1
|
Paul P, Dey D, Deb DP, Mia MAR, Iftehimul M, Biswas P, Hossain R, Ullah MS, Hasan MN, Mandal M, Ansari SA, Islam MT, Sarker MZI, Mubarak MS. Uncovering the Efficacy of Cinnamomum tamala Leaf Extract Against Paracetamol-Induced Hepatotoxicity in Swiss Albino Mice. Chem Biodivers 2025:e202500753. [PMID: 40300760 DOI: 10.1002/cbdv.202500753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Cinnamomum tamala belongs to the Lauraceae family, which has diverse traditional and pharmacological roles for treating toothache, diarrhea, gastrointestinal disorders, vomiting, fever, diabetes, hyperlipidemia, and others. This research aims to evaluate its protective effects against paracetamol-induced hepatotoxicity in mice. For this, ethanolic leaf extract of C. tamala (ECT) at different doses was administered via oral gavage with or without the standard hepatoprotective drug silymarin, and liver biochemical and histopathological profiles were checked. Gas chromatography-mass spectrometry (GC-MS) analysis and molecular docking studies were performed to check the possible molecular mechanisms behind its hepatoprotective effect. Results suggest that ECT significantly enhances antioxidant capability with lower animal N-acetyl-p-benzoquinone imine metabolites. The histopathological slides showed minimum inflammation, inflammatory cell infiltrations, and vascular edematous congestion for the ECT individual and co-administration groups. Computational drug discovery approaches validated these results, and the identified compounds from the GC-MS study were subjected to molecular docking, with the top docking score found against the CYP2E1 protein. In molecular dynamics simulation, 1,3-dioxolane, 2-pentadecyl, and butyl 14-methylhexadecanoate showed more root mean square deviation and root-mean-square fluctuation values than silymarin. In conclusion, ECT and its key compounds, butyl 14-methylhexadecanoate (CID 91693030) and 1,3-dioxolane, 2-pentadecyl (CID 552019), may potentially act against paracetamol-induced hepatotoxicity in animals.
Collapse
Affiliation(s)
- Priyanka Paul
- Department of Biochemistry and Molecular Biology, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
| | | | - Md Abdur Rashid Mia
- Cooperative Research, Extension, and Education Services (CREES), Northern Marianas College, Saipan, Northern Mariana Islands, USA
| | - Md Iftehimul
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Md Shafayet Ullah
- Department of Biochemistry and Molecular Biology, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Torequl Islam
- Department of Pharmacy, Gopalgonj Science and Technology University, Gopalgonj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Md Zaidul Islam Sarker
- Cooperative Research, Extension, and Education Services (CREES), Northern Marianas College, Saipan, Northern Mariana Islands, USA
| | | |
Collapse
|
2
|
Jadhav PA, Thomas AB, Pathan MK, Chaudhari SY, Wavhale RD, Chitlange SS. Unlocking the therapeutic potential of unexplored phytocompounds as hepatoprotective agents through integration of network pharmacology and in-silico analysis. Sci Rep 2025; 15:8425. [PMID: 40069278 PMCID: PMC11897136 DOI: 10.1038/s41598-025-92868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Liver diseases account for over two million deaths annually, amounting to 4% of mortality worldwide, underscoring the need for development of novel preventive and therapeutic strategies. The growing interest in natural hepatoprotective agents highlights the potential of traditional medicine for modern drug discovery, though unlocking their molecular complexity requires advanced tools. This study integrates cutting-edge computational techniques with traditional herbal knowledge to identify potential hepatoprotective compounds. Protein targets implicated in liver disorders were identified through network pharmacology and by leveraging the rich molecular diversity inherent in herbal compounds, phytocompounds were selected. The Gene Ontology, Kyoto Encyclopedia of Genes and Genome data were compiled and enrichment analysis was performed using the DAVID database. Molecular docking of selected phytocompounds with top five protein targets helped identify 14 compounds which were employed for building the pharmacophore model. In virtual screening, among 1089 compounds screened, 10 compounds were identified as potential hits based on their predicted scores and alignment with pharmacophore features. The interactions of resulting hits were then analyzed through redocking studies and validated through molecular dynamics simulation and ADMET studies. Notably, (2S,5E)-2-(3,4-Dihydroxybenzyl)-6-(3,4-dihydroxyphenyl)-4-oxo-5-hexenoic acid and 5'-hydroxymorin emerged as lead compounds for further investigation. Both compounds exhibited significant binding affinities with specific amino acids in selected targets, suggesting their potential to modulate key pathways involved in hepatic disorders. Our findings demonstrate the utility of this integrated approach which transits beyond traditional trial-and-error methods. This approach will accelerate the discovery of novel hepatoprotective compounds, providing deeper insights into their mechanistic pathways and action.
Collapse
Affiliation(s)
- Pranali A Jadhav
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| | - Asha B Thomas
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India.
| | | | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Nigdi, Pune, Maharashtra, India
| | - Ravindra D Wavhale
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| | - Sohan S Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, 411 018, India
| |
Collapse
|
3
|
Faruque M, Siraj MA, Zilani MNH, Das AK, Anisuzzman M, Islam MM. Investigating small molecules in propolis as Nipah virus glycoprotein (NiV-G) inhibitors through molecular interaction studies. Heliyon 2025; 11:e42595. [PMID: 40051842 PMCID: PMC11883394 DOI: 10.1016/j.heliyon.2025.e42595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 03/09/2025] Open
Abstract
Despite the significant fatality rates associated with Nipah virus (NiV) outbreaks in South Asia, including Bangladesh, and India, till today, there is no approved medications to treat it. In this context, small molecules in propolis were computationally screened through pharmacokinetic and toxicity studies followed by molecular docking and dynamics simulation with Nipah virus glycoprotein (NiV-G protein) to assess their anti-Nipah potential. A thorough literature analysis was performed to identify antiviral compounds in propolis from a pool of 84 experimental articles. Following ADMET analysis, 27 molecules out of 34 were docked against NiV-G and compared with a control ligand, ribavirin, which is an investigational drug against Nipah. The molecular docking revealed that bauer-7-en-3β-yl acetate (BA) and moronic acid (MA) bound more strongly to the active site of NiV-G than ribavirin and other ligands. Investigation of root-mean-square deviation (RMSD), root mean square fluctuations (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), molecular surface area (MolSA), binding free energy (MM-PBSA), the complexity of hydrogen bonds (HBs), and secondary structure of ligand-target interactions for 100 ns by molecular dynamics (MD) simulation study further supported the docked complex's stability and compactness. Therefore, the in silico molecular interaction analysis reports that both molecules may be the possible candidates against Nipah infection.
Collapse
Affiliation(s)
- Muaz Faruque
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Afjalus Siraj
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, Faculty of Health Sciences, Gono Bishwabidyalay, Dhaka, 1344, Bangladesh
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science & Technology, Jashore, 7408, Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Anisuzzman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Monirul Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
4
|
Paul P, Iftehimul M, Dey D, Mia MAR, Al-Khafaji K, Pal B, Biswas P, Mandal M, Hasan MN. Investigating the potent TOPO IIα inhibitors in breast cancer through the study of computational drug discovery research approaches. Mol Divers 2025; 29:655-670. [PMID: 38773015 DOI: 10.1007/s11030-024-10882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer (BC) is the second-leading cause of cancer after lung cancer. The disease has affected millions of people and resulted in many deaths. In the metastasis of breast cancer cells, Topoisomerase IIα plays a vital role. Therefore, this investigation aims to identify potential flavonoid compounds against BC by inhibiting this enzyme at an early stage. Based on previous studies, we selected and screened several plant-derived flavonoid compounds with potential anti-breast cancer activity using PyRx 0.8 and Schrodinger applications for preliminary molecular docking: the highest docking scores of Myricetin (-11.6 kcal/mol) and Quercetin (-10.0 kcal/mol). Next, we evaluated the top four compounds on the Way2Drug server to complete the cytotoxicity evaluation, which demonstrated anti-cancer and anti-breast cancer activity in various cell lines. According to pharmacokinetics studies, four compounds exhibited outstanding values and functioned similar to drug-like molecules. Moreover, Myricetin, Quercetin, and Morin displayed the highest number of hydrogen bonds, with the corresponding receptor forming residues asn120, thr147, and lys168. The protein-ligand complexes were validated using the Desmond simulator, and their data were compared to the anti-breast cancer drug Doxorubicin. In the simulation analysis, various parameters were evaluated, including RMSD, RMSF, Rg, SASA, MolSA, PSA, and hydrogen bond interaction. Finally, validated our dynamic simulation result with MM-GBSA operation, and Myricetin and Quercetin had the greatest score of -72.74344651, -66.66771823 kcal/mol, which is outstanding than the control drug. Hence, the computational research approach determined that Myricetin, Quercetin, and Morin could be industrially developed for the alternative treatment of breast cancer following additional confirmation from animal and cell line studies.
Collapse
Affiliation(s)
- Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh
| | - Md Iftehimul
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh
| | - Md Abdur Rashid Mia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.
| | - Khattab Al-Khafaji
- Department of Environmental Science, College of Energy and Environmental Science, Al-Karkh, University of Science, Baghdad, 10081, Iraq
| | - Bidu Pal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, 8100, Bangladesh.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
5
|
Roney M, Issahaku AR, Uddin MN, Wilhelm A, Aluwi MFFM. Exploration of leads from bis-indole based triazine derivatives targeting human aldose reductase in diabetic type 2: in-silico approaches. 3 Biotech 2025; 15:5. [PMID: 39676892 PMCID: PMC11635081 DOI: 10.1007/s13205-024-04178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Diabetes mellitus (DM) poses a major global healthcare challenge, highlighting the need for new treatments beyond current options. Currently available drugs have side effects including weight gain, nausea, vomiting, diarrhea, insulin resistance etc. Therefore, given the benefits of indole derivatives in diabetes and the lack of computational studies on bis-indole-based triazine derivatives with aldose reductase (AR), this study employs in-silico analysis to explore their potential as type-2 diabetes treatments. Based on the Differential Expression analysis, the human aldose reductase (HAR) encoding gene AKR1B1 showed overexpression in GSE30122 diabetes patients (Log2FC = 0.62, P < 0.01). Moreover, the compounds 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(3-hydroxy-5-methylphenyl)ethan-1-one (4) and 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(4-nitrophenyl)ethan-1-one (8) were identified as leading candidates, showing binding energies of - 62.12, - 81.73 kcal/mol and - 57.19, - 85.97 kcal/mol, respectively. Docking, MM/GBSA screening, molecular dynamics (MD) simulations, PCA, and post-MM/GBSA analysis confirmed their stability and favorable binding compared to the apo protein and control. Further in-vitro, in-vivo, and clinical studies are required to validate their therapeutic potential.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein, 9301 South Africa
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205 Bangladesh
| | - Anke Wilhelm
- Department of Chemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein, 9301 South Africa
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
| |
Collapse
|
6
|
Huq AKMM, Roney M, Issahaku AR, Sapari S, Ilyana Abdul Razak F, Soliman MES, Mohd Aluwi MFF, Tajuddin SN. Selected phytochemicals of Momordica charantia L. as potential anti-DENV-2 through the docking, DFT and molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:9325-9336. [PMID: 37676311 DOI: 10.1080/07391102.2023.2251069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Dengue fever is now one of the major global health concerns particularly for tropical and sub-tropical countries. However, there has been no FDA approved medication to treat dengue fever. Researchers are looking into DENV NS5 RdRp protease as a potential therapeutic target for discovering effective anti-dengue agents. The aim of this study to discover dengue virus inhibitor from a set of five compounds from Momordica charantia L. using a series of in-silico approaches. The compounds were docked into the active area of the DENV-2 NS5 RdRp protease to obtain the hit compounds. The successful compounds underwent additional testing for a study on drug-likeness similarity. Our study obtained Momordicoside-I as a lead compound which was further exposed to the Cytochrome P450 (CYP450) toxicity analysis to determine the toxicity based on docking scores and drug-likeness studies. Moreover, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties for the lead compound. Moreover, the lead compound was next subjected to molecular dynamic simulation for 200 ns in order to confirm the stability of the docked complex and the binding posture discovered during docking experiment. Overall, the lead compound has demonstrated good medication like qualities, non-toxicity, and significant binding affinity towards the DENV-2 RdRp enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A K M Moyeenul Huq
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Malaysia
- Department of Pharmacy, School of Medicine, University of Asia Pacific 74/A, Dhaka, Bangladesh
| | - Miah Roney
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Malaysia
| | - Abdul Rashid Issahaku
- West African Centre for Computational Research and Innovation, Ghana, West Africa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Suhaila Sapari
- Department of Chemistry, University Technology of Malaysia, Skudai, Johor
| | | | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Malaysia
| | - Saiful Nizam Tajuddin
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Malaysia
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Malaysia
| |
Collapse
|
7
|
Saif MS, Waqas M, Hussain R, Ahmed MM, Tariq T, Batool S, Liu Q, Mustafa G, Hasan M. Potential of CME@ZIF-8 MOF Nanoformulation: Smart Delivery of Silymarin for Enhanced Performance and Mechanism in Albino Rats. ACS APPLIED BIO MATERIALS 2024; 7:6919-6931. [PMID: 39344123 DOI: 10.1021/acsabm.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Silymarin, an antioxidant, is locally used for kidney and heart ailments. However, its limited water solubility and less oral bioavailability limit its therapeutic efficiency. The present study investigated the enhancement of solubility and bioavailability of silymarin by loading it in Cordia myxa plant extract-coated zeolitic imidazole framework (CME@ZIF-8) against carbon tetrachloride (CCl4)-induced nephrotoxicity and cardiac toxicity in albino rats. The synthesized PEG-coated silymarin drug-loaded CME@ZIF-8 MOFs (PEG-Sily@CME@ZIF-8) were characterized by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, UV-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and zeta potential. The average crystal size of CME@ZIF-8 and PEG-Sily@CME@ZIF-8 was 12.69 and 16.81 nm, respectively. The silymarin drug loading percentage in PEG-Sily@CME@ZIF-8 was 33.05% (w/w). In the animal model with CCl4 treatment, different parameters like serum profile, enzymatic level, genotoxicity, and histopathology were assessed. Treatment with PEG-Sily@CME@ZIF-8 with different doses of 500, 1000, and 1500 μg/kg body weight efficiently ameliorated the alterations in the antioxidant defenses, biochemical parameters, and histopathological alterations and DNA damage in comparison to silymarin drug in a CCl4-induced toxicity rat model via alleviating the cellular abnormalities and attenuation of normal antioxidant enzymes levels. Moreover, the molecular mechanism of drug-silymarin interaction with the target protein was investigated. It involves the binding pockets of silymarin molecules with VEGFR, TNF-α, NLRP3, AT1R, NOX1, RIPK1, Caspase-3, CHOP, and MMP-9 proteins, elucidating the silymarin-protein interactions by the formation of hydrogen bonds and hydrophobic interactions. This study suggests that the nanodrug PEG-Sily@CME@ZIF-8 MOFs protect the kidneys and heart possibly by mitigating oxidative stress more efficiently than the conventional drug silymarin.
Collapse
Affiliation(s)
- Muhammad Saqib Saif
- Department of Biochemistry, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Bioinformatics, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department of Biochemistry, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sana Batool
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Qiang Liu
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
8
|
Shah M, Shahab M, Ullah S, Bibi S, Rahman NU, Jamil J, Arafat Y, Al-Harrasi A, Murad W, Shao H. Exploring the aroma profile and biomedical applications of Scutellaria nuristanica Rech. F.: A new insight as a natural remedy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155928. [PMID: 39126924 DOI: 10.1016/j.phymed.2024.155928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.
Collapse
Affiliation(s)
- Muddaser Shah
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China; Department of Botany, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan; Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Muhammad Shahab
- Department of Botany, University of Malakand Chakdara, Chakdara 18800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan; Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Najeeb Ur Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Johar Jamil
- Department of Microbiology, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan
| | - Yasir Arafat
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| |
Collapse
|
9
|
Chang WK, Wang CJ, Tsai TH, Sun FJ, Chen CH, Kuo KC, Chung HP, Tang YH, Chen YT, Wu KL, Wu JC, Lin CY, Zhang HB. The clinical application of traditional Chinese medicine NRICM101 in hospitalized patients with COVID-19. Expert Rev Anti Infect Ther 2024; 22:587-595. [PMID: 38288986 DOI: 10.1080/14787210.2024.2313054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The aim of this study was to assess the efficacy and safety of NRICM101 in hospitalized patients with COVID-19. RESEARCH DESIGN AND METHODS We conducted a retrospective study from 20 April 2021 to 8 July 2021, and evaluated the safety and outcomes (mortality, hospital stay, mechanical ventilation, oxygen support, diarrhea, serum potassium) in COVID-19 patients. Propensity score matching at a 1:2 ratio was performed to reduce confounding factors. RESULTS A total of 201 patients were analyzed. The experimental group (n = 67) received NRICM101 and standard care, while the control group (n = 134) received standard care alone. No significant differences were observed in mortality (10.4% vs. 14.2%), intubation (13.8% vs. 11%), time to intubation (10 vs. 11 days), mechanical ventilation days (0 vs. 9 days), or oxygen support duration (6 vs. 5 days). However, the experimental group had a shorter length of hospitalization (odds ratio = 0.12, p = 0.043) and fewer mechanical ventilation days (odds ratio = 0.068, p = 0.008) in initially severe cases, along with an increased diarrhea risk (p = 0.035). CONCLUSION NRICM101 did not reduce in-hospital mortality. However, it shortened the length of hospitalization and reduced mechanical ventilation days in initially severe cases. Further investigation is needed.
Collapse
Affiliation(s)
- Wen-Kuei Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Ju Sun
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Chao-Hsien Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Kuan-Chih Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hsin-Pei Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Kuo-Lun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jou-Chun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Hai-Bo Zhang
- Anesthesia, Medicine and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Mollaamin F. Structural and Functional Characterization of Medicinal Plants as Selective Antibodies towards Therapy of COVID-19 Symptoms. Antibodies (Basel) 2024; 13:38. [PMID: 38804306 PMCID: PMC11130808 DOI: 10.3390/antib13020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/23/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Considering the COVID-19 pandemic, this research aims to investigate some herbs as probable therapies for this disease. Achillea millefolium (Yarrow), Alkanet, Rumex patientia (Patience dock), Dill, Tarragon, and sweet fennel, including some principal chemical compounds of achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone have been selected. The possible roles of these medicinal plants in COVID-19 treatment have been investigated through quantum sensing methods. The formation of hydrogen bonding between the principal substances selected in anti-COVID natural drugs and Tyr-Met-His (the database amino acids fragment), as the active area of the COVID protein, has been evaluated. The physical and chemical attributes of nuclear magnetic resonance, vibrational frequency, the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy, partial charges, and spin density have been investigated using the DFT/TD-DFT method and 6-311+G (2d,p) basis set by the Gaussian 16 revision C.01 program toward the industry of drug design. This research has exhibited that there is relative agreement among the results that these medicinal plants could be efficient against COVID-19 symptoms.
Collapse
Affiliation(s)
- Fatemeh Mollaamin
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey
| |
Collapse
|
11
|
Roney M, Dubey A, Issahaku AR, Uddin MN, Tufail A, Wilhelm A, Zamri NB, Aluwi MFFM. Insights from in silico exploration of major curcumin analogs targeting human dipeptidyl peptidase IV. J Biomol Struct Dyn 2024:1-14. [PMID: 38260948 DOI: 10.1080/07391102.2024.2306197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The goal of this work is to use a variety of in-silico techniques to identify anti-diabetic agents against DPP-IV enzyme from five main curcumin analogues. To produce the successful molecules, five main curcumin analogues were docked into the active site of DPP-IV enzyme. In comparison to the control molecule (Saxagliptin, -6.9 kcal/mol), all the compounds have the highest binding affinity (-7.6 to -7.7 kcal/mol) for the DPP-IV enzyme. These compounds underwent further testing for studies on drug-likeness, pharmacokinetics, and acute toxicity to see the efficacy and safety of compounds. To assess the stability of the docking complex and the binding posture identified during the docking experiment, our study got THC as the lead compound, which was then exposed to 200 ns of molecular dynamic simulation and PCA analysis. Additionally, DFT calculations were conducted to determine the thermodynamic, molecular orbital, and electrostatic potential characteristics of lead compound. Overall, the lead chemical has shown strong drug-like properties, is non-toxic, and has a sizable affinity for the DPP-IV enzyme.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | | | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Aisha Tufail
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Anke Wilhelm
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
12
|
dos Santos Nascimento IJ, Santana Gomes JN, de Oliveira Viana J, de Medeiros e Silva YMS, Barbosa EG, de Moura RO. The Power of Molecular Dynamics Simulations and Their Applications to Discover Cysteine Protease Inhibitors. Mini Rev Med Chem 2024; 24:1125-1146. [PMID: 37680157 PMCID: PMC11337241 DOI: 10.2174/1389557523666230901152257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
A large family of enzymes with the function of hydrolyzing peptide bonds, called peptidases or cysteine proteases (CPs), are divided into three categories according to the peptide chain involved. CPs catalyze the hydrolysis of amide, ester, thiol ester, and thioester peptide bonds. They can be divided into several groups, such as papain-like (CA), viral chymotrypsin-like CPs (CB), papainlike endopeptidases of RNA viruses (CC), legumain-type caspases (CD), and showing active residues of His, Glu/Asp, Gln, Cys (CE). The catalytic mechanism of CPs is the essential cysteine residue present in the active site. These mechanisms are often studied through computational methods that provide new information about the catalytic mechanism and identify inhibitors. The role of computational methods during drug design and development stages is increasing. Methods in Computer-Aided Drug Design (CADD) accelerate the discovery process, increase the chances of selecting more promising molecules for experimental studies, and can identify critical mechanisms involved in the pathophysiology and molecular pathways of action. Molecular dynamics (MD) simulations are essential in any drug discovery program due to their high capacity for simulating a physiological environment capable of unveiling significant inhibition mechanisms of new compounds against target proteins, especially CPs. Here, a brief approach will be shown on MD simulations and how the studies were applied to identify inhibitors or critical information against cysteine protease from several microorganisms, such as Trypanosoma cruzi (cruzain), Trypanosoma brucei (rhodesain), Plasmodium spp. (falcipain), and SARS-CoV-2 (Mpro). We hope the readers will gain new insights and use our study as a guide for potential compound identifications using MD simulations.
Collapse
Affiliation(s)
- Igor José dos Santos Nascimento
- Department of Pharmacy, Cesmac University Center, Maceió, 57051-160, Brazil
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Joilly Nilce Santana Gomes
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Jéssika de Oliveira Viana
- Post-graduate Program in Bioinformatics, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Yvnni Maria Sales de Medeiros e Silva
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Euzébio Guimarães Barbosa
- Post-graduate Program in Bioinformatics, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ricardo Olimpio de Moura
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
13
|
Roney M, Issahaku AR, Govinden U, Gazali AM, Aluwi MFFM, Zamri NB. Diabetic wound healing of aloe vera major phytoconstituents through TGF-β1 suppression via in-silico docking, molecular dynamic simulation and pharmacokinetic studies. J Biomol Struct Dyn 2023; 42:13939-13952. [PMID: 37942697 DOI: 10.1080/07391102.2023.2279280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
To restore the integrity of the skin and subcutaneous tissue, the wound healing process involves a complex series of well-orchestrated biochemical and cellular events. Due to the existence of various active components, accessibility and few side effects, some plant extracts and their phytoconstituents are recognised as viable options for wound healing agents. To find possible inhibitors of diabetic wound healing, four main constituents of aloe vera were identified from the literature. TGF-β1 and the compounds were studied using molecular docking to see how they interacted with the active site of target protein (PDB ID: 6B8Y). The pharmacokinetics investigation of the aloe emodin with the highest dock score complied with all the Lipinski's rule of five and pharmacokinetics criteria. Conformational change in the docked complex of Aloe emodin was investigated with the Amber simulation software, via a molecular dynamic (MD) simulation. The MD simulations of aloe emodin bound to TGF-β1 showed the significant structural rotations and twists occurring from 0 to 200 ns. The estimate of the aloe emodin-TGF-β1 complex's binding free energy has also been done using MM-PBSA/GBSA techniques. Additionally, aloe emodin has a wide range of enzymatic activities since their probability active (Pa) values is >0.700. 'Aloe emodin', an active extract of aloe vera, has been identified as the key chemical in the current investigation that can inhibit diabetic wound healing. Both in-vitro and in-vivo experiments will be used in a wet lab to confirm the current computational findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Abdul Razak, Gambang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- West African Centre for Computational Research and Innovation, Ghana, West Africa
| | - Usha Govinden
- Discipline of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, School of Health Sciences, University of Kwazulu Natal, Westville, South Africa
| | - Ahmad Mahfuz Gazali
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Abdul Razak, Gambang, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Abdul Razak, Gambang, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Malaysia
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Abdul Razak, Gambang, Malaysia
| |
Collapse
|
14
|
Wang Z, Song XQ, Xu W, Lei S, Zhang H, Yang L. Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nutrients 2023; 15:3885. [PMID: 37764669 PMCID: PMC10535599 DOI: 10.3390/nu15183885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the "back to nature" approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xian-qing Song
- General Surgery Department, Baoan Central Hospital, Affiliated Baoan Central Hospital of Guangdong Medical University, Shenzhen 518000, China
| | - Wenjing Xu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Shizeng Lei
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
15
|
Durojaye OA, Okoro NO, Odiba AS, Nwanguma BC. MasitinibL shows promise as a drug-like analog of masitinib that elicits comparable SARS-Cov-2 3CLpro inhibition with low kinase preference. Sci Rep 2023; 13:6972. [PMID: 37117213 PMCID: PMC10141821 DOI: 10.1038/s41598-023-33024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
SARS-CoV-2 infection has led to several million deaths worldwide and ravaged the economies of many countries. Hence, developing therapeutics against SARS-CoV-2 remains a core priority in the fight against COVID-19. Most of the drugs that have received emergency use authorization for treating SARS-CoV-2 infection exhibit a number of limitations, including side effects and questionable efficacy. This challenge is further compounded by reinfection after vaccination and the high likelihood of mutations, as well as the emergence of viral escape mutants that render SARS-CoV-2 spike glycoprotein-targeting vaccines ineffective. Employing de novo drug synthesis or repurposing to discover broad-spectrum antivirals that target highly conserved pathways within the viral machinery is a focus of current research. In a recent drug repurposing study, masitinib, a clinically safe drug against the human coronavirus OC43 (HCoV-OC43), was identified as an antiviral agent with effective inhibitory activity against the SARS-CoV-2 3CLpro. Masitinib is currently under clinical trial in combination with isoquercetin in hospitalized patients (NCT04622865). Nevertheless, masitinib has kinase-related side effects; hence, the development of masitinib analogs with lower anti-tyrosine kinase activity becomes necessary. In this study, in an attempt to address this limitation, we executed a comprehensive virtual workflow in silico to discover drug-like compounds matching selected pharmacophore features in the SARS-CoV-2 3CLpro-bound state of masitinib. We identified a novel lead compound, "masitinibL", a drug-like analog of masitinib that demonstrated strong inhibitory properties against the SARS-CoV-2 3CLpro. In addition, masitinibL further displayed low selectivity for tyrosine kinases, which strongly suggests that masitinibL is a highly promising therapeutic that is preferable to masitinib.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, Anhui, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria
| | - Nkwachukwu Oziamara Okoro
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Arome Solomon Odiba
- Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Bennett Chima Nwanguma
- Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| |
Collapse
|
16
|
Wu J, Gao T, Guo H, Zhao L, Lv S, Lv J, Yao R, Yu Y, Ma F. Application of molecular dynamics simulation for exploring the roles of plant biomolecules in promoting environmental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161871. [PMID: 36708839 DOI: 10.1016/j.scitotenv.2023.161871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Understanding the dynamic changes of plant biomolecules is vital for exploring their mechanisms in the environment. Molecular dynamics (MD) simulation has been widely used to study structural evolution and corresponding properties of plant biomolecules at the microscopic scale. Here, this review (i) outlines structural properties of plant biomolecules, and the crucial role of MD simulation in advancing studies of the biomolecules; (ii) describes the development of MD simulation in plant biomolecules, determinants of simulation, and analysis parameters; (iii) introduces the applications of MD simulation in plant biomolecules, including the response of the biomolecules to multiple stresses, their roles in corrosive environments, and their contributions in improving environmental health; (iv) reviews techniques integrated with MD simulation, such as molecular biology, quantum mechanics, molecular docking, and machine learning modeling, which bridge gaps in MD simulation. Finally, we make suggestions on determination of force field types, investigation of plant biomolecule mechanisms, and use of MD simulation in combination with other techniques. This review provides comprehensive summaries of the mechanisms of plant biomolecules in the environment revealed by MD simulation and validates it as an applicable tool for bridging gaps between macroscopic and microscopic behavior, providing insights into the wide application of MD simulation in plant biomolecules.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Haijuan Guo
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Ruyi Yao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Yanyi Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
17
|
Biswas P, Bibi S, Yousafi Q, Mehmood A, Saleem S, Ihsan A, Dey D, Hasan Zilani MN, Hasan MN, Saleem R, Awaji AA, Fahmy UA, Abdel-Daim MM. Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway: A Computational Drug Development Approach. Molecules 2023; 28:2977. [PMID: 37049742 PMCID: PMC10095937 DOI: 10.3390/molecules28072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.
Collapse
Affiliation(s)
- Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Qudsia Yousafi
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Asim Mehmood
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Shahzad Saleem
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Awais Ihsan
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rasha Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah 65431, Saudi Arabia
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
18
|
Exploring the Potential of Black Soldier Fly Larval Proteins as Bioactive Peptide Sources through in Silico Gastrointestinal Proteolysis: A Cheminformatic Investigation. Catalysts 2023. [DOI: 10.3390/catal13030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Despite their potential as a protein source for human consumption, the health benefits of black soldier fly larvae (BSFL) proteins following human gastrointestinal (GI) digestion are poorly understood. This computational study explored the potential of BSFL proteins to release health-promoting peptides after human GI digestion. Twenty-six proteins were virtually proteolyzed with GI proteases. The resultant peptides were screened for high GI absorption and non-toxicity. Shortlisted peptides were searched against the BIOPEP-UWM and Scopus databases to identify their bioactivities. The potential of the peptides as inhibitors of myeloperoxidase (MPO), NADPH oxidase (NOX), and xanthine oxidase (XO), as well as a disruptor of Keap1–Nrf2 protein–protein interaction, were predicted using molecular docking and dynamics simulation. Our results revealed that about 95% of the 5218 fragments generated from the proteolysis of BSFL proteins came from muscle proteins. Dipeptides comprised the largest group (about 25%) of fragments arising from each muscular protein. Screening of 1994 di- and tripeptides using SwissADME and STopTox tools revealed 65 unique sequences with high GI absorption and non-toxicity. A search of the databases identified 16 antioxidant peptides, 14 anti-angiotensin-converting enzyme peptides, and 17 anti-dipeptidyl peptidase IV peptides among these sequences. Results from molecular docking and dynamic simulation suggest that the dipeptide DF has the potential to inhibit Keap1–Nrf2 interaction and interact with MPO within a short time frame, whereas the dipeptide TF shows promise as an XO inhibitor. BSFL peptides were likely weak NOX inhibitors. Our in silico results suggest that upon GI digestion, BSFL proteins may yield high-GI-absorbed and non-toxic peptides with potential health benefits. This study is the first to investigate the bioactivity of peptides liberated from BSFL proteins following human GI digestion. Our findings provide a basis for further investigations into the potential use of BSFL proteins as a functional food ingredient with significant health benefits.
Collapse
|
19
|
Molecular Dynamics Simulation and Pharmacoinformatic Integrated Analysis of Bioactive Phytochemicals from Azadirachta indica (Neem) to Treat Diabetes Mellitus. J CHEM-NY 2023. [DOI: 10.1155/2023/4170703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Diabetes mellitus is a chronic hormonal and metabolic disorder in which our body cannot generate necessary insulin or does not act in response to it, accordingly, ensuing in discordantly high blood sugar (glucose) levels. Diabetes mellitus can lead to systemic dysfunction in the multiorgan system, including cardiac dysfunction, severe kidney disease, lowered quality of life, and increased mortality risk from diabetic complications. To uncover possible therapeutic targets to treat diabetes mellitus, the in silico drug design technique is widely used, which connects the ligand molecules with target proteins to construct a protein-ligand network. To identify new therapeutic targets for type 2 diabetes mellitus, Azadirachta indica is subjected to phytochemical screening using in silico molecular docking, pharmacokinetic behavior analysis, and simulation-based molecular dynamic analysis. This study has analyzed around 63 phytochemical compounds, and the initial selection of the compounds was made by analyzing their pharmacokinetic properties by comparing them with Lipinski’s rule of 5. The selected compounds were subjected to molecular docking. The top four ligand compounds were reported along with the control drug nateglinide based on their highest negative molecular binding affinity. The protein-ligand interaction of selected compounds has been analyzed to understand better how compounds interact with the targeted protein structure. The results of the in silico analysis revealed that 7-Deacetyl-7-oxogedunin had the highest negative docking score of −8.9 Kcal/mol and also demonstrated standard stability in a 100 ns molecular dynamic simulation performed with insulin receptor ectodomain. It has been found that these substances may rank among the essential supplementary antidiabetic drugs for treating type 2 diabetes mellitus. It is suggested that more in vivo and in vitro research studies be carried out to support the conclusions drawn from this in silico research strategy.
Collapse
|
20
|
Ahmed SI, Jamil S, Ismatullah H, Hussain R, Bibi S, Khandaker MU, Naveed A, Idris AM, Emran TB. A comprehensive perspective of traditional Arabic or Islamic medicinal plants as an adjuvant therapy against COVID-19. Saudi J Biol Sci 2023; 30:103561. [PMID: 36684115 PMCID: PMC9838045 DOI: 10.1016/j.sjbs.2023.103561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
COVID-19 is a pulmonary disease caused by SARS-CoV-2. More than 200 million individuals are infected by this globally. Pyrexia, coughing, shortness of breath, headaches, diarrhoea, sore throats, and body aches are among the typical symptoms of COVID-19. The virus enters into the host body by interacting with the ACE2 receptor. Despite many SARS-CoV-2 vaccines manufactured by distinct strategies but any evidence-based particular medication to combat COVID-19 is not available yet. However, further research is required to determine the safety and effectiveness profile of the present therapeutic approaches. In this study, we provide a summary of Traditional Arabic or Islamic medicinal (TAIM) plants' historical use and their present role as adjuvant therapy for COVID-19. Herein, six medicinal plants Aloe barbadensis Miller, Olea europaea, Trigonella foenum-graecum, Nigella sativa, Cassia angustifolia, and Ficus carica have been studied based upon their pharmacological activities against viral infections. These plants include phytochemicals that have antiviral, immunomodulatory, antiasthmatic, antipyretic, and antitussive properties. These bioactive substances could be employed to control symptoms and enhance the development of a possible COVID-19 medicinal synthesis. To determine whether or if these TAIMs may be used as adjuvant therapy and are appropriate, a detailed evaluation is advised.
Collapse
Affiliation(s)
- Shabina Ishtiaq Ahmed
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Sehrish Jamil
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Humaira Ismatullah
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Rashid Hussain
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Aisha Naveed
- Caribbean Medical University, Willemastad, Curacao-Caribbean Island, Curaçao
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
21
|
Li Y, Wu Y, Li S, Li Y, Zhang X, Shou Z, Gu S, Zhou C, Xu D, Zhao K, Tan S, Qiu J, Pan X, Li L. Identification of phytochemicals in Qingfei Paidu decoction for the treatment of coronavirus disease 2019 by targeting the virus-host interactome. Biomed Pharmacother 2022; 156:113946. [PMID: 36411632 PMCID: PMC9618446 DOI: 10.1016/j.biopha.2022.113946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 01/11/2023] Open
Abstract
Qingfei Paidu decoction (QFPDD) has been clinically proven to be effective in the treatment of coronavirus disease 2019 (COVID-19). However, the bioactive components and therapeutic mechanisms remain unclear. This study aimed to explore the effective components and underlying mechanisms of QFPDD in the treatment of COVID-19 by targeting the virus-host interactome and verifying the antiviral activities of its active components in vitro. Key active components and targets were identified by analysing the topological features of a compound-target-pathway-disease regulatory network of QFPDD for the treatment of COVID-19. The antiviral activity of the active components was determined by a live virus infection assay, and possible mechanisms were analysed by pseudotyped virus infection and molecular docking assays. The inhibitory effects of the components tested on the virus-induced release of IL-6, IL-1β and CXCL-10 were detected by ELISA. Three components of QFPDD, oroxylin A, hesperetin and scutellarin, exhibited potent antiviral activities against live SARS-CoV-2 virus and HCoV-OC43 virus with IC50 values ranging from 18.68 to 63.27 μM. Oroxylin A inhibited the entry of SARS-CoV-2 pseudovirus into target cells and inhibited SARS-CoV-2 S protein-mediated cell-cell fusion by binding with the ACE2 receptor. The active components of QFPDD obviously inhibited the IL-6, IL-1β and CXCL-10 release induced by the SARS-CoV-2 S protein. This study supports the clinical application of QFPDD and provides an effective analysis method for the in-depth study of the mechanisms of traditional Chinese medicine (TCM) in the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Yuyun Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China,Key Laboratory of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan 523808, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Siyan Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yibin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zeren Shou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuyin Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenliang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Daohua Xu
- Key Laboratory of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan 523808, China
| | - Kangni Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Suiyi Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiayin Qiu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China,Corresponding authors
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors
| | - Lin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China,Corresponding authors
| |
Collapse
|
22
|
Jamal QMS. Antiviral Potential of Plants against COVID-19 during Outbreaks-An Update. Int J Mol Sci 2022; 23:13564. [PMID: 36362351 PMCID: PMC9655040 DOI: 10.3390/ijms232113564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 12/01/2023] Open
Abstract
Several human diseases are caused by viruses, including cancer, Type I diabetes, Alzheimer's disease, and hepatocellular carcinoma. In the past, people have suffered greatly from viral diseases such as polio, mumps, measles, dengue fever, SARS, MERS, AIDS, chikungunya fever, encephalitis, and influenza. Recently, COVID-19 has become a pandemic in most parts of the world. Although vaccines are available to fight the infection, their safety and clinical trial data are still questionable. Social distancing, isolation, the use of sanitizer, and personal productive strategies have been implemented to prevent the spread of the virus. Moreover, the search for a potential therapeutic molecule is ongoing. Based on experiences with outbreaks of SARS and MERS, many research studies reveal the potential of medicinal herbs/plants or chemical compounds extracted from them to counteract the effects of these viral diseases. COVID-19's current status includes a decrease in infection rates as a result of large-scale vaccination program implementation by several countries. But it is still very close and needs to boost people's natural immunity in a cost-effective way through phytomedicines because many underdeveloped countries do not have their own vaccination facilities. In this article, phytomedicines as plant parts or plant-derived metabolites that can affect the entry of a virus or its infectiousness inside hosts are described. Finally, it is concluded that the therapeutic potential of medicinal plants must be analyzed and evaluated entirely in the control of COVID-19 in cases of uncontrollable SARS infection.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
23
|
Study on Medication Rules of Traditional Chinese Medicine in Treating Constipation through Data Mining and Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6733851. [PMID: 36267846 PMCID: PMC9578820 DOI: 10.1155/2022/6733851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Background To explore the rules of TCM medication in the treatment of constipation in network pharmacology. Methods Collect and screen the clinical intervention literature on TCM for constipation from China's national knowledge infrastructure, Wanfang and VIP databases established a database of TCM for constipation, applied R software (3.3.1) to analyze the pattern of prescriptions for TCM for constipation, and summarized the core prescription. The effective active compounds and action targets in the core prescription were screened by Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Traditional Chinese Medicine Integrated Databases (TCMID), constipation-related targets were derived from the DisGeNET and GeneCards databases, Protein-protein interaction network (PPI) was drawn by STRING database, and enrichment analysis was conducted by the Clusterprofiler package in R software (3.3.1). Finally, molecular docking was used to validate the binding ability of candidate compounds to potential targets. Results Two hundred sixteen target prescriptions were screened through data mining, involving 226 herbs. Association rule analysis results suggested that the “Angelicae sinensis-Radix-dried rehmanniae-Cistanche deserticola-Atractylodes macrocephala-Astragali Radix” was a strong affinity for medicine. Network pharmacology analysis of the core prescription resulted in the screening of 115 candidate compounds, such as quercetin, kaempferol, mangostin, eugenol A, and beta-sitosterol; 131 potential targets, such as PTGS2, PTGS1, and CHRM3; and 160 signaling pathways, such as lipid and atherosclerosis, proteoglycans in cancer, hepatitis B, Kaposi's sarcoma-associated herpesvirus infection, and PI3K/AKT pathways. Molecular docking showed that PTGS1-formononetin, PTGS2-kaempferol, and CHRM3-kaempferol were all well bound and well matched. Conclusions This study provides a new method and ideas for clinical applications of integrated Chinese and western medicine in treating constipation.
Collapse
|