1
|
Fathima A, Farboodniay Jahromi MA, Begum SA, Jamma T. Withametelin inhibits TGF-β induced Epithelial-to-Mesenchymal Transition and Programmed-Death Ligand-1 expression in vitro. Front Oncol 2024; 14:1435516. [PMID: 39077463 PMCID: PMC11284055 DOI: 10.3389/fonc.2024.1435516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Withanolides are a group of naturally occurring plant-based small molecules known for their wide range of host cellular functions. The anticancer potential of withanolides has been explored in varying cancer cell lines in vitro. Based on our prior studies, among the tested withanolides, withametelin (WM) has shown significant cytotoxicity with the highest efficacy on HCT-116 colon cancer cells (IC50 0.719 ± 0.12μM). Treatment with WM reduced the TGF-β driven proliferation, colony-forming ability, migration, and invasiveness of HCT-116 cells in vitro. WM also downregulated the expression of mesenchymal markers such as N-CADHERIN, SNAIL, and SLUG in HCT-116 cells. At the molecular level, WM inhibited TGF-β induced phosphorylation of SMAD2/3 and reduced the expression of an immune checkpoint inhibitor programmed-death ligand-1 (PD-L1). Our study highlights the possible anticancer mechanisms of WM involving modulation of the TGF-β pathway and associated target gene expression, suggesting its potential utility in cancer therapy.
Collapse
Affiliation(s)
- Ashna Fathima
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Hyderabad, India
| | | | - Sajeli A. Begum
- Department of Pharmacy, Birla Institute of Technology & Science, Hyderabad, India
| | - Trinath Jamma
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Hyderabad, India
| |
Collapse
|
2
|
Samanta R, Pradhan KK, Sen D, Kar S, Ghosh M. Structure-based drug design-guided identification of estrogen receptor binders. Mol Divers 2024; 28:1291-1303. [PMID: 37289383 DOI: 10.1007/s11030-023-10657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
Cancer is one of the life-threatening diseases and the second leading cause of death in the world. The estrogen receptor can be considered as one of the significant drug targets for cancer. A large number of clinically used anticancer drugs were identified from phytochemicals. Multiple literatures suggested that extracts of Datura sp. significantly inhibit estrogen receptors associated with human cancer. In the present study, all reported natural products present in Datura sp. were subjected to molecular docking against estrogen receptors. The top hits were shortlisted based on binding orientation and docking score and subjected to molecular dynamics simulation to explore the conformational stability followed by binding energy calculation. The ligand [(1S,5R)-8-Methyl-8-Azabicyclo [3.2.1] Octan-3-yl] (2R)-3-Hydroxy-2-Phenylpropanoate depicts highly acceptable MD simulations outcomes and drug-likeness profile. Knowledge-based de novo design and similar ligand screening were executed using the structural information. The designed ligand DL-50 exhibited satisfactory binding, drug-likeness profile, and well-accepted ADMET profile followed by easy synthetic accessibility which further requires experimental validation.
Collapse
Affiliation(s)
- Rojalini Samanta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 83521, India
| | - Kishanta Kumar Pradhan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 83521, India
| | - Debanjan Sen
- BCDA College of Pharmacy & Technology, Hridaypur, Kolkata, West Bengal, 700127, India
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA.
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 83521, India.
| |
Collapse
|
3
|
Wang FR, Peng ML, Zhu QF, Yu LL, Zhang LJ, Xu SY, Wang Q, Li J, He X, Liao SG, Ao JL, Xu GB. Withanolides from the active extract of Physalis angulate and their anti-hepatic fibrosis effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117830. [PMID: 38301983 DOI: 10.1016/j.jep.2024.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalis angulata L., a traditional Chinese medicine called "Kuzhi" in China, was used traditionally to treat liver diseases (eg. icterus, hepatitis) as well as malaria, asthma, and rheumatism. AIM OF THE STUDY Our study aimed to investigate the withanolides with anti-hepatic fibrosis effect from P. angulate. MATERIALS AND METHODS Withanolides were obtained from the EtOH extract of P. angulate by bioassay-molecular networking analysis-guided isolation using column chromatography and normal/reversed-phase semipreparative HPLC. The structures of new withanolides were elucidated by combinations of spectroscopic techniques with NMR and ECD calculations. MTT cell viability assay, AO/EB staining method, cell wound healing assay, ELISA and Western blot experiments were employed to evaluate the anti-hepatic fibrosis activity and to uncover related mechanism. Molecular docking analysis and cellular thermal shift assay were used to evaluate and verify the interaction between the active withanolides and their potential targets. RESULTS Eight unreported withanolides, withagulides A-H (1-8), along with twenty-eight known ones were obtained from P. angulate. Withanolides 6, 9, 10, 24, 27, and 29-32 showed marked anti-hepatic fibrosis effect with COL1A1 expression inhibition above 50 %. Physalin F (9), the main component in the active fraction, significantly decreased the TGF β1-stimulated expressions of collagen I and α-SMA in LX-2 cells. Mechanism study revealed that physalin F exerted its anti-hepatic fibrosis effect via the PI3K/AKT/mTOR signaling pathway. CONCLUSION This study suggested that withanolides were an important class of natural products with marked anti-hepatic fibrosis effect. The main withanolide physalin F might be a promising candidate for hepatic fibrosis treatment. The work provided experimental foundation for the use of P. angulate to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Fu-Rui Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Mei-Lin Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Ling-Ling Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Li-Jie Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Shi-Ying Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Qian Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| | - Jun-Li Ao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
4
|
Dutra LL, Borges RJ, Maltarollo VG, Mendes TAO, Bressan GC, Leite JPV. In silico evaluation of pharmacokinetics properties of withanolides and simulation of their biological activities against Alzheimer's disease. J Biomol Struct Dyn 2024; 42:2616-2631. [PMID: 37166375 DOI: 10.1080/07391102.2023.2206909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
The withanolides are naturally occurring steroidal lactones found mainly in plants of the Solanaceae family. The subtribe Withaninae includes species like Withania sominifera, which are a source of many bioactive withanolides. In this work, we selected and evaluate the ADMET-related properties of 91 withanolides found in species of the subtribe Withaninae computationally, to predict the relationship between their structures and their pharmacokinetic profiles. We also evaluated the interaction of these withanolides with known targets of Alzheimer's disease (AD) through molecular docking and molecular dynamics. Withanolides presented favorable pharmacokinetic properties, like high gastrointestinal absorption, lipophilicity (logP ≤ 5), good distribution and excretion parameters, and a favorable toxicity profile. The specie Withania aristata stood out as an interesting source of the promising withanolides classified as 5-ene with 16-ene or 17-ene. These withanolides presented a favourable pharmacokinetic profile and were also highlighted as the best candidates for inhibition of AD-related targets. Our results also suggest that withanolides are likely to act as cholinesterase inhibitors by interacting with the catalytic pocket in an energy favorable and stable way.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Luana L Dutra
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Rafael J Borges
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Vinícius G Maltarollo
- Pharmaceutical Products Department- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Tiago A O Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gustavo C Bressan
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - João Paulo V Leite
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Macharia JM, Káposztás Z, Bence RL. Medicinal Characteristics of Withania somnifera L. in Colorectal Cancer Management. Pharmaceuticals (Basel) 2023; 16:915. [PMID: 37513827 PMCID: PMC10384768 DOI: 10.3390/ph16070915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Research into tumorigenic pathways can aid in the development of more efficient cancer therapies and provide insight into the physiological regulatory mechanisms employed by rapidly proliferating cancer cells. Due to the severe side effects of cancer chemotherapeutic medications, plant chemicals and their analogues are now explored more frequently for the treatment and prevention of colorectal cancer (CRC), opening the stage for new phytotherapeutic strategies that are considered effective and safe substitutes. Our study aimed to evaluate the medicinal properties of Withania somnifera L. and its safety applications in CRC management. Important databases were rigorously searched for relevant literature, and only 82 full-text publications matched the inclusion requirements from a massive collection of 10,002 titles and abstracts. W. somnifera L. contains a high concentration of active plant-based compounds. The pharmacological activity of the plant from our study has been demonstrated to exert antiproliferation, upregulation of apoptosis, decrease in oxidative stress, downregulation of cyclooxygenase-2 (COX-2), induction of targeted cytotoxic effects on cancerous cells, and exertion of both antiangiogenesis and antimigratory effects. We advise further research before recommending W. somnifera L. for clinical use to identify the optimal concentrations required to elicit beneficial effects in CRC management in humans, singly or in combination.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Vörösmarty Mihály Str. 4, 7621 Pécs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| | - Raposa L Bence
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| |
Collapse
|
8
|
Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochem Res 2023; 48:725-744. [PMID: 36385213 DOI: 10.1007/s11064-022-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a degenerative disorder of the central nervous system (CNS) with complicated etiology that has not been clearly analyzed until nowadays. Apart from anti-inflammatory, immune modulatory and symptomatic treatments, which are the main tools towards MS control, antioxidant molecules may be of interest. Oxidative stress is a key condition implicated in the disease progression. Reactive species production is associated with immune cell activation in the brain as well as in the periphery, accounting for demyelinating and axonal disruptive processes. This review refers to research articles, of the last decade. It describes biological evaluation of antioxidant drugs, and molecules with pharmaceutical interest, which are not designed for MS treatment, however they seem to have potency against MS. Their antioxidant effect is accompanied, in most of the cases, by anti-inflammatory, immune-modulatory and neuroprotective properties. Compounds with such characteristics are expected to be beneficial in the treatment of MS, alone or as complementary therapy, improving some clinical and mechanistic aspects of the disease. This review also summarizes some of the pathobiological characteristics of MS, as well as the role of oxidative stress and inflammation in the progression of neurodegeneration. It presents known drugs and bioactive compounds with antioxidant, and in many cases, pleiotropic activity that have been tested for their efficacy in MS progression or the experimentally induced MS. Antioxidants may offer reduction or prevention of the disease symptoms and progression. Thus, their results may, combined with already applied treatments, be beneficial for the development of new molecules or the repurposing of drugs and supplements that are used with other indication so far.
Collapse
|
9
|
Majid M, Farhan A, Baig MW, Khan MT, Kamal Y, Hassan SSU, Bungau S, Haq IU. Ameliorative Effect of Structurally Divergent Oleanane Triterpenoid, 3-Epifriedelinol from Ipomoea batatas against BPA-Induced Gonadotoxicity by Targeting PARP and NF-κB Signaling in Rats. Molecules 2022; 28:molecules28010290. [PMID: 36615482 PMCID: PMC9822353 DOI: 10.3390/molecules28010290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The pentacyclic triterpenoids (PTs) of plant origin are reputed to restrain prostate cancer (PCa) cell proliferation. This study aims to assess 3-epifriedelinol (EFD) isolated from aerial part of Ipomoea batatas against PCa and its potential mechanism, in vitro and in vivo. Molecular docking affirms good binding affinity of the compound with target proteins exhibiting binding energy of −7.9 Kcal/mol with BAX, −8.1 Kcal/mol (BCL-2), −1.9 Kcal/mol (NF-κB) and −8.5 Kcal/mol with P53. In the MTT assay, EFD treatment (3−50 µM) showed a significant (p < 0.05 and p < 0.01) dose and time dependent drop in the proliferative graph of DU145 and PC3, and an upsurge in apoptotic cell population. EFD displayed substantial IC50 against DU145 (32.32 ± 3.72 µM) and PC3 (35.22 ± 3.47 µM). According to Western blots, EFD administration significantly enhanced the cleavage of caspases and PARP, elevated BAX and P53 and decreased BCL-2 and NF-κB expression, thereby triggering apoptosis in PCa cells. When male Sprague Dawley rats were intoxicated with Bisphenol A (BPA), an apparent increase in prostate mass (0.478 ± 0.08 g) in comparison to control (0.385 ± 0.03 g) indicates prostatitis. Multidose treatment of EFD (10 mg/kg) significantly reduced prostate size (0.404 ± 0.05 g). EFD exhibited substantial curative potential in vivo, as hematological, hormonal and histopathological parameters have been significantly improved. Reduced peroxidation (TBARS), and suppression of inflammatory markers i.e., NO, IL-6 and TNF-α, signposts substantial antiinflammatory potential of the compound. Overall, EFD has shown better binding affinity with target molecules, acceptable ADMET profile, potent antiproliferative and apoptotic nature and significant reduction in inflamed prostate mass of rats. The present study demonstrates acceptable physicochemical and pharmacokinetic properties of the compound with excellent drugable nature, hence EFD in the form of standardized formulation can be developed as primary or adjuvant therapy against PCa and toxins-induced gonadotoxicity.
Collapse
Affiliation(s)
- Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad 45550, Pakistan
| | - Anam Farhan
- Department of Biology, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Tariq Khan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Yousaf Kamal
- Faculty of Pharmacy, Hamdard University, Islamabad 45550, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (S.S.u.H.); (S.B.); (I.-u.H.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (S.S.u.H.); (S.B.); (I.-u.H.)
| | - Ihsan-ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (S.S.u.H.); (S.B.); (I.-u.H.)
| |
Collapse
|
10
|
Lian W, Wang Y, Zhang J, Yan Y, Xia C, Gan H, Wang X, Yang T, Xu J, He J, Zhang W. The genus Datura L. (Solanaceae): A systematic review of botany, traditional use, phytochemistry, pharmacology, and toxicology. PHYTOCHEMISTRY 2022; 204:113446. [PMID: 36152725 DOI: 10.1016/j.phytochem.2022.113446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The genus Datura has been used as an important traditional medicine in China, as well as in other countries worldwide. This review summarizes the latest progress and perspective of the genus Datura, from the aspects of botany, traditional uses, phytochemistry, pharmacology, and toxicology. Up to May 2022, literatures were collected from online scientific databases, including Google Scholar, PubMed, SciFinder, CNKI, ACS, and Web of Science, and information was also obtained from "Flora Republicae Populairs Sinicae", Chinese Pharmacopoeia, Chinese herbal classic books, and Ph.D. and M. Sc. dissertations. Studies on chemical constituents, pharmacological activities, and toxicity are mainly focused on D. metel, D. stramonium, and D. inoxia. Furthermore, 496 compounds have been discovered from the genus Datura, including withanolides, alkaloids, flavonoids, terpenoids, phenylpropanoids, steroids, amino acids, aromatics, and aliphatics. Among them, withanolides and alkaloids are two main active constituents. Pharmacological activities of extracts and compounds have been studied from the aspects of antitumor, antiinflammation, antioxidant, antimicrobial, antispasmodic, anticoagulant, analgesic, hypoglycemic and xanthine oxidase inhibitory activities, as well as the effects on central nervous system and immune system. Modern pharmacological studies have provided more clues to elucidate the traditional usages. The toxicity of the genus Datura is noteworthy, especially the potential toxicity on organs. This review would provide a comprehensive and constructive overview for new drug development and utilization of the genus Datura.
Collapse
Affiliation(s)
- Wenwen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yuwei Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - He Gan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaoyan Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ting Yang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jiekun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
11
|
Bilal RM, Hassan FU, Rafeeq M, Farag MR, Abd El-Hack ME, Madkour M, Alagawany M. Use of Cinnamon and its Derivatives in Poultry Nutrition. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:52-65. [DOI: 10.2174/9789815049015122010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The recent trend toward banning the use of antibiotics in poultry feed as a
growth promoter directs the scientific community to look for natural alternatives with
potential growth-promoting and immunomodulating properties. Phytogenic feed
additives have attracted significant attention as alternatives to antibiotics to improve
growth performance and enhance immune responses. They have anti-inflammatory,
antioxidant, antiviral, and antifungal properties, depending on their chemical structure
and composition. Scientists are using these non-conventional ingredients as feed
additives in the form of oil or powder. Essential oils (EO) are volatile liquids produced
from aromatic plants. Their application has gained momentum in controlling
cholesterol as free radical scavengers, anti-microbials, antifungals, and stimulants of
digestive enzymes. EO's possible antimicrobial features against harmful pathogens are
primarily associated with the high content of volatile components in oils. The current
chapter highlights the beneficial impact of cinnamon oil as a feed additive on poultry
growth performance, meat quality, carcass traits, and its hypo-cholesterolaemic impact,
antioxidant act, microbiological aspects, and immunomodulatory effects.
Collapse
Affiliation(s)
- Rana M. Bilal
- The Islamia University of Bahawalpur,Bahawalpur,Pakistan
| | | | | | - Mayada R. Farag
- Zagazig University,Forensic Medicine and Toxicology Department,Zagazig,Egypt
| | | | | | | |
Collapse
|
12
|
Baig MW, Majid M, Nasir B, Hassan SSU, Bungau S, Haq IU. Toxicity evaluation induced by single and 28-days repeated exposure of withametelin and daturaolone in Sprague Dawley rats. Front Pharmacol 2022; 13:999078. [PMID: 36225589 PMCID: PMC9549072 DOI: 10.3389/fphar.2022.999078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Safe preclinical dose determination is predictive of human toxicity and can have a profound impact on the overall progress of the compound in early drug discovery process. In this respect, current study sought to investigate for the first time the acute and subacute oral toxicity of two pharmacologically active natural compounds i.e., withametelin and daturaolone in Sprague Dawley rats following OECD guideline 420 and 407, respectively. As per acute toxicity studies, withametelin and daturaolone were characterized as Globally Harmonized System (GHS) category 4 and 5 compounds, respectively. Sub-acute daily dose of withametelin was 5, 2.5, and 1.25 mg/kg but, for daturaolone, it was 10, 5, and 2.5 mg/kg. High dose (5 and 2.5 mg/kg) withametelin groups showed dose dependent changes in the general, hematological, biochemical and histopathological parameters in both sexes, the most prominent being hyperthyroidism while no toxicity was observed at lower doses (1.25 and 0.75 mg/kg), No Observable Adverse Effect Level (NOAEL) being 1.25 mg/kg. Daturaolone was comparatively safer and showed dose dependent significant changes in hepatic enzyme (Alanine Transaminase), bilirubin, creatinine, and glucose levels while histological changes in testes were also observed. Lower doses (5, 2.5, and 1.25 mg/kg) of daturaolone showed no significant toxic effects and 5 mg/kg was declared as its NOAEL. Depending upon our findings, starting effective oral dose levels of 1.25 mg/kg/day for withametelin and 5 mg/kg/day for daturaolone are proposed for repeated dose (up to 28 days) preclinical pharmacological evaluation models. Long term studies with more behavioral, biochemical, histopathological and hormonal parameters are proposed to strengthen the findings.
Collapse
Affiliation(s)
| | - Muhammad Majid
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Bakht Nasir
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Ihsan-ul Haq, ,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- *Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Ihsan-ul Haq, ,
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- *Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Ihsan-ul Haq, ,
| |
Collapse
|
13
|
Zha Z, Liu S, Liu Y, Li C, Wang L. Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants (Basel) 2022; 11:antiox11081495. [PMID: 36009214 PMCID: PMC9404913 DOI: 10.3390/antiox11081495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated degenerative disease of the central nervous system (CNS) characterized by immune cell infiltration, demyelination and axonal injury. Oxidative stress-induced inflammatory response, especially the destructive effect of immune cell-derived free radicals on neurons and oligodendrocytes, is crucial in the onset and progression of MS. Therefore, targeting oxidative stress-related processes may be a promising preventive and therapeutic strategy for MS. Animal models, especially rodent models, can be used to explore the in vivo molecular mechanisms of MS considering their similarity to the pathological processes and clinical signs of MS in humans and the significant oxidative damage observed within their CNS. Consequently, these models have been used widely in pre-clinical studies of oxidative stress in MS. To date, many natural products have been shown to exert antioxidant effects to attenuate the CNS damage in animal models of MS. This review summarized several common rodent models of MS and their association with oxidative stress. In addition, this review provides a comprehensive and concise overview of previously reported natural antioxidant products in inhibiting the progression of MS.
Collapse
|
14
|
Waleed Baig M, Haq IU, Tayyaba Batool Kazmi S, Zafar A. Chromatographic method development and metabolite profiling for biomass and extraction optimization of withametelin and daturaolone from D. innoxia Mill. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Antioxidant, Antimicrobial, and Protein Kinase Inhibition Profiling of C. ambrosioides Seed Extracts along with RP-HPLC. J CHEM-NY 2022. [DOI: 10.1155/2022/6486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The validation of underexplored traditional plant remedies represents a reservoir of novel leads for drug discovery. In line with this, in vitro total phenolics and flavonoids content, multimode antioxidants, antimicrobial, cytotoxicity, and protein kinase inhibition assays were conducted on C. ambrosioides seed extracts in addition to RP-HPLC. Methanol extract exhibited highest total phenolics (
gallic acid equivalent/mg) and flavonoids (
quercetin equivalent/mg) content. RP-HPLC quantified rutin (1.98 μg/mg) in methanol extract whereas quercetin (0.322 μg/mg) and kaempferol (2.86 μg/mg) in methanol-distilled water extract. Methanol extract exhibited highest ascorbic acid equivalent (AAE) free radical (DPPH) scavenging (IC50 of
), total antioxidant capacity (
AAE/mg), and total reducing power (
AAE/mg). Highest antibacterial activity against K. pneumonia (
ZOI) and antifungal activity against F. solani (
ZOI) were shown by n-hexane and chloroform extracts, respectively. Ethyl acetate extract exhibited highest brine shrimps cytotoxicity (LC50 of 125 μg/ml). A noteworthy protein kinase inhibitory potential was shown by ethanol extract with a
bald zone. Therapeutic potential of medicinal plants can be completely explored by using multiple solvent system. This study makes C. ambrosioides, a resourceful prospect for the bioactivity-guided isolation of lead compounds.
Collapse
|
16
|
Tewari D, Chander V, Dhyani A, Sahu S, Gupta P, Patni P, Kalick LS, Bishayee A. Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153949. [PMID: 35151215 DOI: 10.1016/j.phymed.2022.153949] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ayurveda is a highly recognized, well-documented, and well-accepted traditional medicine system. This system utilizes many natural products in various forms for therapeutic purposes. Thousands of plants mentioned in the Ayurvedic system are useful in disease mitigation and health preservation. One potential plant of the Ayurvedic system is "Ashwagandha" [Withania somnifera (L.) Dunal], commonly regarded as Indian Ginseng. It possesses various therapeutic activities, such as neuroprotective, hypoglycemic, hepatoprotective, antiarthritic, and anticancer effects. PURPOSE Here we present a comprehensive insight on the anticancer effects of W. somnifera and mechanistic attributes of its bioactive phytocompounds. This review also provides updated information on the clinical studies pertaining to cancer, safety evaluation and opportunities for chemical modifications of withanolides, a group of specialized phytochemicals of W. somnifera. METHODS The present study was performed in accordance with the guidelines of the Preferred Reporting Items for Systemic Reviews and Meta-Analysis. Various scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, were explored for related studies published up to May 2021. RESULTS An updated review on the anticancer potential and mechanisms of action of the major bioactive components of W. somnifera, including withanolides, withaferin A and withanone, is presented. Comprehensive information on clinical attributes of W. somnifera and its active components are presented with the structure-activity relationship (SAR) and toxicity evaluation. CONCLUSION The outcome of the work clearly indicates that W. somnifera has a significant potential for cancer therapy. The SAR revealed that various withanolides in general and withaferin A in particular have binding energies against various proteins and tremendous potential to serve as the lead for new chemical entities. Nevertheless, additional studies, particularly well-designed clinical trials are required before therapeutic application of withanolides for cancer treatment.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Vikas Chander
- Department of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Archana Dhyani
- Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun 248001, Uttarakhand, India
| | - Sanjeev Sahu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pawan Gupta
- Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Pooja Patni
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
17
|
Wu JT, Liu Y, Jiang YK, Wang SY, Jiang CY, Algradi AM, Pan J, Guan W, Kuang HX, Yang BY. Datinolides E-I, five new withanolides with anti-inflammatory activity from the leaves of Datura inoxia mill. Fitoterapia 2022; 159:105204. [DOI: 10.1016/j.fitote.2022.105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022]
|
18
|
Khanzada B, Akhtar N, Okla MK, Alamri SA, Al-Hashimi A, Baig MW, Rubnawaz S, AbdElgawad H, Hirad AH, Haq IU, Mirza B. Profiling of Antifungal Activities and In Silico Studies of Natural Polyphenols from Some Plants. Molecules 2021; 26:7164. [PMID: 34885744 PMCID: PMC8659076 DOI: 10.3390/molecules26237164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023] Open
Abstract
A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.
Collapse
Affiliation(s)
- Beenish Khanzada
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan;
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Saud A. Alamri
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Muhammad Waleed Baig
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-U.H.)
| | - Samina Rubnawaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Abdurahman H. Hirad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-U.H.)
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| |
Collapse
|
19
|
Khan A, Shal B, Khan AU, Bibi T, Islam SU, Baig MW, Haq IU, Ali H, Ahmad S, Khan S. Withametelin, a novel phytosterol, alleviates neurological symptoms in EAE mouse model of multiple sclerosis via modulation of Nrf2/HO-1 and TLR4/NF-κB signaling. Neurochem Int 2021; 151:105211. [PMID: 34688804 DOI: 10.1016/j.neuint.2021.105211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system (CNS) that remains incurable. Withametelin (WMT), a phytosterol, showed diverse biological activities isolated from the leaves of Datura innoxa. In the present study, we used an in vitro model of HT22 and BV-2 cell lines and an in vivo murine model of MS, experimental autoimmune encephalomyelitis (EAE), to explore the antioxidant and anti neuroinflammatory potential of WMT. The results showed that pretreatment with WMT markedly inhibited H2O2-induced cytotoxicity and oxidative stress in a dose-dependent manner. Correspondingly, WMT post-immunization treatment significantly attenuated EAE-induced clinical score, weight loss, neuropathic pain behaviors, and motor dysfunction. It markedly lowers EAE-induced elevated circulating leucocytes, spinal deformity, and splenomegaly. It strikingly inhibited the Evans blue and FITC extravasation in the brain. It remarkably reversed the EAE-induced histopathological alteration of the brain, spinal cord, eye, and optic nerve. It significantly intensified the antioxidant defense mechanism by improving the expression level of nuclear factor-erythroid-related factor-2 (Nrf2), heme-oxygenase-1 (HO-1) but reducing the expression level of the Kelch-like-ECH-associated-protein-1 (keap-1), inducible-nitric-oxide-synthase (iNOS) in the CNS. Likewise, it markedly suppressed neuroinflammation by reducing the expression level of toll-like-receptor 4 (TLR4), nuclear-factor-kappa-B (NF-κB), activator-protein-1 (AP-1) but increased the expression level IkB-α in the CNS. Furthermore, molecular dynamics simulations and MMPBSA binding free energies were determined to validate the dynamic stability of complexes and shed light on the atomic level intermolecular interaction energies. Taken together, this study showed that WMT has significant neuroprotective potential in EAE via modulation of Nrf2 mediated-oxidative stress and NF-κB mediated inflammation.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
20
|
Chandan G, Kumar C, Chibber P, Kumar A, Singh G, Satti NK, Gulilat H, Saini AK, Bishayee A, Saini RV. Evaluation of analgesic and anti-inflammatory activities and molecular docking analysis of steroidal lactones from Datura stramonium L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153621. [PMID: 34252723 DOI: 10.1016/j.phymed.2021.153621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/13/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Datura stramonium L. is widely used across the world for its therapeutic potential to treat inflammatory disorders. The current work was designed to isolate and identify steroidal lactones from D. stramonium leaves and evaluate their anti-inflammatory and analgesic properties. METHODS Several compounds were isolated from D. stramonium leaves and characterized by nuclear magnetic resonance and high-resonance electron spray ionization mass spectrometry techniques. Further, anti-inflammatory properties of these compounds were evaluated by in vitro assays, such as release of NO and pro-inflammatory cytokines by lipopolysaccharide (LPS)-activated J774A.1 macrophages. Using in vivo models, anti-inflammatory and analgesic effects were examined by mouse tail-flick, carrageenan-induced inflammation in rat paw model, vascular permeability in rats, and acetic acid-induced writhing in mice. The docking studies were performed for assessing the binding efficiency of the test compounds with cyclooxygenase-1 (COX-1) and COX-2, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), inducible nitric oxide synthases (iNOS) and nuclear factor-κB (NF-κB). RESULTS Three lactones were isolated and confirmed as daturalactone (D1), 12-deoxywithastramonolide (D23), and daturilin (D27). Further, the isolated compounds showed nitric oxide inhibition and pro-inflammatory cytokines released by LPS-activated J774A.1 macrophages. The in vivo results suggest that D1, D23 and D27 (20 mg/kg) were able to reduce the pain and inflammation in various animal models. The docking analysis showed that these three compounds actively bind with COX-1, COX-2, LOX-1, NF-κB, and iNOS, validating the anti-inflammatory effects of the lactones. CONCLUSION These findings demonstrate substantial anti-inflammatory and analgesic properties of D. stramonium-derived lactones and their potential as anti-inflammatory agents to treat chronic inflammatory ailments.
Collapse
Affiliation(s)
- Gourav Chandan
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173 229, Himachal Pradesh, India; Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 203, Haryana, India
| | - Chetan Kumar
- Division of Natural Products Chemistry, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu 180 001, Jammu and Kashmir, India
| | - Pankaj Chibber
- Pharmacokinetics-Pharmacodynamics, Toxicology and Formulation Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu 180 001, Jammu and Kashmir, India
| | - Ashwani Kumar
- Department of Bioinformatics, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Gurdarshan Singh
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Naresh K Satti
- Division of Natural Products Chemistry, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu 180 001, Jammu and Kashmir, India
| | - Henok Gulilat
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173 229, Himachal Pradesh, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 203, Haryana, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 203, Haryana, India.
| |
Collapse
|
21
|
Khan A, Shal B, Khan AU, Ullah R, Baig MW, ul Haq I, Seo EK, Khan S. Suppression of TRPV1/TRPM8/P2Y Nociceptors by Withametelin via Downregulating MAPK Signaling in Mouse Model of Vincristine-Induced Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22116084. [PMID: 34199936 PMCID: PMC8200233 DOI: 10.3390/ijms22116084] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 μg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1-10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Waleed Baig
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ihsan ul Haq
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| |
Collapse
|