1
|
Yarlagadda K, Hassani J, Foote IP, Markowitz J. The role of nitric oxide in melanoma. Biochim Biophys Acta Rev Cancer 2017; 1868:500-509. [PMID: 28963068 DOI: 10.1016/j.bbcan.2017.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule that mediates its effects in melanoma through free radical formation and enzymatic processes. Investigations have demonstrated multiple roles for NO in melanoma pathology via immune surveillance, apoptosis, angiogenesis, melanogenesis, and on the melanoma cell itself. In general, elevated levels of NO prognosticate a poor outcome for melanoma patients. However, there are processes where the relative concentration of NO in different environments may also serve to limit melanoma proliferation. This review serves to outline the roles of NO in melanoma development and proliferation. As demonstrated by multiple in vivo murine models and observations from human tissue, NO may promote melanoma formation and proliferation through its interaction via inhibitory immune cells, inhibition of apoptosis, stimulation of pro-tumorigenic cytokines, activation of tumor associated macrophages, alteration of angiogenic processes, and stimulation of melanoma formation itself.
Collapse
Affiliation(s)
- Keerthi Yarlagadda
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - John Hassani
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - Isaac P Foote
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States.
| |
Collapse
|
2
|
Li J, Xie J, Gao L, Li CM. Au nanoparticles-3D graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2726-2734. [PMID: 25580718 DOI: 10.1021/am5077777] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In situ detection of nitric oxide (NO) released from living cells has become very important in studies of some critical physiological and pathological processes, but it is still very challenging due to the low concentration and fast decay of NO. A nanocomposite of Au nanoparticles deposited on three-dimensional graphene hydrogel (Au NPs-3DGH) was prepared through a facile one-step approach by in situ reduction of Au(3+) on 3DGH to build a unique sensing film for a strong synergistic effect, in which the highly porous 3DGH offers a large surface area while Au NPs uniformly deposited on 3DGH efficiently catalyze the electrochemical oxidation of NO for sensitive detection of NO with excellent selectivity, fast response, and low detection limit. The sensor was further used to in situ detect NO released from living cells under drug stimulation, showing significant difference between normal and tumor cells under drug stimulation.
Collapse
Affiliation(s)
- Jialin Li
- Institute for Clean Energy & Advanced Materials and ‡Faculty of Materials and Energy, Southwest University , Chongqing 400715, China
| | | | | | | |
Collapse
|
3
|
Zöller M, Jung T. The Colorectal Cancer Initiating Cell: Markers and Their Role in Liver Metastasis. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-0292-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Lepiller S, Laurens V, Bouchot A, Herbomel P, Solary E, Chluba J. Imaging of nitric oxide in a living vertebrate using a diamino-fluorescein probe. Free Radic Biol Med 2007; 43:619-27. [PMID: 17640572 DOI: 10.1016/j.freeradbiomed.2007.05.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Numerous approaches have been described to identify nitric oxide (NO), a free radical involved in various physiological and pathophysiological processes. One of these approaches is based on the use of chemical probes whose transformation by NO generates highly fluorescent derivatives, permitting detection of NO down to nanomolar concentrations. Here, we show that the cell-permeant diamino-fluorophore 4-amino-5-methylamino-2'-7'-difluoro-fluorescein diacetate (DAF-FM-DA) can be used to detect NO production sites in a living vertebrate, the zebrafish Danio rerio. The staining pattern obtained in larvae includes the bulbus arteriosus, forming bones, the notochord, and the caudal fin. The specificity of the signal was confirmed by its decrease in animals exposed to a NO scavenger or a NO synthase inhibitor and its increase in the presence of a NO donor. Using this method, NO production was observed to change along development in the notochord and the caudal fin whereas it remained stable in the bulbus arteriosus. Local changes in NO production in response to stressful conditions were also detected by this method. Altogether, labeling with DAF-FM DA is an efficient method to monitor changes in NO production in live zebrafish under physiological as well as pathophysiological conditions, suggesting applications to drug screening and molecular pharmacology.
Collapse
Affiliation(s)
- Sandrine Lepiller
- Inserm UMR 866, University of Burgundy, Institut Fédératif de Recherche Santé STIC, 6 Boulevard Gabriel, Dijon F-21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
5
|
Garay RP, Viens P, Bauer J, Normier G, Bardou M, Jeannin JF, Chiavaroli C. Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur J Pharmacol 2007; 563:1-17. [PMID: 17383632 DOI: 10.1016/j.ejphar.2007.02.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 01/16/2023]
Abstract
Liver or lung metastases usually relapse under chemotherapy. Such life-threatening condition urgently needs new, systemic anticancer compounds, with original and efficient mechanisms of action. In B16 melanoma mice treated with cyclophosphamide, D'Agostini et al. [D'Agostini, C., Pica, F., Febbraro, G., Grelli, S., Chiavaroli, C., Garaci, E., 2005. Antitumour effect of OM-174 and Cyclophosphamide on murine B16 melanoma in different experimental conditions. Int. Immunopharmacol. 5, 1205-1212.] recently found that OM-174, a chemically defined Toll-like receptor(TLR)2/4 agonist, reduces tumor progression and prolongs survival. Here we review 149 articles concerning molecular mechanisms of TLR2/4 agonists, alone or in combination with chemotherapy. It appears that TLR2/4 agonists induce a well controlled tumor necrosis factor-alpha (TNF-alpha) secretion, at plasma levels known to permeabilize neoangiogenic tumor vessels to the passage of cytotoxic drugs. Moreover, TLR2/4 agonists induce inducible nitric oxide synthase (iNOS) expression, and nitric oxide is able to induce apoptosis of chemotherapy-resistant tumor cell clones. Finally, TLR2/4-stimulation activates dendritic cell traffic and its associated tumor-specific, cytotoxic T-cell responses. Therefore, parenteral TLR2/4 agonists seem promising molecules to prolong survival in cancer patients who relapse under chemotherapy.
Collapse
|
6
|
Abstract
BACKGROUND/AIMS This study determined the roles of NAD(P)H oxidase, which generates reactive oxygen species (ROS), and of inducible nitric oxide synthase (iNOS), which generates nitric oxide (NO) on the development of hepatic fibrosis in mice. METHODS Hepatic fibrosis was produced by carbon tetrachloride administered for 12 weeks in wild-type (WT) mice and in mice with knockout of either the gp91phox subunit of the NAD(P)H complex (gp91phox-/-) or of iNOS (iNOS(-/-)). RESULTS Liver fibrosis and hydroxyproline after carbon tetrachloride was lower in gp91phox-/- and in iNOS(-/-) mice than in WT mice. The increase in alpha2(I) collagen mRNA was absent in the gp91phox-/- but not in the iNOS(-/-) mice. Transformation growth factor beta (TGF-beta) mRNA was increased more in the gp91phox-/- than in the WT mice, while in the iNOS(-/-) mice there was no increase in TGF-beta mRNA. 3-Nitrotyrosine was similarly increased by carbon tetrachloride in gp91phox-/- and WT mice, while there was no increase in the iNOS(-/-) mice. CONCLUSIONS Deficiencies in NAD(P)H oxidase and in iNOS separately reduce, but do not eliminate carbon tetrachloride-induced liver fibrosis. Likely causes for this inhibitory effects are decreases in the production of ROS in NAD(P)H deficiency and of peroxinitrite radicals in iNOS deficiency.
Collapse
Affiliation(s)
- Gennadiy Novitskiy
- Department of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University, Baltimore 21205-2195, MD, USA
| | | | | | | |
Collapse
|
7
|
Lacza Z, Kozlov AV, Pankotai E, Csordás A, Wolf G, Redl H, Kollai M, Szabó C, Busija DW, Horn TFW. Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic Res 2006; 40:369-78. [PMID: 16517501 DOI: 10.1080/10715760500539139] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We measured the contribution of mitochondrial nitric oxide synthase (mtNOS) and respiratory chain enzymes to reactive nitrogen species (RNS) production. Diaminofluorescein (DAF) was applied for the assessment of RNS production in isolated mouse brain, heart and liver mitochondria and also in a cultured neuroblastoma cell line by confocal microscopy and flow cytometry. Mitochondria produced RNS, which was inhibited by catalysts of peroxynitrite decomposition but not by nitric oxide (NO) synthase inhibitors. Disrupting the organelles or withdrawing respiratory substrates markedly reduced RNS production. Inhibition of complex I abolished the DAF signal, which was restored by complex II substrates. Inhibition of the respiratory complexes downstream from the ubiquinone/ubiquinol cycle or dissipating the proton gradient had no effect on DAF fluorescence. We conclude that mitochondria from brain, heart and liver are capable of significant RNS production via the respiratory chain rather than through an arginine-dependent mtNOS.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Physiology/Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang HH, Qiu H, Qi K, Orr FW. Current views concerning the influences of murine hepatic endothelial adhesive and cytotoxic properties on interactions between metastatic tumor cells and the liver. COMPARATIVE HEPATOLOGY 2005; 4:8. [PMID: 16336680 PMCID: PMC1334213 DOI: 10.1186/1476-5926-4-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/09/2005] [Indexed: 02/07/2023]
Abstract
Substantial recent experimental evidence has demonstrated the existence of reciprocal interactions between the microvascular bed of a specific organ and intravascular metastatic tumor cells through expression of adhesion molecules and nitric oxide release, resulting in a significant impact upon metastatic outcomes. This review summarizes the current findings of adhesive and cytotoxic endothelial-tumor cell interactions in the liver, the inducibility, zonal distribution and sinusoidal structural influences on the hepatic endothelial regulatory functions, and the effects of these functions on the formation of liver cancer metastases. New insights into the traditional cancer metastatic cascade are also discussed.
Collapse
Affiliation(s)
- Hui Helen Wang
- Department of Health Sciences, Red River College and Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hongming Qiu
- Department of Pathology, Health Sciences Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ke Qi
- Department of General Surgery, Nanshan Hospital, Shenzhen, Guangdong, China
| | - F William Orr
- Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Lacza Z, Horváth EM, Pankotai E, Csordás A, Kollai M, Szabó C, Busija DW. The novel red-fluorescent probe DAR-4M measures reactive nitrogen species rather than NO. J Pharmacol Toxicol Methods 2005; 52:335-40. [PMID: 16054847 DOI: 10.1016/j.vascn.2005.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 05/22/2005] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Several fluorescent probes were designed for the measurement of nitric oxide (NO), however, questions arose regarding their specificity and sensitivity in biological samples. In the present study we tested the reaction of a novel rhodamine-based chromophore diaminorhodamine-4M (DAR-4M) with NO and other reactive nitrogen and oxygen species. METHODS We performed fluorometry in 96-well plates in a cell-free buffer with similar ion concentrations as the cytoplasm. Dose-response curves were generated using various NO donors and reactive nitrogen and oxygen species. The effects were compared between the red-fluorescent DAR-4M and its green-fluorescent counterpart 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM). RESULTS DAR-4M had a markedly higher fluorescence yield to NO donors than DAF-FM, while both probes had a comparable threshold of sensitivity (in the range of 0.1 mM nitroprusside). Both dyes reacted with various NO donors in a dose-dependent manner, while superoxide, hydrogen peroxide, peroxynitrite, or nitroxyl failed to change the fluorescence intensity of the probes. DAR-4M was potentiated in the presence of peroxynitrite to react with low levels of NO donors in a similar manner to DAF-FM. DISCUSSION We conclude that DAR-4M is a suitable red-fluorescent probe for the qualitative assessment of reactive nitrogen species production, but not specific for NO. Quantitative comparisons among samples is inappropriate since the fluorescent yield is affected by the presence of other oxidants in the sample.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Physiology/Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Rodriguez J, Specian V, Maloney R, Jourd'heuil D, Feelisch M. Performance of diamino fluorophores for the localization of sources and targets of nitric oxide. Free Radic Biol Med 2005; 38:356-68. [PMID: 15629864 DOI: 10.1016/j.freeradbiomed.2004.10.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/15/2004] [Accepted: 10/22/2004] [Indexed: 01/14/2023]
Abstract
An emergent approach to the detection of nitric oxide (NO) in tissues relies on the use of fluorescence probes that are activated by products of NO autoxidation. Here we explore the performance of the widely used NO probe 4,5-diaminofluorescein diacetate (DAF-2 DA) for the localization of sources of NO in rat aortic tissue, either from endogenous NO synthesis or from chemically or photolytically released NO from targets of nitrosation/nitrosylation. Of importance toward understanding the performance of this probe in tissues is the finding that, with incubation conditions commonly used in the literature (10 microM DAF-2 DA), intracellular DAF-2 accumulates to concentrations that approach the millimolar range. Whereas such high probe concentrations do not interfere with NO release or signaling, they help to clarify why DAF-2 nitrosation is possible in the presence of endogenous nitrosation scavengers (e.g., ascorbate and glutathione). The gain attained with such elevated concentrations is, however, mitigated by associated high levels of background autofluorescence from the probe. This, together with tissue autofluorescence, limits the sensitivity of the probe to low-micromolar levels of accumulated DAF-2 triazole (DAF-2 T), the activated form of the probe, which is higher than the concentrations of most endogenous nitrosation/nitrosylation products found in tissues. We further show that the compartmentalization of DAF-2 around elastic fibers further limits its potential to characterize the site of NO production at the subcellular level. Moreover, we find that reaction of DAF-2 with HgCl(2) and other commonly employed reagents is associated with spectral changes that may be misinterpreted as NO signals. Finally, UV illumination can lead to high levels of nitrosating species that interfere with NO detection from enzymatic sources. These findings indicate that while DAF-2 may still represent an important tool for the localization of NO synthesis, provided important pitfalls and limitations are taken into consideration, it is not suited for the detection of basally generated nitrosation/nitrosylation products.
Collapse
Affiliation(s)
- Juan Rodriguez
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
11
|
Qi K, Qiu H, Sun D, Minuk GY, Lizardo M, Rutherford J, Orr FW. Impact of cirrhosis on the development of experimental hepatic metastases by B16F1 melanoma cells in C57BL/6 mice. Hepatology 2004; 40:1144-50. [PMID: 15382152 DOI: 10.1002/hep.20421] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastases rarely occur in human livers with cirrhosis in clinical studies. We postulated that this phenomenon would also occur in experimental cirrhosis. Cirrhosis was established in C57BL/6 mice by carbon tetrachloride (CCl(4)) gastrogavage. B16F1 melanoma cells were injected into the mesenteric vein to induce hepatic metastases. Contrary to our postulate, there was greater than 4-fold increase in metastasis in animals with cirrhosis compared to controls. Intravital videomicroscopy showed that the hepatic sinusoids were narrower and more tumor cells were retained in the terminal portal vein (TPV) in cirrhotic livers. Immunohistochemistry demonstrated that the expression of vascular adhesion molecules was significantly increased in cirrhosis. Using confocal microscopy and the fluorescent nitric oxide (NO) probe 4,5-diaminofluorescein diacetate, a significantly lower level of NO release was detected in livers with cirrhosis both in basal conditions and after tumor cell arrest. Eight hours after mesenteric vein tumor cell injection, the percentage of apoptotic tumor cells in the sinusoids was 17% +/- 2% in livers with cirrhosis and 30% +/- 5% in normal livers. More mitotic and Ki-67 labeled tumor cells were seen in livers with cirrhosis. In conclusion, the changes in architecture and adhesion molecule expression in livers with cirrhosis may cause more tumor cells to arrest in the TPV. Lower levels of NO production may reduce apoptosis of B16F1 cells in livers with cirrhosis. As a result, these changes may promote the growth of metastasis in this cirrhotic model.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Division
- Cell Line, Tumor
- Female
- Fluorescein
- Immunohistochemistry
- Indicators and Reagents
- Liver/pathology
- Liver Cirrhosis, Experimental/complications
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Neoplasms/complications
- Liver Neoplasms/pathology
- Liver Neoplasms/physiopathology
- Liver Neoplasms/secondary
- Melanoma, Experimental/complications
- Melanoma, Experimental/pathology
- Melanoma, Experimental/physiopathology
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Video
- Nitric Oxide/metabolism
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Ke Qi
- Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R3E 0W3
| | | | | | | | | | | | | |
Collapse
|