1
|
Sarangi A, Das BS, Sahoo A, Jena B, Patnaik G, Giri S, Chattopadhyay D, Bhattacharya D. Deciphering the Antibiofilm, Antibacterial, and Antioxidant Potential of Essential Oil from Indian Garlic and its Phytocompounds Against Foodborne Pathogens. Curr Microbiol 2024; 81:245. [PMID: 38940852 DOI: 10.1007/s00284-024-03753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Garlic (Allium sativum L.), particularly its volatile essential oil, is widely recognized for medicinal properties. We have evaluated the efficacy of Indian Garlic Essential Oil (GEO) for antimicrobial and antibiofilm activity and its bioactive constituents. Allyl sulfur-rich compounds were identified as predominant phytochemicals in GEO, constituting 96.51% of total volatile oils, with 38% Diallyl trisulphide (DTS) as most abundant. GEO exhibited significant antibacterial activity against eleven bacteria, including three drug-resistant strains with minimum inhibitory concentrations (MICs) ranging from 78 to 1250 µg/mL. In bacterial growth kinetic assay GEO effectively inhibited growth of all tested strains at its ½ MIC. Antibiofilm activity was evident against two important human pathogens, S. aureus and P. aeruginosa. Mechanistic studies demonstrated that GEO disrupts bacterial cell membranes, leading to the release of nucleic acids, proteins, and reactive oxygen species. Additionally, GEO demonstrated potent antioxidant activity at IC50 31.18 mg/mL, while its isolated constituents, Diallyl disulphide (DDS) and Diallyl trisulphide (DTS), showed effective antibacterial activity ranging from 125 to 500 µg/mL and 250-1000 µg/mL respectively. Overall, GEO displayed promising antimicrobial and antibiofilm activity against enteric bacteria, suggesting its potential application in the food industry.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Bhabani Shankar Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Biswajit Jena
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Gautam Patnaik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sidhartha Giri
- ICMR-Regional Medical Research Centre (RMRC), Bhubaneswar, Odisha, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India.
| | - Debapriya Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
2
|
Dias Barroso FD, da Silva LJ, Queiroz HA, do Amaral Valente Sá LG, da Silva AR, da Silva CR, de Andrade Neto JB, Cavalcanti BC, de Moraes MO, Pinazo A, Pérez L, Nobre Júnior HV. Biosurfactant complexed with arginine has antibiofilm activity against methicillin-resistant Staphylococcus aureus. Future Microbiol 2024; 19:667-679. [PMID: 38864708 PMCID: PMC11259079 DOI: 10.2217/fmb-2023-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 06/13/2024] Open
Abstract
Aim: The present study investigated the antimicrobial effectiveness of a rhamnolipid complexed with arginine (RLMIX_Arg) against planktonic cells and biofilms of methicillin-resistant Staphylococcus aureus (MRSA). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol: M07-A10, checkerboard test, biofilm in plates and catheters and flow cytometry were used. Result: RLMIX_Arg has bactericidal and synergistic activity with oxacillin. RLMIX_Arg inhibits the formation of MRSA biofilms on plates at sub-inhibitory concentrations and has antibiofilm action against MRSA in peripheral venous catheters. Catheters impregnated with RLMIX_Arg reduce the formation of MRSA biofilms. Conclusion: RLMIX_Arg exhibits potential for application in preventing infections related to methicillin-resistant S. aureus biofilms.
Collapse
Affiliation(s)
- Fatima Daiana Dias Barroso
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Helaine Almeida Queiroz
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Cecília Rocha da Silva
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Bruno Coêlho Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aurora Pinazo
- Department of Surfactants & Nanobiotechnology, IQAC-CSIC, Barcelona, Spain
| | - Lourdes Pérez
- Department of Surfactants & Nanobiotechnology, IQAC-CSIC, Barcelona, Spain
| | - Hélio Vitoriano Nobre Júnior
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Li Y, Zhou Y, Liu H, Wei C, Chen S, Hua Z, Xu Y, Wu Y, Li W. Correlation Between Different Antidiarrheal Treatments and Changes in Chemical Components of Allii Sativi Bulbus Before and After Steaming Treatment Based on Flora Sequencing and In Vitro Experiments. J Med Food 2022; 25:971-981. [PMID: 36194071 DOI: 10.1089/jmf.2021.k.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the changes in the main active ingredients and pharmacodynamic differences in the therapeutic effect of garlic before and after steaming and the correlation between them. The main active ingredients in raw garlic products (RGPs) and steamed garlic products (SGPs) were determined by high-pressure liquid chromatography and ultraviolet spectroscopy. Acute rapid diarrhea (AD) and antibiotic-induced diarrhea (DD) models were established in rats, and each group was treated with RGP and SGP, respectively. The main chemical components of garlic changed before and after steaming. Garlicin and alliinase were only found in RGP, whereas only alliin was found in SGP. Both RGP and SGP contained garlic polysaccharides. For in vivo experiments on AD, the average rate of loose stools was 100.00 ± 0.00, 31.55 ± 11.76, and 19.14 ± 6.62 in the RGP high-dose and SGP high-dose treatment groups, respectively; in DD, the rates were 91.11 ± 14.40, 19.33 ± 3.63, and 30.56 ± 4.30, respectively (P < .01, treatment vs. model groups). In AD, the average grade of loose stools was 2.33 ± 0.52 and 1.83 ± 0.75 in the model and RGP high-dose treatment groups, respectively (P < .05); in DD, the values were 2.17 ± 0.41 in the model group and 1.67 ± 0.52 in the SGP high-dose treatment group (P < .05). RGP had a better therapeutic effect on AD, mainly related to the antibacterial effect of garlicin in RGP. SGP had a better therapeutic effect on DD, mainly related to the alliin and garlic polysaccharide in SGP. This study could provide evidence to support the clinical use of garlic.
Collapse
Affiliation(s)
- Yarong Li
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaqian Zhou
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanjin Liu
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenxu Wei
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuli Chen
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengying Hua
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Wu
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- College of Pharmacy, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Bhattacharya S, Chakraborty P, Sen D, Bhattacharjee C. Kinetics of bactericidal potency with synergistic combination of allicin and selected antibiotics. J Biosci Bioeng 2022; 133:567-578. [PMID: 35339353 DOI: 10.1016/j.jbiosc.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Synergistic therapy against the resurgence of bacterial pathogenesis is a modern trend for antibacterial chemotherapy. The phytochemical allicin, found in garlic extract is a commendable antimicrobial agent that can be used in synergistic combination with modern antibiotics. Determination of optimal antibacterial combination for the target species is vital for maximizing efficacy, lowering toxicity, total eradication of the bacterial cells and minimization of the risk of resistance generation. In this present investigation, Hill function-based pharmacodynamics models were employed to elaborate various time-kill kinetics parameters. The bactericidal potency of the synergistic combinations of allicin and individual antibiotic was assessed in comparison to their monotherapy application viz. using sole allicin and sole antibiotics (levofloxacin, ciprofloxacin, oxytetracycline, rifaximin, ornidazole and azithromycin) on actively growing Bacillus subtilis and Escherichia coli bacteria. Here, all the synergistic combinations showed significantly better (t-test p-value < 0.05) killing effect and biofilm reduction potential compared to their respective monotherapy application, where the highest killing effect was observed with rifaximin-allicin combination (kill rate was more than 5.5 h-1). Moreover, the average inhibition potential to protein denaturation by the synergistic combination group was significantly higher (3.4 fold) than the sole antibiotic's group manifests reduction in the dose-related toxicity. The potential of synergism between antibiotics and allicin combination demonstrated greater killing efficiency at significantly lower concentration compared to monotherapy with increased kill rates in all cases.
Collapse
Affiliation(s)
| | - Pallavi Chakraborty
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Dwaipayan Sen
- Department of Chemical Engineering, Heritage Institute of Technology, Kolkata 700107, India.
| | | |
Collapse
|
6
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Antidiarrheal and Antibacterial Activities of Monterey Cypress Phytochemicals: In Vivo and In Vitro Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020346. [PMID: 35056664 PMCID: PMC8780600 DOI: 10.3390/molecules27020346] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Monterey cypress (Cupressus macrocarpa) is a decorative plant; however, it possesses various pharmacological activities. Therefore, we explored the phytochemical profile of C. macrocarpa root methanol extract (CRME) for the first time. Moreover, we investigated its antidiarrheal (in vivo), antibacterial, and antibiofilm (in vitro) activities against Salmonella enterica clinical isolates. The LC-ESI-MS/MS analysis of CRME detected the presence of 39 compounds, besides isolation of 2,3,2″,3″-tetrahydro-4'-O-methyl amentoflavone, amentoflavone, and dihydrokaempferol-3-O-α-l-rhamnoside for the first time. Dihydrokaempferol-3-O-α-l-rhamnoside presented the highest antimicrobial activity and the range of values of MICs against S. enterica isolates was from 64 to 256 µg/mL. The antidiarrheal activity of CRME was investigated by induction of diarrhea using castor oil, and exhibited a significant reduction in diarrhea and defecation frequency at all doses, enteropooling (at 400 mg/kg), and gastrointestinal motility (at 200, 400 mg/kg) in mice. The antidiarrheal index of CRME increased in a dose-dependent manner. The effect of CRME on various membrane characters of S. enterica was studied after typing the isolates by ERIC-PCR. Its impact on efflux and its antibiofilm activity were inspected. The biofilm morphology was observed using light and scanning electron microscopes. The effect on efflux activity and biofilm formation was further elucidated using qRT-PCR. A significant increase in inner and outer membrane permeability and a significant decrease in integrity and depolarization (using flow cytometry) were detected with variable percentages. Furthermore, a significant reduction in efflux and biofilm formation was observed. Therefore, CRME could be a promising source for treatment of gastrointestinal tract diseases.
Collapse
|
8
|
Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytonutrients are plant foods that contain many natural bioactive compounds, called phytochemicals, which show specific biological activities. These phytonutrients and their phytochemicals may play an important role in health care maintaining normal organism functions (as preventives) and fighting against diseases (as therapeutics). Phytonutrients’ components are the primary metabolites (i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary metabolites (i.e., phenolics, alkaloids, organosulfides, and terpenes). For years, several phytonutrients and their phytochemicals have demonstrated specific pharmacological and therapeutic effects in human health such as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune response. This review summarizes the effects of the most studied or the most popular phytonutrients (i.e., turmeric, garlic, cinnamon, graviola, and oregano) and any reported contraindications. This article also presents the calculated physicochemical properties of the main phytochemicals in the selected phytonutrients using Lipinski’s, Veber’s, and Ghose’s rules. Based on our revisions for this article, all these phytonutrients have consistently shown great potential as preventives and therapeutics on many diseases in vitro, in vivo, and clinical studies.
Collapse
|
9
|
Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial Properties of Organosulfur Compounds of Garlic ( Allium sativum). Front Microbiol 2021; 12:613077. [PMID: 34394014 PMCID: PMC8362743 DOI: 10.3389/fmicb.2021.613077] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Garlic (Allium sativum), a popular food spice and flavoring agent, has also been used traditionally to treat various ailments especially bacterial infections for centuries in various cultures around the world. The principal phytochemicals that exhibit antibacterial activity are oil-soluble organosulfur compounds that include allicin, ajoenes, and allyl sulfides. The organosulfur compounds of garlic exhibit a range of antibacterial properties such as bactericidal, antibiofilm, antitoxin, and anti-quorum sensing activity against a wide range of bacteria including multi-drug resistant (MDR) strains. The reactive organosulfur compounds form disulfide bonds with free sulfhydryl groups of enzymes and compromise the integrity of the bacterial membrane. The World Health Organization (WHO) has recognized the development of antibiotic resistance as a global health concern and emphasizes antibiotic stewardship along with the urgent need to develop novel antibiotics. Multiple antibacterial effects of organosulfur compounds provide an excellent framework to develop them into novel antibiotics. The review provides a focused and comprehensive portrait of the status of garlic and its compounds as antibacterial agents. In addition, the emerging role of new technologies to harness the potential of garlic as a novel antibacterial agent is discussed.
Collapse
Affiliation(s)
- Sushma Bagde Bhatwalkar
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Rajesh Mondal
- Indian Council of Medical Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Jamila Khatoon Adam
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Patrick Govender
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rajaneesh Anupam
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
10
|
Abstract
With the increasing use of joint replacement surgery, the prevalence of periprosthetic joint infections (PJI) has also increased. However, treating PJI has become a challenge for orthopaedic surgeons because of the prevalence of multi-drug resistant (MDR) bacteria and the formation of protective biofilms. Numerous studies have shown that garlic extract (GE) has antibacterial activities and might be a good candidate for PJI treatment. This review explores the antibacterial and antibiofilm activities of GE and its potential to be used in the treatment of PJI.
Collapse
Affiliation(s)
- Xing-Yang Zhu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.,Department of Orthopaedics, Yichuan People's Hospital, Luoyang, Henan Province, China
| | - Yi-Rong Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Galdiero E, Di Onofrio V, Maione A, Gambino E, Gesuele R, Menale B, Ciaravolo M, Carraturo F, Guida M. Allium ursinum and Allium oschaninii against Klebsiella pneumoniae and Candida albicans Mono- and Polymicrobic Biofilms in In Vitro Static and Dynamic Models. Microorganisms 2020; 8:microorganisms8030336. [PMID: 32120894 PMCID: PMC7143215 DOI: 10.3390/microorganisms8030336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
The present study assesses the in vitro antibiofilm potential activity of extracts of wild Allium ursinum and Allium oschaninii. The active ingredients of the extracts were obtained with a technique named Naviglio (rapid solid-liquid dynamic extraction, RSLDE) which is based on an innovative and green solid-liquid extraction methodology. The extracts were tested against models of mono- and polymicrobial biofilm structures of clinically antibiotic-resistant pathogens, Klebsiella pneumoniae ATCC 10031 and Candida albicans ATCC 90028. Biofilms were studied using a static and a dynamic model (microtiter plates and a CDC reactor) on three different surfaces reproducing what happens on implantable medical devices. Antimicrobic activities were determined through minimum inhibitory concentration (MIC), while antibiofilm activity was assessed by minimum biofilm eradication concentration (MBEC) using a crystal violet (CV) biofilm assay and colony forming unit (CFU) counts. Results showed that both Allium extracts eradicated biofilms of the tested microorganisms well; biofilms on Teflon were more susceptible to extracts than those on polypropylene and polycarbonate, suggesting that when grown on a complex substrate, biofilms may be more tolerant to antibiotics. Our data provide significant advances on antibiotic susceptibility testing of biofilms grown on biologically relevant materials for future in vitro and in vivo applications.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
- Correspondence: (E.G.); (V.D.O.)
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples Parthenope, Business District, Block C4, 80143 Naples, Italy
- Correspondence: (E.G.); (V.D.O.)
| | - Angela Maione
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Edvige Gambino
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Renato Gesuele
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Bruno Menale
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Martina Ciaravolo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia; 80100 Naples, Italy;
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| |
Collapse
|