1
|
Salsabila S, Khairinisa MA, Wathoni N, Sufiawati I, Mohd Fuad WE, Khairul Ikram NK, Muchtaridi M. In vivo toxicity of chitosan-based nanoparticles: a systematic review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:1-15. [PMID: 39924869 DOI: 10.1080/21691401.2025.2462328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Chitosan nanoparticles have been extensively utilised as polymeric drug carriers in nanoparticles formulations due to their potential to enhance drug delivery, efficacy, and safety. Numerous toxicity studies have been previously conducted to assess the safety profile of chitosan-based nanoparticles. These toxicity studies employed various methodologies, including test animals, interventions, and different routes of administration. This review aims to summarise research on the safety profile of chitosan-based nanoparticles in drug delivery, with a focus on general toxicity tests to determine LD50 and NOAEL values. It can serve as a repository and reference for chitosan-based nanoparticles, facilitating future research and further development of drugs delivery system using chitosan nanoparticles. Publications from 2014 to 2024 were obtained from PubMed, Scopus, Google Scholar, and ScienceDirect, in accordance with the inclusion and exclusion criteria.The ARRIVE 2.0 guidelines were employed to evaluate the quality and risk-of-bias in the in vivo toxicity studies. The results demonstrated favourable toxicity profiles, often exhibiting reduced toxicity compared to free drugs or substances. Acute toxicity studies consistently reported high LD50 values, frequently exceeding 5000 mg/kg body weight, while subacute studies typically revealed no significant adverse effects. Various routes of administration varied, including oral, intravenous, intraperitoneal, inhalation, and topical, each demonstrating promising safety profiles.
Collapse
Affiliation(s)
- Shela Salsabila
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irna Sufiawati
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Wan Ezumi Mohd Fuad
- Programme of Biomedicine, School of Health Sciences, USM Health Campus, Kubang Kerian, Kelantan, Malaysia
| | | | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
2
|
Li Y, Gu Y, Li J, Liu L, Zhang X, Bai Z, Zhang C, Gu T, Yang J. Advanced therapeutic strategy: A single-dose injection of a dual-loaded 6-mercaptopurine gelatin-based hydrogel for effective inhibition of tumor growth. Int J Biol Macromol 2025; 303:140528. [PMID: 39904445 DOI: 10.1016/j.ijbiomac.2025.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
The suboptimal aqueous solubility and pronounced systemic toxicity pose significant constraints on the clinical utility of 6-mercaptopurine (6-MP). This study presents an innovative approach using injectable sustained-release hydrogels for localized drug delivery. A gelatin-based anticancer hydrogel (Gel-MP@Gel@6-MP) was developed to deliver 6-MP through both physical encapsulation and chemical coupling via CS bonds, providing a multistage sustained release platform. In vitro experiments demonstrated that physically encapsuled drug achieved rapid release within 4 h, comparable to intravenous administration kinetics. Furthermore, in the presence of glutathione (GSH), nucleophilic attack triggered slow release of S-(6-purinyl) glutathione (PG) and a minor amount of 6-MP, with sustained release observed for up to 96 h. This suggests that, in contrast to conventional delivery methods, the proposed system not only facilitates an initial high-concentration drug release lasting hours, but also enables the sustained release of drug fragments over an extended period of several days, owing to the gradual cleavage of chemical bonds following one single injection. Ultimately, in vivo antitumor studies revealed superior tumor inhibition with Gel-MP@Gel@6-MP compared to free 6-MP. This dual drug loading strategy significantly prolongs drug action duration and obviates the necessity for repeated drug administrations, thereby revealing the diverse modes of drug administration.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Yiming Gu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Jian Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Lijie Liu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Xin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhimin Bai
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Chen Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Tao Gu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China.
| | - Jingyue Yang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
Zoe LH, David SR, Rajabalaya R. Chitosan nanoparticle toxicity: A comprehensive literature review of in vivo and in vitro assessments for medical applications. Toxicol Rep 2023; 11:83-106. [PMID: 38187113 PMCID: PMC10767636 DOI: 10.1016/j.toxrep.2023.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 01/09/2024] Open
Abstract
Topic definition This literature review aims to update the current knowledge on toxicity of chitosan nanoparticles, compare the recent findings and identify the gaps with knowledge that is present for the chitosan nanoparticles. Methods The publications between 2010 and 2020 were searched in Science Direct, Pubmed.gov, Google Scholar, Research Gate, and ClinicalTrials.gov, according to the inclusion and exclusion criteria. 30 primary research studies were obtained from the literature review to compare the in vitro in vivo toxicity profiles among the chitosan nanoparticles. Major highlights Chitosan nanoparticles and other types of nanoparticles show cytotoxic effects on cancer cells while having minimal toxicity on normal cells. This apparent effect poses some considerations for use in incorporating cancer therapeutics into chitosan nanoparticles as an administration form. The concentration, duration of exposure, and pH of the solution can influence nanoparticle cytotoxicity, particularly in zebrafish. Different cell lines exhibit varying degrees of toxicity when exposed to nanoparticles, and of note are liver cells that show toxicity under exposure as indicated by increased alanine transaminase (ALT) levels. Aside from ALT, platelet aggregation can be considered a toxicity induced by chitosan nanoparticles. In addition, zebrafish cells experience the most toxicity, including organ damage, neurobehavioral impairment, and developmental abnormalities, when exposed to nanoparticles. However, nanoparticles may exhibit different toxicity profiles in different organisms, with brain toxicity and liver toxicity being present in zebrafish but not rats. Different organs exhibit varying degrees of toxicity, with the eye and mouth apparently having the lowest toxicity, while the brain, intestine, muscles and lung showing mixed results. Cardiotoxicity induced by chitosan nanoparticles was not observed in zebrafish embryos, and nanoparticles may reduce cardiotoxicity when delivering drug. Toxicity found in an organ may not necessarily mean that it is toxic towards all the cells found in that organ, as muscle toxicity was present when tested in zebrafish but not in C2C12 myoblast cells. Some of the studies conducted may have limitations that need to be reconsidered to account for differing results, with some examples being two experiments done on HeLa cells where one study concluded chitosan nanoparticles were toxic to the cells while the other seems to have no toxicity present. With regards to LD50, one study has stated the concentration of 64.21 mg/ml was found. Finally, smaller nanoparticles generally exhibit higher toxicity in cells compared to larger nanoparticles. Scope for future work This literature review did not uncover any published clinical trials with available results. Subsequent research endeavors should prioritize conducting clinical trials involving human volunteers to directly assess toxicity, rather than relying on cell or animal models.
Collapse
Affiliation(s)
- Liaw Hui Zoe
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| | - Sheba R. David
- School of Pharmacy, University of Wyoming, Laramie, WY 82071, USA
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
4
|
Szyk P, Czarczynska-Goslinska B, Mlynarczyk DT, Ślusarska B, Kocki T, Ziegler-Borowska M, Goslinski T. Polymer-Based Nanoparticles as Drug Delivery Systems for Purines of Established Importance in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2647. [PMID: 37836288 PMCID: PMC10574807 DOI: 10.3390/nano13192647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Many purine derivatives are active pharmaceutical ingredients of significant importance in the therapy of autoimmune diseases, cancers, and viral infections. In many cases, their medical use is limited due to unfavorable physicochemical and pharmacokinetic properties. These problems can be overcome by the preparation of the prodrugs of purines or by combining these compounds with nanoparticles. Herein, we aim to review the scientific progress and perspectives for polymer-based nanoparticles as drug delivery systems for purines. Polymeric nanoparticles turned out to have the potential to augment antiviral and antiproliferative effects of purine derivatives by specific binding to receptors (ASGR1-liver, macrophage mannose receptor), increase in drug retention (in eye, intestines, and vagina), and permeation (intranasal to brain delivery, PEPT1 transport of acyclovir). The most significant achievements of polymer-based nanoparticles as drug delivery systems for purines were found for tenofovir disoproxil in protection against HIV, for acyclovir against HSV, for 6-mercaptopurine in prolongation of mice ALL model life, as well as for 6-thioguanine for increased efficacy of adoptively transferred T cells. Moreover, nanocarriers were able to diminish the toxic effects of acyclovir, didanosine, cladribine, tenofovir, 6-mercaptopurine, and 6-thioguanine.
Collapse
Affiliation(s)
- Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| |
Collapse
|
5
|
Ergin AD, Oltulu Ç, Koç B. Enhanced Cytotoxic Activity of 6-Mercaptopurine-Loaded Solid Lipid Nanoparticles in Hepatic Cancer Treatment. Assay Drug Dev Technol 2023; 21:212-221. [PMID: 37417972 DOI: 10.1089/adt.2023.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
6-Mercaptopurine (6-MCP) is an antiproliferative purine analog used in acute lymphoblastic leukemia, non-Hodgkin lymphoma, and inflammatory bowel disease (Crohn's disease, ulcerative colitis). Although 6-MCP has the great therapeutic potential for cancer and immunosuppressant-related diseases, 6-MCP is not readily soluble in water, presents a high first-pass effect, short half-life (0.5-1.5 h), and implies a low bioavailability (16%). On the contrary, solid lipid nanoparticles (SLNs) are prepared from solid lipids at room temperature and body temperature. In this study, SLNs were prepared w/o/w double emulsion-solvent evaporation method using Precirol ATO5 as matrix lipid. In the emulsion stabilization, surfactant (Tween 80) and polymeric stabilizer (polyvinyl alcohol [PVA]) were used. Two group formulations using Tween 80 and PVA were compared in terms of particle size, polydispersity index, zeta potential encapsulation efficiency%, and process yield%. Differential calorimetric analysis and release properties were examined for optimum formulation, and release kinetics were calculated. According to studies, sustained release was obtained with SLNs by the Korsmayer-Peppas kinetic model. The in vitro cytotoxicity studies were performed on the hepatocarcinoma (HEP3G) cell line. According to the results, successful SLN formulations were produced, and PVA was found best stabilizer. Optimum formulation exhibited significantly higher cytotoxic effects on HEP3G than on pure 6-MCP. These results demonstrated that solid lipid nanodrug delivery systems have great potential for formulation of 6-MCP.
Collapse
Affiliation(s)
- Ahmet Doğan Ergin
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey
- Department of Pharmaceutical Technology and Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Çağatay Oltulu
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Büşra Koç
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne, Turkey
| |
Collapse
|
6
|
Faid AH, Shouman SA, Badr YA, Sharaky M, Mostafa EM, Sliem MA. Gold nanoparticles loaded chitosan encapsulate 6-mercaptopurine as a novel nanocomposite for chemo-photothermal therapy on breast cancer. BMC Chem 2022; 16:94. [DOI: 10.1186/s13065-022-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
As a promising strategy to overcome the therapeutic disadvantages of 6-mercaptopurine (6MP), we proposed the encapsulation of 6MP in chitosan nanoparticles (CNPs) to form the 6MP-CNPs complexes. The encapsulation was followed by the loading of complexes on gold nanoparticles (AuNPs) to generate a novel 6MP-CNPs-AuNPs nanocomposite to facilitate the chemo-photothermal therapeutic effect.
Methods
CNPs were produced based on the ionic gelation method of tripolyphosphate (TPP). Moreover, 6MP-CNPs composite were prepared by the modified ionic gelation method and then loaded on AuNPs which were synthesized according to the standard wet chemical method using trisodium citrate as a reducing and capping agent. The synthesized nanocomposites were characterized by UV–VIS spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and transmission electron microscopy. The potential cytotoxicity of the prepared nanocomposites on MCF7 cell line was carried out using Sulphorhodamine-B (SRB) assay.
Results
Optimization of CNPs, 6MP-CNPs, and 6MP-CNPs-AuNPs revealed 130 ± 10, 200 ± 20, and 25 ± 5 nm particle size diameters with narrow size distributions and exhibited high stability with zeta potential 36.9 ± 4.11, 37, and 44.4 mV, respectively. The encapsulation efficiency of 6MP was found to be 57%. The cytotoxicity of 6MP-CNPs and 6MP-CNPs-AuNPs on breast cell line MCF7 was significantly increased and reached IC50 of 9.3 and 8.7 µM, respectively. The co-therapeutic effect of the nanocomposites resulted in an improvement of the therapeutic efficacy compared to the individual effect of chemo- and photothermal therapy. Irradiation of 6MP-CNPs and 6MP-CNPs-AuNPs with a diode laser (DPSS laser, 532 nm) was found to have more inhibition on cell viability with a decrease in IC50 to 5 and 4.4 µM, respectively.
Conclusion
The Chemo-Photothermal co-therapy treatment with novel prepared nanocomposite exhibits maximum therapeutic efficacy and limits the dosage-related side effects of 6MP.
Graphical Abstract
Collapse
|
7
|
Mondal M, Basak S, Ali S, Roy D, Saha S, Ghosh B, Ghosh NN, Lepcha K, Roy K, Roy MN. Exploring inclusion complex of an anti-cancer drug (6-MP) with β-cyclodextrin and its binding with CT-DNA for innovative applications in anti-bacterial activity and photostability optimized by computational study. RSC Adv 2022; 12:30936-30951. [PMID: 36349019 PMCID: PMC9614615 DOI: 10.1039/d2ra05072b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
The co-evaporation approach was used to examine the host-guest interaction and to explore the cytotoxic and antibacterial properties of an important anti-cancer medication, 6-mercaptopurine monohydrate (6-MP) with β-cyclodextrin (β-CD). The UV-Vis investigation confirmed the inclusion complex's (IC) 1 : 1 stoichiometry and was also utilized to oversee the viability of this inclusion process. FTIR, NMR, and XRD, among other spectrometric techniques, revealed the mechanism of molecular interactions between β-CD and 6-MP which was further hypothesized by DFT to verify tentative outcomes. TGA and DSC studies revealed that 6-MP's thermal stability increased after encapsulation. Because of the protection of drug 6-MP by β-CD, the formed IC was found to have higher photostability. This work also predicts the release behavior of 6-MP in the presence of CT-DNA without any chemical changes. An evaluation of the complex's antibacterial activity in vitro revealed that it was more effective than pure 6-MP. The in vitro cytotoxic activity against the human kidney cancer cell line (ACHN) was also found to be significant for the IC (IC50 = 4.18 μM) compared to that of pure 6-MP (IC50 = 5.49 μM). These findings suggest that 6-MP incorporation via β-CD may result in 6-MP stability and effective presentation of its solubility, cytotoxic and antibacterial properties.
Collapse
Affiliation(s)
- Modhusudan Mondal
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Salim Ali
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Subhadeep Saha
- Department of Chemistry, Government General Degree College Pedong Kalimpong-734311 India
| | - Biswajit Ghosh
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga Mokdumpur Malda-732103 India
| | - Khusboo Lepcha
- Department of Microbiology, University of North Bengal Darjeeling-734013 India
| | - Kanak Roy
- Department of Chemistry, Alipurduar University Alipurduar-736121 India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal Darjeeling-734013 India
- Vice-Chancellor, Alipurduar University Alipurduar-736121 India
| |
Collapse
|
8
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|
9
|
Al-Otaibi JS, Shabeer M, Mary YS, Mary YS, Thomas R. Adsorption of a thione derivative on carbon, AlN, and BN nanotubes: a detailed DFT and MD investigation. J Mol Model 2022; 28:181. [PMID: 35668144 DOI: 10.1007/s00894-022-05179-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 12/30/2022]
Abstract
The performance of nanotubes (NT) of carbon (CC), aluminium-nitrogen (AlN), and boron-nitrogen (BN) as a sensor and nanocarrier for mercaptopurine (MCP) was investigated by means of a theoretical approach. The calculated negative values of adsorption energy showed the interaction and adsorption of MCP. Highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) distributions were only found on the NT counter portion of the drug-nanotube not on MCP for AlN-NT and BN-NT while HOMO is over MCP and LUMO is over NT for CC-NT. The polarizability of MCP-NTs is greater than that of MCP. Raman wavenumbers of MCP are enhanced in NTs, and hence, NTs can act as a sensor for the detection of MCP. Solvent dependency on adsorption behaviour is also presented in the manuscript, where we found that the AlN nanotube showed exceptionally high free energy of adsorption over other nanotubes in all solvent mediums. Solvation-free energies were also reported. Noncovalent interaction scattered plot also showed significant intermolecular interaction between AlN nanotubes and the mercaptopurine when compared to other nanotubes under study. To find the antiviral activity of MCP and MCP-NTs against antiviral activities, docking and molecular dynamics simulations were performed with 1HMP PDB. Recovery times show that MCP desorption occurs quickly. The MD simulations and docking results show that BN and CC-NTs with MCP show good activity as drug carriers.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Muhammad Shabeer
- School of Science, Westlake University, Hangzhou, People's Republic of China
| | | | | | - Renjith Thomas
- Deparment of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| |
Collapse
|
10
|
Bayoumy AB, Crouwel F, Chanda N, Florin THJ, Buiter HJC, Mulder CJJ, de Boer NKH. Advances in Thiopurine Drug Delivery: The Current State-of-the-Art. Eur J Drug Metab Pharmacokinet 2021; 46:743-758. [PMID: 34487330 PMCID: PMC8599251 DOI: 10.1007/s13318-021-00716-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Thiopurines (mercaptopurine, azathioprine and thioguanine) are well-established maintenance treatments for a wide range of diseases such as leukemia, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE) and other inflammatory and autoimmune diseases in general. Worldwide, millions of patients are treated with thiopurines. The use of thiopurines has been limited because of off-target effects such as myelotoxicity and hepatotoxicity. Therefore, seeking methods to enhance target-based thiopurine-based treatment is relevant, combined with pharmacogenetic testing. Controlled-release formulations for thiopurines have been clinically tested and have shown promising outcomes in inflammatory bowel disease. Latest developments in nano-formulations for thiopurines have shown encouraging pre-clinical results, but further research and development are needed. This review provides an overview of novel drug delivery strategies for thiopurines, reviewing modified release formulations and with a focus on nano-based formulations.
Collapse
Affiliation(s)
- Ahmed B Bayoumy
- Faculty of Medicine, Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Femke Crouwel
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Nripen Chanda
- Micro System Technology Laboratory, CSIR, Central Mechanical Engineering Research Institute, Durgapur, India
| | - Timothy H J Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Hans J C Buiter
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Chris J J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Tavakol S, Zahmatkeshan M, Mohammadinejad R, Mehrzadi S, Joghataei MT, Alavijeh MS, Seifalian A. The role of nanotechnology in current COVID-19 outbreak. Heliyon 2021; 7:e06841. [PMID: 33880422 PMCID: PMC8049405 DOI: 10.1016/j.heliyon.2021.e06841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/16/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has recently become one of the most challenging pandemics of the last century with deadly outcomes and a high rate of reproduction number. It emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis by the high sensitivity and selectivity diagnostic kits, and effective antiviral and protective therapeutics to decline and eliminate the viral load and side effects derived from tissue damages. Therefore, non-toxic antiviral nanoparticles (NPs) have been under development for clinical application to prevent and treat COVID-19. NPs showed great promise to provide nano vaccines against viral infections. Here, we discuss the potentials of NPs that may be applied as a drug itself or as a platform for the aim of drug and vaccine repurposing and development. Meanwhile, the advanced strategies based on NPs to detect viruses will be described with the goal of encouraging scientists to design effective and cost-benefit nanoplatforms for prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad T. Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Mo S. Alavijeh
- Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, UK), London BioScience Innovation Centre, London, NW1 0NH, United Kingdom
| |
Collapse
|
12
|
A DFT study on the electronic detection of mercaptopurine drug by boron carbide nanosheets. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zou Y, Mei D, Yuan J, Han J, Xu J, Sun N, He H, Yang C, Zhao L. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. Int J Nanomedicine 2021; 16:1127-1141. [PMID: 33603372 PMCID: PMC7886780 DOI: 10.2147/ijn.s290466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children. It requires a long and rigorous course of chemotherapy treatments. 6-Mercaptopurine (6-MP) is one of the primary drugs used in chemotherapy. Unfortunately, its efficacy has been limited due to its insolubility, poor bioavailability and serious adverse effects. To overcome these drawbacks, we constructed 6-mercaptopurine (6-MP)-loaded nanomedicines (6-MPNs) with biodegradable poly(lactide-co-glycolide) (PLGA) to enhance the anticancer efficacy of 6-MP. Methods We prepared the 6-MPNs using a double-emulsion solvent evaporation method, characterizing them for the physicochemical properties. We then investigated the plasma, intestinal region and other organs in Sprague Dawley (SD) rats for pharmacokinetics. Additionally, we evaluated its anticancer efficacy in vitro on the human T leukemia cell line Jurkat and in vivo on the ALL model mice. Results The 6-MPNs were spherical in shape with uniform particle size and high encapsulation efficiency. The in vitro release profile showed that 6-MPNs exhibited a burst release that a sustained release phase then followed. The apoptosis assay demonstrated that 6-MPNs could improve the in vitro cytotoxicity in Jurkat cells. Pharmacokinetics profiles revealed that 6-MPNs had improved oral bioavailability. Tissue distribution experiments indicated that 6-MPNs increased the duodenum absorption of 6-MP, at the same time having a low accumulation of the toxic metabolites of 6-MP. The in vivo pharmacodynamics study revealed that 6-MPNs could prolong the survival time of the ALL model mice. The prepared 6-MPNs, therefore, have superior properties in terms of anticancer efficacy against ALL with reduced systemic toxicity. Conclusion Our nanomedicines provide a promising delivery strategy for 6-MP; they offer a simple preparation method and high significance for clinical translation.
Collapse
Affiliation(s)
- Yaru Zou
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Jinjie Yuan
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jiaqi Han
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Jiamin Xu
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Ning Sun
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Huan He
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| |
Collapse
|