1
|
Lv Z, Ali A, Zou C, Wang Z, Ma M, Cheng N, Shad M, Hao H, Zhang Y, Rahman FU. Salicylaldehyde-derived piperazine-functionalized hydrazone ligand-based Pt(II) complexes: inhibition of EZH2-dependent tumorigenesis in pancreatic ductal adenocarcinoma, synergism with PARP inhibitors and enhanced apoptosis. Dalton Trans 2024; 53:13871-13889. [PMID: 39091221 DOI: 10.1039/d4dt01243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Piperazine is an important functional unit of many clinically approved drugs, including chemotherapeutic agents. In the current study, methyl piperazine was incorporated and eight salicylaldehyde-derived piperazine-functionalized hydrazone ONN-donor ligands (L) and their Pt(II) complexes (L-PtCl) were prepared. The structures of all these ligands (L1-L8) and Pt(II) complexes (C1-C8) were determined using 1H and 13C NMR, UV-vis, FT-IR and HR-ESI MS analyses, whereas the structures of C1, C5, C6, C7 and C8 were determined in the solid state using single crystal X-ray diffraction analysis. Solution state stabilities of C3, C4, C5 and C6 were determined via time-dependent UV-vis spectroscopy. All these complexes (C1-C8) were studied for their anticancer effect in pancreatic ductal adenocarcinoma cells, including BxPC3, MIAPaCa-2 and PANC1 cells. C1-C8 displayed a potential cytotoxic effect in all these cancer cells, among which C5, C6 and C8 showed the strongest inhibitory effect in comparison with standard chemotherapeutic agents, including 5-fluorouracil (5-FU), cisplatin (CP), oxaliplatin and doxorubicin (DOX). C5, C6 and C8 suppressed the growth of pancreatic cancer cells in a dose-dependent manner. Moreover, C5, C6 and C8 inhibited clonogenic potential and invasion ability and induced apoptosis in PANC1 cells. Importantly, C5, C6 and C8 synergized the anticancer effect with PARP inhibitors, including olaparib, veliparib and niraparib, in pancreatic cancer cells, thus suggesting an important role of C5, C6 and C8 in induction of apoptosis in combination with PARP inhibitors. C5 combined with PARP inhibitors induced caspase3/7 activity and suppressed ATP production. Mechanistically, C5, C6 and C8 inhibited EZH2 protein expression to suppress EZH2-dependent tumorigenesis. Overall, these results highlighted the importance of these piperazine-functionalized Pt(II) complexes as potential anticancer agents to suppress pancreatic ductal adenocarcinoma tumorigenesis by targeting the EZH2-dependent pathway.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Cheng Zou
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Zerui Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Minglu Ma
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Na Cheng
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
2
|
Nagani A, Shah M, Patel S, Patel H, Parikh V, Patel A, Patel S, Patel K, Parmar H, Bhimani B, Yadav MR. Unveiling piperazine-quinoline hybrids as potential multi-target directed anti-Alzheimer's agents: design, synthesis and biological evaluation. Mol Divers 2024:10.1007/s11030-024-10927-4. [PMID: 38990393 DOI: 10.1007/s11030-024-10927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Multi-target directed ligands (MTDLs) have recently been popularized due to their outstanding efficacy in combating the complicated features of Alzheimer's disease. This study details the synthesis of piperazine-quinoline-based MTDLs through a multicomponent Petasis reaction, targeting multiple factors such as AChE, BuChE, metal chelation to restore metal dyshomeostasis, and antioxidant activity. Some of the synthesized compounds exhibited notable inhibitory activity against AChE and BuChE enzymes at specific concentrations. Among the synthesized compounds compound (95) containing a 4-chloroaniline moiety and a 4-methoxybenzyl group displayed the most promising inhibitory activities against AChE (IC50 3.013 µM) and BuChE (IC50 = 3.144 µM). Compound (83) featuring 2-methoxyaniline and 4-fluorobenzyl substituents, exhibited the highest BuChE inhibition (IC50 1.888 µM). Notably, compound (79) demonstrated 93-times higher selectivity for BuChE over AChE. Molecular docking and molecular dynamics simulations were also performed to explore the binding modes and stability of these compounds with the AChE amd BuChE proteins. Further, kinetics study was performed against AChE for comounds (83 and 95) which indicated mixed inhibition of the enzyme by these compounds, Amongs the synthesized compounds, nine compounds were assessed for their antioxidant activity, displaying significant antioxidant properties with IC50 values ranging from 156 µM to 310 µM. Moreover, all the compounds demonstrated metal chelating tendency with Cu+2, Zn+2, Fe+2, Fe+3 and Al+3. This study provides insights into the design of novel MTDLs, highlighting compound (95) as a potential candidate for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Afzal Nagani
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
- Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Moksh Shah
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Salman Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Harnisha Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Vruti Parikh
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, India
| | - Sagar Patel
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON, Canada
| | - Kirti Patel
- Faculty of Pharmacy, The M.S University of Baroda, Vadodara, Gujarat, India
| | - Hardik Parmar
- Faculty of Pharmacy, The M.S University of Baroda, Vadodara, Gujarat, India
| | | | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
3
|
Majhi A, Venkateswarlu K, Sasikumar P. Coumarin Based Fluorescent Probe for Detecting Heavy Metal Ions. J Fluoresc 2024; 34:1453-1483. [PMID: 37581754 DOI: 10.1007/s10895-023-03372-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Heavy metals such as Iron, Copper, and Zinc are micro-essential trace metal and involve animportant biological role, but it quickly turns toxic at exceeding the permissible limit, causing gastrointestinal irritation, liver, bone, and kidney damage, as well as disorders including Wilson's, Parkinson's, and Alzheimer's. It is important to detect the metal ions as well as their concentration quickly and affordable cost using organic probes. Among the organic probes,the coumarin fluorescent probe shows a very prominent candidate with heavy metal ions. Therefore, in the present review, we reviewed the very recent literature the identify the heavy metals using modified coumarin fluorescent probes. Readers will get information quickly about the method of preparation of modified coumarin core and their use as fluorescent probes with heavy metals using absorption and emission spectroscopic methods along with the probable mechanistic pathway of detection.
Collapse
Affiliation(s)
- Anjoy Majhi
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Katta Venkateswarlu
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry, Yogi Vemana University, Kadapa, 516005, India
| | - Palani Sasikumar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
4
|
Arvas B, Ucar B, Acar T, Varli HS, Arvas MB, Aydogan F, Yolacan C. Synthesis of novel coumarin-triazole hybrids and first evaluation of the 4-phenyl substituted hybrid loaded PLGA nanoparticles delivery system to the anticancer activity. NANOTECHNOLOGY 2024; 35:305602. [PMID: 38636487 DOI: 10.1088/1361-6528/ad403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Despite the discovery of many chemotherapeutic drugs that prevent uncontrolled cell division processes in the last century, many studies are still being carried out to develop drugs with higher anticancer efficacy and lower level of side effects. Herein, we designed, synthesized, and characterized six novel coumarin-triazole hybrids, and evaluated for anticancer activity of the one with the highest potential against the breast cancer cell line, MCF-7 and human cervical cancer cell line, human cervical adenocarcinoma (HeLa). Compound21which was the coumarin derivative including phenyl substituent with the lowest IC50 value displayed the highest cytotoxicity against the studied cancer cell line. Furthermore, the potential use of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) prepared by the emulsifying solvent evaporation method as a platform for a drug delivery system was studied on a selected coumarin derivative21. This coumarin derivative-loaded PLGA NPs were produced with an average size of 225.90 ± 2.96 nm, -16.90 ± 0.85 mV zeta potential, and 4.12 ± 0.90% drug loading capacity. The obtained21-loaded PLGA nanoparticles were analyzed spectroscopically and microscopically with FT-IR, UV-vis, and scanning electron microscopy as well as thermogravimetric analysis, Raman, and x-ray diffraction. Thein vitrorelease of21from the nanoparticles exhibited a controlled release profile just over one month following a burst release in the initial six hours and in addition to this a total release ratio of %50 and %85 were obtained at pH 7.4 and 5.5, respectively.21-loaded PLGA nanoparticles displayed remarkably effective anticancer activity than21. The IC50 values were determined as IC50(21-loaded PLGA nanoparticles): 0.42 ± 0.01 mg ml-1and IC50(free21molecule): 5.74 ± 3.82 mg ml-1against MCF-7 cells, and as IC50(21-loaded PLGA nanoparticles): 0.77 ± 0.12 mg ml-1and IC50(free21molecule): 1.32 ± 0.31 mg ml-1against HeLa cells after the incubation period of 24 h. Our findings indicated that triazole-substituted coumarins may be used as an anticancer agent by integrating them into a polymeric drug delivery system providing improved drug loading and effective controlled drug release.
Collapse
Affiliation(s)
- Busra Arvas
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Burcu Ucar
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Hanife Sevgi Varli
- Science and Technology Application and Research Center, Yildiz Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Melih Besir Arvas
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Feray Aydogan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Cigdem Yolacan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
Abdul-Ridha A, de Zhang LA, Betrie AH, Deluigi M, Vaid TM, Whitehead A, Zhang Y, Davis B, Harris R, Simmonite H, Hubbard RE, Gooley PR, Plückthun A, Bathgate RA, Chalmers DK, Scott DJ. Identification of a Novel Subtype-Selective α 1B-Adrenoceptor Antagonist. ACS Chem Neurosci 2024; 15:671-684. [PMID: 38238043 PMCID: PMC10854767 DOI: 10.1021/acschemneuro.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
α1A-, α1B-, and α1D-adrenoceptors (α1-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α1-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α1-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease. Our understanding of the precise physiological roles of α1-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α1B-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α1B-AR antagonist that has 10-15-fold selectivity over α1A-AR and α1D-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α1B-AR and propose the molecular basis of α1B-AR selectivity, where the nonconserved V19745.52 residue plays a major role, with contributions from L3146.55 within the α1B-AR pocket. By exploring the structure-activity relationships of Cpd1 at α1B-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α1B-AR. Cpd1 and Cpd24 represent potential leads for α1B-AR-selective drug discovery and novel tool molecules to further study the physiology of α1-ARs.
Collapse
Affiliation(s)
- Alaa Abdul-Ridha
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lazarus A. de Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Mattia Deluigi
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Tasneem M. Vaid
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alice Whitehead
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yifan Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben Davis
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | - Richard Harris
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | | | - Roderick E. Hubbard
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Paul R. Gooley
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ross A.D. Bathgate
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K. Chalmers
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Daniel J. Scott
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Chaudhary J, Sharma V, Jain A, Sharma D, Chopra B, Dhingra AK. A Profound Insight into the Structure-activity Relationship of Ubiquitous Scaffold Piperazine: An Explicative Review. Med Chem 2024; 20:17-29. [PMID: 37815177 DOI: 10.2174/0115734064244117230923172611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Despite extensive research in the field of drug discovery and development, still there is a need to develop novel molecular entities. Literature reveals a substantial heterocyclic nucleus named, piperazine, which shows an immense therapeutic voyage. For several decades, molecules having the piperazine nucleus have entered the market as a drug exhibiting biological potential. It was known to possess antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardioprotective, and anti-inflammatory activity with a specific basis for structural activity relationship. Thus, it is regarded as a key structural feature in most of the already available therapeutic drugs in the market. Reports also suggest that the extensive utilization of these currently available drugs having a piperazine nucleus shows increasing tolerance significantly day by day. In addition to this, various other factors like solubility, low bioavailability, cost-effectiveness, and imbalance between pharmacokinetics and pharmacodynamics profile limit their utilization. Focusing on that issues, various structural modification studies were performed on the piperazine moiety to develop new derivatives/analogs to overcome the problems associated with available marketed drugs. Thus, this review article aims to gain insight into the number of structural modifications at the N-1 and N-4 positions of the piperazine scaffold. This SAR approach may prove to be the best way to overcome the above-discussed drawbacks and lead to the design of drug molecules with better efficacy and affinity. Hence, there is an urgent need to focus on the structural features of this scaffold which paves further work for deeper exploration and may help medicinal chemists as well as pharmaceutical industries.
Collapse
Affiliation(s)
- Jasmine Chaudhary
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vishal Sharma
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Akash Jain
- Faculty of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Diksha Sharma
- Research Scholar, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
7
|
Bhanukiran K, Singh SK, Singh R, Kumar A, Hemalatha S. Discovery of Multitarget-Directed Ligands from Piperidine Alkaloid Piperine as a Cap Group for the Management of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2743-2760. [PMID: 37433759 DOI: 10.1021/acschemneuro.3c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
The naturally inspired multitarget-directed ligands (PC01-PC10 and PD01-PD26) were synthesized from piperine for the management of Alzheimer's disease (AD). The compound PD07 showed significant inhibitory activity on ChEs, BACE1, and Aβ1-42 aggregation in in vitro studies. Further, compound PD07 effectively displaced the propidium iodide at the AChE PAS site. The compound PD07 exhibited significant lipophilicity in PAMPA studies. Additionally, PD07 demonstrated neuroprotective properties in the Aβ1-42 induced SH-SY5Y cell line. Furthermore, DFT calculations were performed using B3LYP/6-311G(d,p) basis sets to explore the PD07 physical and chemical properties. The compound PD07 showed a similar binding interaction profile at active sites of AChE, BuChE, and BACE1 proteins as compared to reference ligands (donepezil, tacrine, and BSD) in molecular docking and dynamic simulation studies. In acute oral toxicity studies, compound PD07 exhibited no toxicity symptoms up to 300 mg/kg, po. The compound PD07 (10 mg/kg, po) improved memory and cognition in scopolamine-induced amnesia rats. Further, PD07 increased ACh levels in the brain by inhibiting the AChE activity. The results from in vitro, in silico, and in vivo studies suggested that compound PD07 is a potent multitarget-directed lead from piperine to overcome Alzheimer's disease.
Collapse
Affiliation(s)
- Kancharla Bhanukiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ravi Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
8
|
de Sousa AK, Rocha JE, de Freitas TS, Freitas PR, Pereira RLS, Júnior FNP, Brancaglion GA, de Paulo DC, Carvalho DT, de Menezes IRA, Dos Santos FAV, Coutinho HDM, Júnior LJQ. Photobiological effect of eugenol-derived 3-benzoylcoumarin associated with led lights against MDR microorganisms. Fundam Clin Pharmacol 2023; 37:316-323. [PMID: 36205463 DOI: 10.1111/fcp.12838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
The problem of antibiotic resistance by bacteria threatens human health. Therefore, studies in this area seek alternatives to circumvent it. The study with coumarins and eugenol has already proven that these classes of compounds act against bacteria. In this same aspect, exposure to LED also shows a bactericidal effect. Seeking a possible enhancement of this effect, the present work studied coumarins derived from eugenol in association with LED to investigate the bactericidal effect. Four compounds were tested. For this, minimum inhibitory concentrations (MICs) and modulation with three antibiotics against Escherichia coli and Staphylococcus aureus bacteria were determined. To test the behavior of the activity against exposure to LED, the plates were exposed for 20 min to blue light, 415 nm and then incubated at 37°C for 24 h. For control, duplicates were made, and one of them did not undergo this exposure. C1 exhibited better activity against S. aureus, as synergism prevailed under the conditions tested. C3 and C4 were promising against E. coli as they showed synergism in association with the three antibiotics both with and without LED exposure. Thus, the compounds showed bactericidal activity, and LED was shown to enhance synergism.
Collapse
|
9
|
Martin ALAR, De Menezes IRA, Sousa AK, Farias PAM, Dos Santos FAV, Freitas TS, Figueredo FG, Ribeiro-Filho J, Carvalho DT, Coutinho HDM, Fonteles MMF. In vitro and in silico antibacterial evaluation of coumarin derivatives against MDR strains of Staphylococcus aureus and Escherichia coli. Microb Pathog 2023; 177:106058. [PMID: 36878333 DOI: 10.1016/j.micpath.2023.106058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The increase in antibiotic resistance rates has attracted the interest of researchers for antibacterial compounds capable of potentiating the activity of conventional antibiotics. Coumarin derivatives have been reported to develop effective antibacterials with possible new mechanisms of action for treating infectious diseases caused by bacteria with a profile of drug resistance. In this context, the aim of the present study we have now prepared one variety of new synthetic coumarins evaluating the pharmacokinetic and chemical similarity in silico, their antimicrobial activity against Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), and potential for the modulation of antibiotic resistance against Staphylococcus aureus (SA10) and Escherichia coli (EC06) clinical isolate bacteria by in vitro assay. The antibacterial activity and antibiotic-enhancing properties were evaluated by the broth microdilution method and pharmacokinetically characterized according to the Lipinsk rule of 5 and had their similarity analyzed in databases such as ChemBL and CAS SciFinder. The results demonstrated that only compound C13 showed significant antibacterial activity (MIC ≤256 μg/mL), and all other coumarins did not display relevant antibacterial activity (MIC ≥1024 μg/mL). However, they did modulate the antibiotics activities to norfloxacin and gentamicin, except, compound C11 to norfloxacin against Staphylococcus aureus (SA10). The in silico properties prediction and drug-likeness results demonstrated that all coumarins presented a good drug-likeness score with no violations and promising in silico pharmacokinetic profiles showing that they have the potential to be developed into an oral drug. The results indicate that the coumarin derivatives showed good in vitro antibacterial activity. These new coumarin derivatives also demonstrated the capacity to modulate antibiotic resistance with potential synergy action for current antimicrobials assayed, as antibiotic adjuvants, to reduce the emergence of antimicrobial resistance.
Collapse
|
10
|
Spectroscopic, reactivity analysis and docking studies of 3-(adamantan-1-yl)-4-(4-fluorophenyl)-1-[(4-phenylpiperazin-1-yl)methyl]-4,5-dihdyro-1H-1,2,4-triazole—5-thione: DFT and MD simulations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Ostrowska K, Leśniak A, Gryczka W, Dobrzycki Ł, Bujalska-Zadrożny M, Trzaskowski B. New Piperazine Derivatives of 6-Acetyl-7-hydroxy-4-methylcoumarin as 5-HT 1A Receptor Agents. Int J Mol Sci 2023; 24:ijms24032779. [PMID: 36769117 PMCID: PMC9917830 DOI: 10.3390/ijms24032779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
A series of 15 new derivatives of 6-acetyl-7-hydroxy-4-methylcoumarin containing a piperazine group were designed with the help of computational methods and were synthesized to study their affinity for the serotonin 5-HT1A and 5-HT2A receptors. Among them, 6-acetyl-7-{4-[4-(3-bromophenyl)piperazin-1-yl]butoxy}-4-methylchromen-2-one (4) and 6-acetyl-7-{4-[4-(2-chlorophenyl)piperazin-1-yl]butoxy}-4-methylchromen-2-one (7) exhibited excellent activity for 5-HT1A receptors with Ki values 0.78 (0.4-1.4) nM and 0.57 (0.2-1.3) nM, respectively, comparable to the Ki values of 8-OH-DPAT (0.25 (0.097-0.66) nM). The equilibrium dissociation constant values of the tested compounds showed differential intrinsic activities of the agonist and antagonist modes.
Collapse
Affiliation(s)
- Kinga Ostrowska
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Anna Leśniak
- Centre for Preclinical Research and Technology, Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Weronika Gryczka
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Łukasz Dobrzycki
- Crystallochemistry Laboratory, Chemistry Department, Warsaw University, 1 Pasteura Str., 02-093 Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Centre for Preclinical Research and Technology, Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland
| |
Collapse
|
12
|
Kilic B, Bardakkaya M, Ilıkcı Sagkan R, Aksakal F, Shakila S, Dogruer DS. New thiourea and benzamide derivatives of 2-aminothiazole as multi-target agents against Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorg Chem 2023; 131:106322. [PMID: 36565675 DOI: 10.1016/j.bioorg.2022.106322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In this study, two series of compounds were designed and synthesized, bearing thiourea and benzamide derivatives at position 2 of 4-subtituted-2-aminothiazole, respectively. Then, the inhibition potency of all final compounds for cholinesterase enzymes were evaluated. Among the thiourea derivatives, 3c (IC50 = 0.33 μM) was identified as the most potent and selective butyrylcholinesterase inhibitor. Additionally, benzamide derivative 10e (AChE IC50 = 1.47 and BChE IC50 = 11.40 μM) was found as a dual cholinesterase inhibitor. The type of inhibition for both compounds was determined by kinetic studies and the results showed that the compounds were mixed type inhibitors. Moreover, all title compounds were investigated in terms of their antioxidant (DPHH, ORAC) and metal chelator activities. In addition, the neuroprotective effects of selected compounds (3c, 3e, 6c, 6e and 10e) against H2O2-induced damage in the PC12 cell line were tested. The experimental findings demonstrated that thiourea-derived 6e (40.4 %) and benzamide-derived 10e (37.8 %) have a neuroprotective effect of about half as ferulic acid at 10 μM. Subsequently, the cytotoxicity of selected compounds was examined by the MTT assay, and the compounds were found not to have cytotoxic effect on the PC12 cell line in 24 h. Additionally, compounds 6e and 10e were also found to be more effective in inhibiting the release of IL-1β, IL-6, TNF-α and NO compared to other selected compounds in this study.
Collapse
Affiliation(s)
- Burcu Kilic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye
| | - Merve Bardakkaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkiye
| | - Rahsan Ilıkcı Sagkan
- Department of Medical Biology, Faculty of Medicine, Uşak University, Uşak, Turkiye
| | - Fatma Aksakal
- Department of Chemistry, Hacettepe University, Ankara, Turkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Kocaeli Health and Technology University, Kocaeli, Turkiye
| | - Shakila Shakila
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye
| | - Deniz S Dogruer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye.
| |
Collapse
|
13
|
Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
González-Montiel S, Velázquez-Jiménez R, Segovia-Pérez R, Fragoso-Soto W, Martínez-Otero D, Andrade-López N, Salazar-Pereda V, Cruz-Borbolla J. η3-allyl-Pd(II) complexes of 2-, 3- and 4-pyridylmethyl-coumarin esters. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Venkatesh GB, HariPrasad S, Jeevan Chakravarthy AS. One-pot synthesis of a new class of alkynyl anionic synthons: the 4-(2',2-trimethylsilylethynylphenoxymethyl)-2 H-chromen-2-ones. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. B. Venkatesh
- Department of Chemistry, Government Pre-University College, Chickaballapur, India
| | - S. HariPrasad
- Department of Chemistry, Central College Campus, Bengaluru Central University, Bangalore, India
| | | |
Collapse
|
16
|
Kecel Gunduz S, Budama Kilinc Y, Bicak B, Gok B, Belmen B, Aydogan F, Yolacan C. New Coumarin Derivative with Potential Antioxidant Activity: Synthesis, DNA Binding and In Silico Studies (Docking, MD, ADMET). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Soni R, Khan R, Burange AS, Sahani AJ, Bavera S, Achary S, Jayaram RV. Catalytic application of K2Ce(PO4)2 in Knoevenagel condensation -A green protocol. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Manjunatha B, Bodke YD, Kumaraswamy H, Mussuvir Pasha K, Prashanth N, kadam PR. Synthesis, computational, hepatoprotective, antituberculosis and molecular docking studies of some coumarin derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
20
|
Prasad HSN, Ananda A, Lohith T, Prabhuprasad P, Jayanth H, Krishnamurthy N, Sridhar M, Mallesha L, Mallu P. Design, synthesis, molecular docking and DFT computational insight on the structure of Piperazine sulfynol derivatives as a new antibacterial contender against superbugs MRSA. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
HWANG S, ROH E. Synthesis of Geranyloxycoumarin Derivatives under Mild Conditions Using Cs2CO3. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.996363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Al-Ghorbani M, Gouda MA, Baashen M, Ranganatha V. L. Pyrimidine-Piperazine Hybrids; Recent Synthesis and Biological Activities. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Education, Thamar University, Thamar, Yemen
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohammed Baashen
- Department of Chemistry, Science and Humanities College, Shaqra University, Shaqraa, Saudi Arabia
| | - Lakshmi Ranganatha V.
- Department of Chemistry, The National Institute of Engineering, Mysore, Karnataka, India
| |
Collapse
|
23
|
Borah B, Dhar Dwivedi K, Chowhan LR. 4‐Hydroxycoumarin: A Versatile Substrate for Transition‐metal‐free Multicomponent Synthesis of Bioactive Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - Kartikey Dhar Dwivedi
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| |
Collapse
|
24
|
Fierascu I, Ditu LM, Sutan AN, Drăghiceanu OA, Fierascu RC, Avramescu SM, Lungulescu EM, Nicula N, Soare LC. Influence of gamma irradiation on the biological properties of Asplenium scolopendrium L. hydroalcoholic extracts. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Bahadur A, Iqbal S, Ujan R, Channar PA, Al-Anazy MM, Saeed A, Mahmood Q, Shoaib M, Shah M, Arshad I, Shabir G, Saifullah M, Liu G, Qayyum MA. Effect of organic solvents on solvatochromic, fluorescence, and electrochemical properties of synthesized thiazolylcoumarin derivatives. LUMINESCENCE 2021; 36:1189-1197. [PMID: 33759314 DOI: 10.1002/bio.4044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
In this present investigation, thiazolylcoumarin derivatives (5a-5k) were synthesized from thiosemicarbazide, ethyl acetoacetate, and naphthaldehyde through a multistep route. The formation of thiazolylcoumarin derivatives with bioactive scaffolds was confirmed through nuclear magnetic resonance spectroscopy. A solvatochromic study of synthesized thiazolylcoumarin derivatives was carried out using ultraviolet-visible methods for dimethylformamide (DMF), ethyl acetate, and ethanol solvents. The redox behaviour of as-synthesized thiazolylcoumarin derivatives (5a-5k) was examined in dimethyl sulphoxide by conducting an electrochemical study. Fluorescence properties of thiazolylcoumarin derivatives were studied in DMF, ethanol, and ethyl acetate to visualize the solvent effect on the emitting ability of thiazolylcoumarin derivatives.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Shahid Iqbal
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | | | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qaiser Mahmood
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mazloom Shah
- Department of chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ifzan Arshad
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Muhammad Abdul Qayyum
- Department of Chemistry Division of Science and Technology University of Education Lahore, Pakistan
| |
Collapse
|
26
|
Synthesis of Chromeno[3,4- b]piperazines by an Enol-Ugi/Reduction/Cyclization Sequence. Molecules 2021; 26:molecules26051287. [PMID: 33673443 PMCID: PMC7956738 DOI: 10.3390/molecules26051287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022] Open
Abstract
Keto piperazines and aminocoumarins are privileged building blocks for the construction of geometrically constrained peptides and therefore valuable structures in drug discovery. Combining these two heterocycles provides unique rigid polycyclic peptidomimetics with drug-like properties including many points of diversity that could be modulated to interact with different biological receptors. This work describes an efficient multicomponent approach to condensed chromenopiperazines based on the novel enol-Ugi reaction. Importantly, this strategy involves the first reported post-condensation transformation of an enol-Ugi adduct.
Collapse
|
27
|
Ostrowska K, Leśniak A, Czarnocka Z, Chmiel J, Bujalska-Zadrożny M, Trzaskowski B. Design, Synthesis, and Biological Evaluation of a Series of 5- and 7-Hydroxycoumarin Derivatives as 5-HT 1A Serotonin Receptor Antagonists. Pharmaceuticals (Basel) 2021; 14:ph14030179. [PMID: 33668396 PMCID: PMC7996328 DOI: 10.3390/ph14030179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
We have designed and synthesized a series of 60 new 5- and 7-hydroxycoumarin derivatives bearing the piperazine moiety with the expected binding to 5-HT1A and 5-HT2A receptors. Molecular docking of all investigated compounds revealed subnanomolar estimates of 5-HT1AR Ki for three ligands and 5-HT2AR Ki for one ligand as well as numerous low nanomolar estimates of Ki for both receptors. Intrigued by these results we synthesized all 60 new derivatives using microwave-assisted protocols. We show that three new compounds show a relatively high antagonistic activity against the 5HT1A receptor, although lower than the reference compound WAY-100635. These compounds also showed relatively low binding affinities to the 5-HT2A receptor. We also provide a detailed structure-activity analysis of this series of compounds and compare it with previously obtained results for an exhaustive series of coumarin derivatives.
Collapse
Affiliation(s)
- Kinga Ostrowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (Z.C.); (J.C.)
- Correspondence: ; Tel.: +48-22-572-0669
| | - Anna Leśniak
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Zuzanna Czarnocka
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (Z.C.); (J.C.)
| | - Jagoda Chmiel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (Z.C.); (J.C.)
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
28
|
Wang N, Yu KK, Li K, Li MJ, Wei X, Yu XQ. Plant-Inspired Multifunctional Fluorescent Hydrogel: A Highly Stretchable and Recoverable Self-Healing Platform with Water-Controlled Adhesiveness for Highly Effective Antibacterial Application and Data Encryption-Decryption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57686-57694. [PMID: 33331759 DOI: 10.1021/acsami.0c15364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, hydrogels as an attractive class of intelligent soft materials have been applied in various advanced fields, including electronic materials, wearable devices, and wound dressing materials. However, it still remains a critical challenge to integrate information encryption transmission capability, antibacterial activity, high mechanical performance, adhesiveness, and self-healable ability into one material and achieve the synergistic characteristics through a simple method. In our study, a facile strategy of a plant-inspired hydrogel was proposed, which provides a novel initiator-free photo-cross-linked hydrogel system by simply mixing the coumarin derivative Pho-CA and the monomer in water, and then obtaining the hydrogel Gel-C-Am under the irradiation of UV light without adding any other cross-linking agents and initiators, and this process is very similar to the growth process of plants in nature. This novel hydrogel presents desirable mechanical properties (including twist, stretchability, and recoverability), which exhibits elongation of approximately 1600%. More interestingly, Gel-C-Am hydrogel displays reversible adhesiveness to various substrates (such as glass, paper, leaves, and rubber), and its adhesion properties can be regulated by water: the viscosity disappears when its surface becomes wet, and the viscosity will recover after the water evaporates. In addition, the developed hydrogel has certain self-healable ability. Two pieces of the Gel-C-Am hydrogel can combine together and reshape into one piece in water, and the fused hydrogel has uniform and interconnected pores under SEM. Based on the characteristic of Pho-CA whose fluorescence get recovery after UV irradiation, the hydrogel can be used in the field of encryption and decryption. Also, the resulting Gel-C-Am hydrogel shows an effective antibacterial activity and can potentially be addressed as antibacterial coatings. Taken together, the formation of the novel fluorescent hydrogel system is just like the growth of a plant in the presence of water and light, Pho-CA and the monomer will form a highly stretchable and recoverable self-healing hydrogel with water-controlled adhesiveness. The developed Gel-C-Am hydrogel shows favorable attributes and is suitable for applications in antibacterial polymeric coatings and information encryption transmission.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Meng-Jie Li
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xi Wei
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
29
|
Jain A, Chaudhary J, Khaira H, Chopra B, Dhingra A. Piperazine: A Promising Scaffold with Analgesic and Anti-inflammatory Potential. Drug Res (Stuttg) 2020; 71:62-72. [PMID: 33336346 DOI: 10.1055/a-1323-2813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Piperazine, a nitrogen-containing heterocyclic has acquired an inimitable position in medicinal chemistry because of its versatile structure, which has fascinated researchers to design novel piperazine based molecules having various biological actions. The subsistence of various compounds possessing diverse pharmacological activities in the literature further confirms this fact. Currently available analgesics and anti-inflammatory drugs are associated with side effects that limit their use. Moreover, the literature reveals the incredible anti-inflammatory and analgesic potential of piperazine derivatives along with their method of synthesis, therefore; the present review has been designed to collate the development made in this area that will surely be advantageous in designing novel piperazine based candidates with enhanced efficacy and less toxicity. An extensive literature survey was carried by scrutinizing peer reviewed articles from worldwide scientific databases available on GOOGLE, SCOPUS, PUBMED, and only relevant studies published in English were considered.
Collapse
Affiliation(s)
- Akash Jain
- MM College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, India
| | - Jasmine Chaudhary
- MM College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, India
| | - Harpreet Khaira
- MM College of Pharmacy, Maharishi Markandeshwer (Deemed to be University), Mullana, Ambala, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Ashwani Dhingra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| |
Collapse
|
30
|
Channa Basappa V, Hamse Kameshwar V, Kumara K, Achutha DK, Neratur Krishnappagowda L, Kariyappa AK. Design and synthesis of coumarin-triazole hybrids: biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon 2020; 6:e05290. [PMID: 33102875 PMCID: PMC7575805 DOI: 10.1016/j.heliyon.2020.e05290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022] Open
Abstract
The current study demonstrates the synthesis of coumarin-triazole hybrids 8 (a-e) in four steps starting from substituted salicylaldehyde 1 (a-e), and diethyl malonate 2. The spectroscopic studies provide the structure proofs of the new compounds, and the molecular structure of an intermediate 3a by crystallographic studies. The crystal structure analysis revealed the C–H...O, C–H... π, C–O...π and π...π molecular interactions. Further, the intermolecular interactions were quantified using Hirshfeld surface analysis and the DFT method B3LYP functional with 6–311++ G (d,p) basis set was employed to optimize the molecular geometry. The synthesized new coumarin-triazole hybrids, 8 (a–e) were screened for their α-amylase inhibitory potentials, and the results suggest that amongst the series, compounds 8c, and 8e show the promising inhibition of the enzyme, and might act as lead molecules for anti-diabetic activities. To understand the mode of action in silico molecular docking and ADME screening were performed.
Collapse
Affiliation(s)
| | - Vivek Hamse Kameshwar
- Department of Biotechnology, Faculty of Natural Sciences, Adichunchanagiri University-Centre for Research and Innovation, Adichunchanagiri University B.G Nagara, Mandya, India
| | - Karthik Kumara
- Department of Studies in Physics, University of Mysore, Mysuru, India.,Department of Physics, School of Sciences, Jain University (Deemed to be University), Bengaluru, India
| | | | | | | |
Collapse
|
31
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
32
|
Feng D, Zhang A, Yang Y, Yang P. Coumarin-containing hybrids and their antibacterial activities. Arch Pharm (Weinheim) 2020; 353:e1900380. [PMID: 32253782 DOI: 10.1002/ardp.201900380] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Infections caused by Gram-positive and -negative bacteria are one of the foremost causes of morbidity and mortality globally. Antibiotics are the mainstay of therapy for bacterial infections, but the emergence and wide spread of drug-resistant pathogens have already become a huge issue for public healthcare systems. The coumarin moiety, which is ubiquitous in nature, could bind to the B subunit of DNA gyrase in bacteria and inhibit DNA supercoiling by blocking the ATPase activity; hence, coumarin derivatives possess potential antibacterial activity. Several coumarin-containing hybrids such as coumermycin A1, clorobiocin, and novobiocin have already been used in clinical practice for the treatment of various bacterial infections; thus, it is conceivable that hybridization of the coumarin moiety with other antibacterial pharmacophores may provide opportunities for the development of novel antibiotics. This review outlines the advances in coumarin-containing hybrids with antibacterial potential in the recent 5 years and the structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Dongxu Feng
- Department of Disinfection Center, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.,Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|