitrile (ACN) in the ratio 35:65% v/v. The mobile phase was pumped at a constant flow rate of 1.0 ml/min, and the eluent was detected at 390 nm wavelength. Results NTB was eluted at 6.77±0.00 min of retention time (t R) with a correlation coefficient of 0.999, the developed method was linear in the concentration range of 0.5 µg/ml to 4.5 µg/ml. The recovery rate was found to be in the range of 99.391±0.468% for 1.5 µg/ml concentration. Six replicate standards were determined to have an % RSD of 0.04. Conclusion The formulation excipients didn't interfere with the determination of NTB, demonstrating the specificity of the developed method. The proposed approach of the analytical method developed can be used to quantify the amount of NTB present in bulk drugs and pharmaceutical formulations.
Collapse
Affiliation(s)
- Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K Vijaya Bhaskar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
5
|
AlNahwa LHM, Ali HM, Hasanin THA, Shalaby K, Alshammari MS, Alsirhani AM, Mohamed SH. Development of an RP-HPLC Method for Quantifying Diclofenac Diethylamine, Methyl Salicylate, and Capsaicin in Pharmaceutical Formulation and Skin Samples. Molecules 2024; 29:2732. [PMID: 38930798 PMCID: PMC11206132 DOI: 10.3390/molecules29122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
An RP-HPLC method with a UV detector was developed for the simultaneous quantification of diclofenac diethylamine, methyl salicylate, and capsaicin in a pharmaceutical formulation and rabbit skin samples. The separation was achieved using a Thermo Scientific ACCLAIMTM 120 C18 column (Waltham, MA, USA, 4.6 mm × 150 mm, 5 µm). The optimized elution phase consisted of deionized water adjusted to pH = 3 using phosphoric acid mixed with acetonitrile in a 35:65% (v/v) ratio with isocratic elution. The flow rate was set at 0.7 mL/min, and the detection was performed at 205 nm and 25 °C. The method exhibits good linearity for capsaicin (0.05-70.0 µg/mL), methyl salicylate (0.05-100.0 µg/mL), and diclofenac diethylamine (0.05-100.0 µg/mL), with low LOD values (0.0249, 0.0271, and 0.0038 for capsaicin, methyl salicylate, and diclofenac diethylamine, respectively). The RSD% values were below 3.0%, indicating good precision. The overall greenness score of the method was 0.61, reflecting its environmentally friendly nature. The developed RP-HPLC method was successfully applied to analyze Omni Hot Gel® pharmaceutical formulation and rabbit skin permeation samples.
Collapse
Affiliation(s)
- Lubna H. M. AlNahwa
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Aljouf, Saudi Arabia; (L.H.M.A.); (H.M.A.); (M.S.A.); (A.M.A.)
| | - Hazim M. Ali
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Aljouf, Saudi Arabia; (L.H.M.A.); (H.M.A.); (M.S.A.); (A.M.A.)
| | - Tamer H. A. Hasanin
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Aljouf, Saudi Arabia; (L.H.M.A.); (H.M.A.); (M.S.A.); (A.M.A.)
- Department of Chemistry, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka 72388, Aljouf, Saudi Arabia;
| | - Mutairah S. Alshammari
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Aljouf, Saudi Arabia; (L.H.M.A.); (H.M.A.); (M.S.A.); (A.M.A.)
| | - Alaa M. Alsirhani
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Aljouf, Saudi Arabia; (L.H.M.A.); (H.M.A.); (M.S.A.); (A.M.A.)
| | - Sabrein H. Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Aljouf, Saudi Arabia; (L.H.M.A.); (H.M.A.); (M.S.A.); (A.M.A.)
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
6
|
Dodevska T, Shterev I. Nanomaterials as catalysts for the sensitive and selective determination of diclofenac. ADMET AND DMPK 2023; 12:151-165. [PMID: 38560716 PMCID: PMC10974820 DOI: 10.5599/admet.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/15/2023] [Indexed: 04/04/2024] Open
Abstract
Background and purpose Diclofenac (DCF) is a non-steroidal anti-inflammatory drug possessing analgesic and antipyretic properties. It is used for the treatment of rheumatoid arthritis pain, osteoarthritis, and acute muscle pain conditions and can be administrated orally, topically or intravenously. Because of its widespread use, hydrophilicity, stability and poor degradation (bioaccumulation in the food chain), DCF is an emerging chemical contaminant that can cause adverse effects in the ecosystems. Taking into account the consumption of DCF in pharmaceutical formulations and its negative impact on the environment, the development of new sensitive, selective, cheap, fast, and online capable analytical devices is needed for on-site applications. Experimental approach This brief review attempts to cover the recent developments related to the use of nanomaterials as catalysts for electrochemical determination of DCF in pharmaceutical formulations, biological fluids and environmental samples. Key results The article aims to prove how electrochemical sensors represent reliable alternatives to conventional methods for DCF analysis. Conclusion The manuscript highlights the progress in the development of electrochemical sensors for DCF detection. We have analyzed numerous recent papers (mainly since 2019) on sensors developed for the quantitative determination of DCF, indicating the limit of detection, linear range, stability, reproducibility, and analytical applications. Current challenges related to the sensor design and future perspectives are outlined.
Collapse
Affiliation(s)
- Totka Dodevska
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv, Bulgaria
| | | |
Collapse
|
7
|
Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113242-113279. [PMID: 37864686 DOI: 10.1007/s11356-023-30302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | | | - Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India.
| |
Collapse
|
8
|
Ahmed-Anwar AA, Mohamed MA, Farghali AA, Mahmoud R, Hassouna MEM. Green UPLC method for estimation of ciprofloxacin, diclofenac sodium, and ibuprofen with application to pharmacokinetic study of human samples. Sci Rep 2023; 13:17613. [PMID: 37848502 PMCID: PMC10582071 DOI: 10.1038/s41598-023-44846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Investigation of a unique and fast method for the determination and separation of a mixture of three drugs viz., ciprofloxacin (CIP), Ibuprofen (IBU), and diclofenac sodium (DIC) in actual samples of human plasma. Also, the technique was used to look at their pharmacokinetics study. Hydrocortisone was chosen as the internal standard (IS). The drugs were chromatographically separated using an Acquity ultra-performance liquid chromatography UPLC ® BEH C18 1.7 µm (2.1 × 150 mm) column with a mobile phase composed of acetonitrile: water (65:35, v/v) adjusted to pH 3 with diluted acetic acid. Plasma proteins were precipitated with acetonitrile. The separated drugs ranged from 0.3 to 10, 0.2-11, and 1-25 µg/mL for CIP, IBU, and DIC, respectively. Calibration curves were discovered to achieve linearity with acceptable correlation coefficients (0.99%). Examination of quality assurance samples showed exceptional precision and accuracy. Following the successful application of this improved technique to plasma samples, the pharmacokinetic characteristics of each selected drug were evaluated using (UPLC) with UV detection at 210 nm. Two green metrics were applied, the Analytical Eco-scale and the Analytical GREEnness Calculator (AGREE). Separation was achieved in only 4-min analysis time. The method's validation agreed with the requirements of the FDA, and the results were sufficient.
Collapse
Affiliation(s)
- Alaa A Ahmed-Anwar
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Central Research Laboratory, Analytical Chemistry Department, Nahda University, Beni-Suef, Egypt
| | | | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed E M Hassouna
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
9
|
Bhushan A, Rani D, Tabassum M, Kumar S, Gupta PN, Gairola S, Gupta AP, Gupta P. HPLC-PDA Method for Quantification of Bioactive Compounds in Crude Extract and Fractions of Aucklandia costus Falc. and Cytotoxicity Studies against Cancer Cells. Molecules 2023; 28:4815. [PMID: 37375368 DOI: 10.3390/molecules28124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/29/2023] Open
Abstract
Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).
Collapse
Affiliation(s)
- Anil Bhushan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixhya Rani
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Saajan Kumar
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prem N Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajai P Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Box–Behnken Design Used to Optimize the Simultaneous Quantification of Amitriptyline and Propranolol in Tablet Dosages by RP-HPLC-DAD Method and Their Stability Tests. SEPARATIONS 2022. [DOI: 10.3390/separations9120421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study’s goal is to use a Box–Behnken design [BBD] methodology to create a new reverse-phase high-performance liquid chromatography diode-array detection [RP-HPLC-DAD] method for the simultaneous quantification of Amitriptyline and Propranolol in tablet dosages. The amitriptyline and propranolol standard drug peaks were obtained using a C-18 column with a dimension of 4.6 × 100 mm and a particle size packing of 2.5 µm at the retention time of 5.328 and 7.48 min, respectively. The mobile phase composition was a 75:25 mixture of methanol and 0.1 percent orthophosphoric acid, flowing at 1.0 mL/min at 26 °C. The peaks were identified at 257 nm after injecting 20 µL of the sample. An assay of the marketed tablets was performed, and the result was 101.33 and 99.4% for amitriptyline and propranolol, respectively, when compared to the standard calibration curve. Forced degradation investigations, such as acid, base, H2O2, and neutral condition, were performed. The results for both medications in term of % degradation were as follows: amitriptyline (16.07, 91.92, 26.98, and 0.64) and propranolol (15.84, 11.52, 9.09, and 3.62). According to the ICH criteria, the findings of the validation parameters were within an acceptable range. The new RP-HPLC-DAD method with BBD application is easy, accurate, and time-saving.
Collapse
|
11
|
Moges A, Barik CR, Sahoo L, Goud VV. Optimization of polyphenol extraction from Hippophae salicifolia D. Don leaf using supercritical CO 2 by response surface methodology. 3 Biotech 2022; 12:292. [PMID: 36276444 PMCID: PMC9510080 DOI: 10.1007/s13205-022-03358-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
In this study, an eco-friendly supercritical carbon dioxide (SC-CO2) extraction of polyphenolic compounds from Hippophae salicifolia leaf was optimized to achieve the highest extraction yield with maximum total phenolic content (TPC) and minimum IC50. The central composite design was used to establish an experimental design for RSM. The effect of the pressure, temperature, carbon dioxide flow rate, and co-solvent amount was scrutinized using variance analysis (ANOVA). Under optimized condition (25.13 MPa, 47.53 °C, 14.47 g/min, and 2.43%), the experimental data (yield of extraction: 4.38%, TPC: 84.31 mg GAE/g, and IC50: 41.94 µg/mL) showed good agreement with the predicted values (yield of extraction: 4.53%, TPC: 83.37 mg GAE/g, and IC50: 40.2 µg/mL). Nine polyphenolic compounds: gallic acid, caffeic acid, ferulic acid, vanillic acid, p-coumaric acid, quercetin, myricetin, kaempferol, and rutin were analyzed in SC-CO2 extract using HPLC. SC-CO2 extraction was more selective for ferulic acid, myricetin, and quercetin extraction. The study results revealed that SC-CO2 extract had significant antibacterial activity against eight bacterial strains. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03358-1.
Collapse
Affiliation(s)
- Abebe Moges
- Department of Chemical Engineering, IIT Guwahati, Guwahati, 781039 India
| | - Chitta Ranjan Barik
- School of Energy Science and Engineering, IIT Guwahati, Guwahati, 781039 India
| | - Lingaraj Sahoo
- School of Energy Science and Engineering, IIT Guwahati, Guwahati, 781039 India
- Department of Biosciences and Bioengineering, IIT Guwahati, Guwahati, 781039 India
| | - Vaibhav V. Goud
- Department of Chemical Engineering, IIT Guwahati, Guwahati, 781039 India
- School of Energy Science and Engineering, IIT Guwahati, Guwahati, 781039 India
| |
Collapse
|
12
|
Ali HM, Essawy AA, Hotan Alsohaimi I, Nayl A, Ibrahim H, Essawy AENI, Elmowafy M, Gamal M. Tailoring the photoluminescence of capmatinib towards a novel ultrasensitive spectrofluorimetric and HPLC-DAD monitoring in human serum; investigation of the greenness characteristics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Mandpe SR, Parate VR, Naik JB. Experimental design approach, screening and optimization of system variables, analytical method development of flurbiprofen in nanoparticles and stability-indicating methods for high-pressure liquid chromatography. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The development of chromatographic method and the validation of a sensitive, simple, efficient, and reversed-phase high-performance liquid chromatography (RP-HPLC) approach were adopted for the drug flurbiprofen (FBP) in nanoparticles formulation by using a design of experiment (DoE). The critical method variables (CMVs) were screened using a statistical two-level fractional factorial design (FFD) followed by optimization of the selected CMVs that influence the analytical responses (ARs) of the RP-HPLC process by using two-level full factorial design.
Results
Statistical models are used to investigate the effects of system factors including column temperature, flow rate, and methanol in orthophosphoric acid (OPA) on the dependent responses, retention time, peak area, tailing factor, and theoretical plates in HPLC. The ideal column temperature (25 °C), flow rate (1 ml/min), and mobile phase (methanol 85 percent v/v in 0.05 percent OPA in water) were selected independently from the response surface at three levels (1, + 1, and 0) for further validation at constant solvent pH 2.75. Optimized method in the RP-HPLC resulted a retention time of 4.75 min, a peak area of 3975.12, a tailing factor of 0.73, and a total of 9697.7 theoretical plates followed by validation in accordance with the current ICH recommendations Q2 (R1). Linearity, precision, accuracy, assay, limit of detection (LOD), limit of quantification (LOQ), and robustness were all included in validation. The calibration curve was linear (r2 = 0.9997, slope = 70.72) for the concentration of 10 to 50 µg/ml, with a limit of detection of 0.14 µg/ml. Furthermore, stability-indicating methods demonstrate that drug degradation is highest in the presence of basic circumstances (about 96.49%), followed by oxidation (about 76.41%), and acidic conditions (about 48.12%), whereas drug is stable in some extent under neutral, photo (sunlight), and dry heat conditions.
Conclusions
Effect of independent variables on dependent responses was screened and optimized by using statistical software design. A method for drug development could be successfully implemented for the estimation of drug in nanoparticles formulation as well as for the routine analysis in bulk and pharmaceutical formulations. The high recovery and low relative standard deviation support the suitability of proposed method that could be employed.
Graphical Abstract
Collapse
|
14
|
A Validated RP-HPLC Method for Simultaneous Determination of Cefixime and Clavulanic Acid Powder in Pediatric Oral Suspension. Int J Anal Chem 2022; 2022:8331762. [PMID: 35814262 PMCID: PMC9270147 DOI: 10.1155/2022/8331762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022] Open
Abstract
A new reverse phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for the simultaneous estimation of pediatric oral powder formulation containing cefixime (CFX) and clavulanic acid (CVA). In this research, an analytical C18 (4.6 mm × 25 cm), 5 μm column was used for chromatographic separation with a mixture of methanol and water containing disodium hydrogen phosphate in ratio of 20 : 80 v/v as the mobile phase (pH 5.5 adjusted with orthophosphoric acid) at a flow rate of 1.0 mL/min. The detecting wavelength and run time were 220 nm and 15 min, respectively. Moreover, the column temperature was maintained at 30°C. The analytical method was validated prior to meeting the conditions specified by International Conference on Harmonization (ICH) and the parameters were specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness, and solution stability. The calibration curve was found to be linear between the concentration ranges of 0.024–0.036 mg/mL and 0.032–0.048 mg/mL for CFX and CVA, respectively. Furthermore, the LOD and LOQ of CFX were 0.0008 and 0.0025 μg/mL, respectively. Accordingly, LOD and LOQ of CVA were 0.0021 and 0.0065 μg/mL, respectively. The accuracy of the optimized method was examined by recovery studies and the mean recovery was observed to be 98.96% and 99.05% for CFX and CVA, respectively, at 100% spiked level. The repeatability testing for both standard and sample solutions revealed that the method is precise within the acceptable range and the %RSD of the precision was <2%. In addition, the findings of specificity, linearity, accuracy, precision, robustness, LOD, LOQ, and solution stability studies of both CFX and CVA were within the criteria of acceptable limit as well.
Collapse
|
15
|
Foudah AI, Alshehri S, Shakeel F, Alqarni MH, Aljarba TM, Alam P. Simultaneous Estimation of Escitalopram and Clonazepam in Tablet Dosage Forms Using HPLC-DAD Method and Optimization of Chromatographic Conditions by Box-Behnken Design. Molecules 2022; 27:molecules27134209. [PMID: 35807458 PMCID: PMC9268709 DOI: 10.3390/molecules27134209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
The study aimed to develop a new reverse-phase high-performance liquid chromatography (RP-HPLC) method with diode array detection (DAD) detection for simultaneous estimation of escitalopram (EST) and clonazepam (CZP) in tablet dosage forms with a quality by design (QbD) approach. The chromatographic conditions were optimized by Box-Behnken design (BBD) and developed method was validated for the linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability according to International Council for Harmonization (ICH) guidelines. EST and CZP standard drugs peaks were separated at retention times of 2.668 and 5.046 min by C-18 column with dimension of 4.6 × 100 mm length and particle size packing 2.5 µm. The mobile phase was methanol: 0.1% orthophosphoric acid (OPA) (25:75, v/v), with a flow rate of 0.7 mL/min at temperature of 26 °C. The sample volume injected was 20 µL and peaks were detected at 239 nm. Using the standard calibration curve, the % assay of marketed tablet was founded 98.89 and 98.76 for EST and CZP, respectively. The proposed RP-HPLC method was able to detect EST and CZP in the presence of their degradation products, indicating the stability-indicating property of the developed RP-HPLC method. The validation parameter’s results in terms of linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability were in an acceptable range as per the ICH guidelines. The newly developed RP-HPLC method with QbD application is simple, accurate, time-saving, and economic.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (T.M.A.)
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (T.M.A.)
| | - Tariq M. Aljarba
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (T.M.A.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (T.M.A.)
- Correspondence: or
| |
Collapse
|
16
|
Obaidat R, Shameh AA, Aljarrah M, Hamed R. Preparation and Evaluation of Polyvinylpyrrolidone Electrospun Nanofiber Patches of Pioglitazone for the Treatment of Atopic Dermatitis. AAPS PharmSciTech 2022; 23:51. [PMID: 35013801 DOI: 10.1208/s12249-021-02204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Nanofibers have many promising biomedical applications. They can be used for designing transdermal and dermal drug delivery systems. This project aimed to prepare and characterize polyvinylpyrrolidone-based nanofibers as a dermal and transdermal drug delivery system using pioglitazone. Pioglitazone is an oral antidiabetic drug. In addition, it can act as an inflammatory process modulator, making it a good candidate for managing different skin inflammatory conditions such as atopic dermatitis, skin ulcers, and diabetic foot wound healing. Several nanofiber formulations were prepared using the electrospinning method at different drug loadings, polyvinylpyrrolidone concentrations, and flow rates. A cast film with the exact composition of selected nanofiber formulations was prepared as a control. Nanofibers were characterized using a scanning electron microscope to calculate the diameter. Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and powder X-ray diffraction were performed for physical and biochemical characterizations. In vitro release, drug loading efficiency, and swelling studies were performed. Ex vivo permeation studies were performed using Franz diffusion cells with or without applying a solid microneedle roller. Round uniform nanofibers with a smooth surface were obtained. The diameter of nanofibers was affected by the drug loading and polymer concentration. Fourier-transform infrared spectra showed a potential physical interaction between the drug and the polymer. According to X-ray diffraction, pioglitazone existed in an amorphous form in prepared nanofibers, with partial crystallinity in the casted film. Nanofibers showed a higher swelling rate compared to the casted film. The drug dissolution rate for nanofibers was 2.3-folds higher than the casted films. The polymer concentration affected the drug dissolution rate for nanofibers; however, drug loading and flow rate did not affect the drug dissolution rate for nanofibers. The application of solid microneedles slightly enhances the total amount of drug permeation. However, it did not affect the flux of the drug through the separated epidermis layer for pioglitazone. The drug permeation flux in nanofibers was approximately five times higher than the flux of the casted film. It was observed that pioglitazone is highly retained in skin layers. Graphical abstract.
Collapse
|
17
|
Lakka NS, Kuppan C, Ravinathan P, Palakurthi AK. Development and Validation of Liquid Chromatography - Tandem Mass Spectrometry Method for the estimation of Potential Genotoxic Impurity 2-(2-Chloroethoxy)ethanol in Hydroxyzine. Biomed Chromatogr 2022; 36:e5325. [PMID: 34993972 DOI: 10.1002/bmc.5325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
2-(2-Chloroethoxy)ethanol (CEE) belongs to the so-called cohort of concerns which were classified as a highly potent mutagenic carcinogen by the World Health Organization. CEE is widely used in the synthesis of essential anti-histamine drug hydroxyzine. Besides, it is used as primary solvent in the dyes, nitrocellulose, paints, inks and resins. Owing to its potential genotoxicity, an efficient liquid chromatography-tandem mass spectrometry method was developed for the quantitative estimation of CEE traces in an active pharmaceutical ingredient and in tablet dosage forms of hydroxyzine-free base. The chromatographic separation was achieved on C18 column using a gradient elution mode with a binary solvent system (ammonium formate and methanol). Mass detection was performed for the CEE using a positive mode with selected ion monitoring technique at m/z value of [M+NH4 ]+ . The developed method was validated as per the ICH guideline, the quantitation limit, linearity and recoveries were found to be 0.56 ppm, 0.56 ~ 7.49 ppm (r2 > 0.9985) and 93.6 ~ 99.3%, respectively. The proposed method was highly compatible and was worked effectively to estimate the CEE traces in different stages of drug synthesis and in tablet dosage forms of hydroxyzine for the routine and stability testing.
Collapse
Affiliation(s)
- Narasimha S Lakka
- Division of Chemistry, Department of Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research (VFSTR), Vadlamudi, Guntur (Dist.), India
| | - Chandrasekar Kuppan
- Division of Chemistry, Department of Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research (VFSTR), Vadlamudi, Guntur (Dist.), India
| | - Poornima Ravinathan
- Department of Science and Humanities JMJ College for Women, Guntur (Dist.), India
| | - Ashok Kumar Palakurthi
- Department of Analytical Research and Development, Aurex Laboratories LLC, East Windsor, NJ, USA
| |
Collapse
|
18
|
Shalaby K. Effect of Olive Oil Acidity on Skin Delivery of Diclofenac: In Vitro Evaluation and Ex Vivo Skin Permeability Studies. J Biomed Nanotechnol 2022; 18:234-242. [PMID: 35180917 DOI: 10.1166/jbn.2022.3219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Olive oil is a vegetable oil which has been successfully used as a skin penetrating agent. Acidity of olive oil is considered as one of the characteristic properties of olive oil. Olive oil acidity was selected as a parameter under investigation for evaluation of skin permeability. The acidities of the three investigated olive oils are varying from 0.75±0.16 to 2±0.17. Olive oil with acidity equals 2.0 showed the highest skin permeation for 12 h and cutaneous deposition with significant difference compared to the permeation values of 0.75 and F1.4 acidities. Results of cutaneous secretion of cytokines suggested that higher penetration was accompanied higher cytokines' secretions. Olive oil with acidity equals 2.0 also showed more prominent skin changes which suggested to be due to acidity and fatty acids' content. These results suggest that olive oil might improve the epidermal permeability, which is more pronounced in highly acidic olive oil, through weakening of skin barriers followed by acting of cytokines on re-building effective barriers. Finally, based on the current study, highly acidic olive oil is more efficient skin permeation enhancer vehicle than less acidic ones and can be efficiently used in formulation of cutaneous drug delivery systems.
Collapse
Affiliation(s)
- Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| |
Collapse
|
19
|
Farooq MU, Jalees MI, Hussain G, Anis M, Islam U. Health risk assessment of endocrine disruptor bisphenol A leaching from plastic bottles of milk and soft drinks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57090-57098. [PMID: 34081284 DOI: 10.1007/s11356-021-14653-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is of major concern to public health due to its toxic potential and xenoestrogenic endocrine-disrupting effect. One of the major sources of BPA comes from the plastic bottles used to pack milk and soft drinks. The purpose of the present study was to assess and compare the risk associated with BPA transfer from plastic bottles to milk and soft drinks being stored in summer and winter conditions. A sensitive and reliable method of solid phase extraction cartridge packed with multi-walled carbon nanotubes (MWCNTs) was employed. In milk samples (supplied in plastic bottles) of winter season, BPA levels were 0.17-0.32 mg/ kg. In milk samples of summer season, BPA levels were 0.77-1.59 mg/ kg. In soft drink samples of winter, BPA levels were between 0.14 and 0.3 mg/kg. While in 4-month-aged summer soft drink samples, BPA levels were 0.7-1.02 mg/kg of food. The daily exposure dose (DED) of BPA in milk samples of winter season was 1.42-2.67 μg/kg which was below the standard tolerable daily intake (TDI) of 50 μg of BPA/kg of body weight as per USEPA. The DED of BPA in milk samples of summer season was 5.58-10 μg/kg of body weight which was also less than TDI. For soft drink samples, BPA from winter samples was ranged from 1.17 to 1.67 μg/kg of body weight while for summer 4-month-aged samples was 2.5-7.08 μg/kg of body weight. Both types of samples were still less than TDI of BPA.
Collapse
Affiliation(s)
- Muhammad Umar Farooq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Muhammad Irfan Jalees
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Ghulam Hussain
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Mehwish Anis
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Ummara Islam
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| |
Collapse
|
20
|
Electrochemical Determination of Diclofenac by Using ZIF-67/g-C3N4 Modified Electrode. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/7896286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A facial differential pulse voltammetric procedure using a glassy carbon electrode modified with zeolite imidazolate framework-67/graphitic carbon nitride (ZIF-67/g-C3N4) for the diclofenac (DCF) determination is demonstrated. ZIF-67/g-C3N4 with different mass ratios of the components was synthesized in a self-assembly process. The obtained materials were characterized by using X-ray diffraction, scanning electron microscopy (SEM), EDX-mapping, and nitrogen adsorption/desorption isotherms. The peak current varies linearly with the DCF concentration in the range of 0.2–2.2 μmol·L−1 and has a detection limit of 0.071 μmol·L−1. The modified electrode exhibits acceptable repeatability, reproducibility, and selectivity towards DCF. The proposed electrode allows determining DCF in human urine without pretreatment, and the results are comparable with those determined with HPLC.
Collapse
|
21
|
Al-Khateeb LA, Dahas FA. Green method development approach of superheated water liquid chromatography for separation and trace determination of non-steroidal anti-inflammatory compounds in pharmaceutical and water samples and their extraction. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Quantification and Classification of Diclofenac Sodium Content in Dispersed Commercially Available Tablets by Attenuated Total Reflection Infrared Spectroscopy and Multivariate Data Analysis. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050440. [PMID: 34067002 PMCID: PMC8151404 DOI: 10.3390/ph14050440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022]
Abstract
A new methodology, based on Fourier transform infrared spectroscopy equipped with an attenuated total reflectance accessory (ATR FT-IR), was developed for the determination of diclofenac sodium (DS) in dispersed commercially available tablets using chemometric tools such as partial least squares (PLS) coupled with discriminant analysis (PLS-DA). The results of PLS-DA depicted a perfect classification of the tablets into three different groups based on their DS concentrations, while the developed model with PLS had a sufficiently low root mean square error (RMSE) for the prediction of the samples’ concentration (~5%) and therefore can be practically used for any tablet with an unknown concentration of DS. Comparison with ultraviolet/visible (UV/Vis) spectrophotometry as the reference method revealed no significant difference between the two methods. The proposed methodology exhibited satisfactory results in terms of both accuracy and precision while being rapid, simple and of low cost.
Collapse
|
23
|
Paw R, Hazarika M, Boruah PK, Kalita AJ, Guha AK, Das MR, Tamuly C. Highly sensitive and selective colorimetric detection of dual metal ions (Hg 2+ and Sn 2+) in water: an eco-friendly approach. RSC Adv 2021; 11:14700-14709. [PMID: 35424016 PMCID: PMC8697840 DOI: 10.1039/d0ra09926k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
Application of an alliin-based precursor for the synthesis of silver nanoparticles (Ag NPs) which is an emerging, reliable and rapid sensor of heavy metal ion contaminants in water is reported here. The Ag NPs were characterized by using UV-visible spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy analysis techniques. The Ag NPs simultaneously and selectively detect Hg2+ and Sn2+ ions from aqueous solution. The sensitivity and selectivity of the prepared Ag NPs towards other representative transition-metal ions, alkali metal ions and alkaline earth metal ions were also studied. For more precise evidence, a density functional theory study was carried out to understand the possible mechanism and interaction in the detection of Hg2+ and Sn2+ by Ag NPs. The limits of detection for Hg2+ and Sn2+ ions were found as 15.7 nM and 11.25 nM, respectively. This assay indicates the possible use of garlic extract-synthesized Ag NPs for sensing Hg2+ and Sn2+ in aqueous solution very significantly. So, the simple, green, eco-friendly and easy method to detect the dual metal ions may further lead to a potential sensor of heavy metal ion contaminants in water of industrial importance.
Collapse
Affiliation(s)
- Rintumoni Paw
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology Itanagar Arunachal Pradesh-791110 India
- Academic of Scientific & Innovative Research, CSIR-North East Institute of Science and Technology Jorhat Assam-785006 India
| | - Moushumi Hazarika
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology Itanagar Arunachal Pradesh-791110 India
| | - Purna K Boruah
- Material Science and Technology Division, CSIR-North East Institute of Science and Technology Jorhat Assam-785006 India
| | | | - Ankur K Guha
- Dept of Chemistry, Cotton University Guwahati Assam-781001 India
| | - Manash R Das
- Material Science and Technology Division, CSIR-North East Institute of Science and Technology Jorhat Assam-785006 India
| | - Chandan Tamuly
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology Itanagar Arunachal Pradesh-791110 India
- Academic of Scientific & Innovative Research, CSIR-North East Institute of Science and Technology Jorhat Assam-785006 India
| |
Collapse
|
24
|
Kumar M, Saini SS, Agrawal PK, Roy P, Sircar D. Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103738] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Analytical Quality by Design Approach of Reverse-Phase High-Performance Liquid Chromatography of Atorvastatin: Method Development, Optimization, Validation, and the Stability-Indicated Method. Int J Anal Chem 2021; 2021:8833900. [PMID: 33628253 PMCID: PMC7896856 DOI: 10.1155/2021/8833900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 12/05/2022] Open
Abstract
The use of analytical quality by design (AQbD) approach in the optimization of the high-performance liquid chromatography (RP-HPLC) method is a novel tool. Three factors and three levels of Box–Behnken statistical design (BBD) were used for method optimization and analysis of atorvastatin. The mobile phase (acetonitrile: water), flow rate (Rt), and UV wavelength were used as independent variables. Their effects were observed in the area of the chromatogram (AU), retention time (Rt, min), and tailing factor (%). The optimized HPLC condition was found as acetonitrile:water (50 : 50), flow rate (0.68 ml/min), and UV wave length (235 nm). It gives the retention time of 2.43 min with the linearity range of 5–30 μg/ml with a high regression value (r2 = 0.999). The method was found to be precise and accurate with low % RSD (<5%). The refrigeration stability indicated that atorvastatin was stable. The force degradation study showed that the atorvastatin was fully unstable in UV light and stable in 0.1 M basic condition. It concluded that this QbD optimized method is suitable for quantification of the atorvastatin from the formulation as well as pharmacokinetic parameters.
Collapse
|
26
|
Fahelelbom KMS, Saleh A, Mansour R, Sayed S. First derivative ATR-FTIR spectroscopic method as a green tool for the quantitative determination of diclofenac sodium tablets. F1000Res 2021; 9:176. [PMID: 32226614 PMCID: PMC7096217 DOI: 10.12688/f1000research.22274.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is a rapid quantitative method which has been applied for pharmaceutical analysis. This work describes the utility of first derivative ATR-FTIR spectroscopy in the quantitative determination of diclofenac sodium tablets. Methods: This analytical quantitative technique depends on a first derivative measurement of the area of infrared bands corresponding to the CO stretching range of 1550-1605 cm
-1. The specificity, linearity, detection limits, precision and accuracy of the calibration curve, the infrared analysis and data manipulation were determined in order to validate the method. The statistical results were compared with other methods for the quantification of diclofenac sodium. Results: The excipients in the commercial tablet preparation did not interfere with the assay. Excellent linearity was found for the drug concentrations in the range 0.2 – 1.5 w/w %. (r
2= 0.9994). Precision of the method was assessed by the repeated analysis of diclofenac sodium tablets; the results obtained showed small standard deviation and relative standard deviation values, which indicates that the method is quite precise. The high percentage of recovery of diclofenac sodium tablets (99.81, 101.54 and 99.41%) demonstrate the compliance of the obtained recoveries with the pharmacopeial percent recovery. The small limit of detection and limit of quantification values (0.0528 and 0.1599 w/w %, respectively) obtained by this method indicate the high sensitivity of the method. Conclusions: First derivative ATR-FTIR spectroscopy showed high accuracy and precision, is considered as nondestructive, green, low cost and rapid, and can be applied easily for the pharmaceutical quantitative determination of diclofenac sodium tablet formulations.
Collapse
Affiliation(s)
- Khairi M S Fahelelbom
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, P.O. Box 64141, Al Ain, United Arab Emirates
| | - Abdullah Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, P.O. Box 64141, Al Ain, United Arab Emirates.,Department of Chemistry, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Ramez Mansour
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, P.O. Box 64141, Al Ain, United Arab Emirates
| | - Sadik Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, P.O. Box 64141, Al Ain, United Arab Emirates
| |
Collapse
|
27
|
Amra S, Bourouina M, Bourouina Bacha S, Hauchard D. Preconcentration and Successful Selective Detection of Traces of Diclofenac in Water using a Nanostructured Modified Carbon Paste Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Siham Amra
- Département de Chimie, Faculté des Sciences Exactes Université A. Mira Bejaia 06000 Algérie
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR6226 F-35000 Rennes France
| | - Mustapha Bourouina
- Département de Chimie, Faculté des Sciences Exactes Université A. Mira Bejaia 06000 Algérie
| | - Saliha Bourouina Bacha
- Département de Génie des procédés, Faculté de technologie Université A. Mira Bejaia 06000 Algérie
| | - Didier Hauchard
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR6226 F-35000 Rennes France
| |
Collapse
|
28
|
Ferreira NN, Boni FI, Baltazar F, Gremião MP. Validation of an innovative analytical method for simultaneous quantification of alpha-cyano-4-hydroxycinnamic acid and the monoclonal antibody cetuximab using HPLC from PLGA-based nanoparticles. J Pharm Biomed Anal 2020; 190:113540. [DOI: 10.1016/j.jpba.2020.113540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
|
29
|
In Vitro Dissolution Study of Acetylsalicylic Acid and Clopidogrel Bisulfate Solid Dispersions: Validation of the RP-HPLC Method for Simultaneous Analysis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solid dispersions were prepared via a solvent evaporation method, employing ethanol (96%, v/v) as solvent, with three different polymers as carrier: povidone, copovidone, and poloxamer 407. Previously developed reversed-phase HPLC (RP-HPLC) methods were modified and used for the simultaneous determination of acetylsalicylic acid and clopidogrel bisulfate and after release from solid dispersions. Chromatography was carried out on a C-18 column, with a mobile phase of acetonitrile–methanol–phosphate buffer pH 3.0, UV detection at 240 nm, and a run time of 6 min. The method was validated according to International Conference of Harmonisation guidelines and validation included specificity, accuracy, precision, linearity, robustness, limit of detection (LOD), and limit of quantification (LOQ). The method is specific for determination of acetylsalicylic acid and clopidogrel bisulfate. The linearity was provided in the concentration range 0.0275–0.1375 mg/mL for acetylsalicylic acid and 0.0200–0.1000 mg/mL for clopidogrel bisulfate, with a correlation coefficient (R2 value) of 0.9999 for both active pharmaceutical ingredients (APIs). Accuracy was confirmed by calculated recoveries for acetylsalicylic acid (98.6–101.0%) and clopidogrel bisulfate (100.0–101.6%). The intra-day and the inter-day precision-calculated relative standard deviations are less than 1%, which indicates high precision of the method. The limits of detection and quantification for acetylsalicylic acid were 0.0004 and 0.0012 mg/mL, and for clopidogrel bisulfate 0.0002 mg/mL and 0.0007 mg/mL, respectively. Small variations in chromatographic conditions did not significantly affect qualitative and quantitative system responses, which proved robustness of method. The proposed RP-HPLC method was applied for simultaneous determination of clopidogrel bisulfate and acetylsalicylic acid from solid dispersions.
Collapse
|
30
|
Fahelelbom KMS, Saleh A, Mansour R, Sayed S. First derivative ATR-FTIR spectroscopic method as a green tool for the quantitative determination of diclofenac sodium tablets. F1000Res 2020; 9:176. [PMID: 32226614 PMCID: PMC7096217 DOI: 10.12688/f1000research.22274.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 06/14/2024] Open
Abstract
Background: Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is a rapid quantitative method which has been applied for pharmaceutical analysis. This work describes the utility of first derivative ATR-FTIR spectroscopy in the quantitative determination of diclofenac sodium tablets. Methods: This analytical quantitative technique depends on a first derivative measurement of the area of infrared bands corresponding to the CO stretching range of 1550-1605 cm -1. The specificity, linearity, detection limits, precision and accuracy of the calibration curve, the infrared analysis and data manipulation were determined in order to validate the method. The statistical results were compared with other methods for the quantification of diclofenac sodium. Results: The excipients in the commercial tablet preparation did not interfere with the assay. Excellent linearity was found for the drug concentrations in the range 0.2 - 1.5 w/w %. (r 2= 0.9994). Precision of the method was assessed by the repeated analysis of diclofenac sodium tablets; the results obtained showed small standard deviation and relative standard deviation values, which indicates that the method is quite precise. The high percentage of recovery of diclofenac sodium tablets (99.81, 101.54 and 99.41%) demonstrate the compliance of the obtained recoveries with the pharmacopeial percent recovery. The small limit of detection and limit of quantification values (0.0528 and 0.1599 w/w %, respectively) obtained by this method indicate the high sensitivity of the method. Conclusions: First derivative ATR-FTIR spectroscopy showed high accuracy and precision, is considered as nondestructive, green, low cost and rapid, and can be applied easily for the pharmaceutical quantitative determination of diclofenac sodium tablet formulations.
Collapse
Affiliation(s)
- Khairi M. S. Fahelelbom
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, P.O. Box 64141, Al Ain, United Arab Emirates
| | - Abdullah Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, P.O. Box 64141, Al Ain, United Arab Emirates
- Department of Chemistry, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Ramez Mansour
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, P.O. Box 64141, Al Ain, United Arab Emirates
| | - Sadik Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, P.O. Box 64141, Al Ain, United Arab Emirates
| |
Collapse
|
31
|
Parys W, Pyka-Pająk A, Dołowy M. Application of Thin-Layer Chromatography in Combination with Densitometry for the Determination of Diclofenac in Enteric Coated Tablets. Pharmaceuticals (Basel) 2019; 12:ph12040183. [PMID: 31888153 PMCID: PMC6958427 DOI: 10.3390/ph12040183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/28/2022] Open
Abstract
Diclofenac belongs to the drug class non-steroidal anti-inflammatory drugs widely used in Europe as well as all over the world. Thus, it is important to conduct research on its quality control of available pharmaceutical preparations like for example enteric coated tablets. Among various analytical techniques, thin-layer chromatography (TLC) is ideal for this task due to their short time analysis, ease of operation and low cost. Hence, the aim of this study was to develop the optimal conditions of analysis and quantitative determination of diclofenac sodium in enteric tablets by using TLC in combination with densitometry. Of all chromatographic systems tested, the best is the one which consists of silica gel 60F254 and cyclohexane: chloroform:methanol:glacial acetic acid (6:3:0.5:0.5 v/v) as the mobile phase, which allows the successful separation of examined diclofenac sodium as active component and the largest number (twelve) of its degradation products as potential impurities of its pharmaceutical products. This indicates that the newly developed method is more effective than previously reported assays by Starek and Krzek. Linearity range was found to be 4.00–18.00 μg/spot for diclofenac sodium. The results of the assay of enteric tablet formulations equals 98.8% of diclofenac sodium in relation to label claim is in a good agreement with pharmaceutical requirements.
Collapse
Affiliation(s)
- Wioletta Parys
- Correspondence: (W.P.), (A.P.-P.); Tel.: +48-32-364-15-34 (W.P.); +48-32-364-15-30 (A.P.-P.); Fax: +48-32-364-16-93 (W.P.)
| | - Alina Pyka-Pająk
- Correspondence: (W.P.), (A.P.-P.); Tel.: +48-32-364-15-34 (W.P.); +48-32-364-15-30 (A.P.-P.); Fax: +48-32-364-16-93 (W.P.)
| | | |
Collapse
|
32
|
Alqahtani FY, Aleanizy FS, Tahir EE, Alquadeib BT, Alsarra IA, Alanazi JS, Abdelhady HG. Preparation, characterization, and antibacterial activity of diclofenac-loaded chitosan nanoparticles. Saudi Pharm J 2019; 27:82-87. [PMID: 30662310 PMCID: PMC6323144 DOI: 10.1016/j.jsps.2018.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/28/2018] [Indexed: 11/22/2022] Open
Abstract
Emerging antibiotic resistance necessitates the development of new therapeutic approaches. Many studies have reported the antimicrobial activity of diclofenac sodium (DIC) and chitosan nanoparticles (CNPs). Hence, this study aimed to prepare non-antibiotic DIC-loaded CNPs (DIC.CNPs) and characterize their in vitro antibacterial activity. DIC.CNPs were prepared from low and high molecular weight (LMW and HMW, respectively) chitosan using an ionic gelation method. Prepared NPs were characterized, and their antibacterial activity against gram-positive Staphylococcus aureus and Bacillus subtilis was evaluated using the agar diffusion and broth dilution methods. The particle size, polydispersity index (PDI), and encapsulation efficiency of the formulated DIC.CNPs increased with increasing MW of chitosan. The prepared NPs showed a narrow size distribution with low PDI values (0.18 and 0.24) and encapsulation efficiency (29.3% and 31.1%) for LMW.DIC.CNPs and HMW.DIC.CNPs, respectively. The in vitro release profile of DIC from the DIC.CNPs was biphasic with a burst release followed by slow release and was influenced by the MW of chitosan. DIC.CNPs exhibited significantly higher antibacterial activity against S. aureus (minimum inhibitory concentration [MIC90] LMW.DIC.CNPs = 35 µg/mL and MIC90 HMW.DIC.CNPs = 18 µg/mL) and B. subtilis (MIC90 LMW.DIC.CNPs = 17.5 µg/mL and MIC90 HMW.DIC.CNPs = 9 µg/mL) than DIC alone did (MIC90 DIC = 250 and 50 µg/mL against S. aureus and B. subtilis, respectively). The antibacterial activity was influenced by pH and the MW of chitosan. Collectively, these results may suggest the potential usefulness of DIC.CNPs as non-antibiotic antibacterial agent necessitating further future studies to asses the stability of DIC.CNPs prepared.
Collapse
Affiliation(s)
- Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eram El Tahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra T. Alquadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jouri S. Alanazi
- Pharmaceutical Care Department, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Hosam Gharib Abdelhady
- Biophysics and Surface Analysis, College of Pharmacy, Taibah University, Almadinah Almunawarrah, Saudi Arabia
| |
Collapse
|