1
|
Albadawi H, Oklu R, Cormier NR, O'Keefe RM, Heaton JT, Kobler JB, Austen WG, Watkins MT. Hind limb ischemia-reperfusion injury in diet-induced obese mice. J Surg Res 2014; 190:683-91. [PMID: 24655666 DOI: 10.1016/j.jss.2014.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/05/2014] [Accepted: 01/10/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Obesity is a major risk factor for the development of diabetes. Limb ischemia-reperfusion injury (IR) is a common clinical problem in diabetics who have compromised lower extremity perfusion. This study compared the histologic, metabolic, and functional outcomes after hind limb IR in diet-induced obese (DIO) and non-diabetic (ND) mice during the acute and the regenerative phases of IR. METHODS DIO and ND mice were subjected to 1.5 h unilateral hind limb ischemia followed by 1- or 28-d IR. Muscle morphology, metabolic, and genomic stress were evaluated at days 1 and 28 IR; Acute inflammation and thrombosis were only measured at day-1 IR. At day 28, IR, skeletal muscle contractility, and maturation were also assessed. RESULTS At day-1 IR, similar levels of acute muscle fiber necrosis were seen in both groups. DIO mice demonstrated substantially greater inflammatory, prothrombotic, and genomic stress responses, which were also associated with a greater reduction in energy substrates and Akt phosphorylation. At 28d, there was no difference in the peak forces generated in the hind limbs for the two groups. DIO mice had reduced fatigue resistance compared with ND and larger areas of fat accumulation although there was no significant difference in muscle fiber maturation. CONCLUSIONS DIO mice had an exacerbated acute response to IR with enhanced metabolic deficit, fat accumulation, and defective functional recovery during the regenerative phase of IR. These changes in fatigue resistance reflect compromised functional recovery after IR injury and have relevance for the functional recovery of patients with metabolic syndrome and insulin resistance.
Collapse
Affiliation(s)
- Hassan Albadawi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Vascular and Endovascular Surgery, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Rahmi Oklu
- Division of Vascular Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicholas R Cormier
- Division of Vascular and Endovascular Surgery, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryan M O'Keefe
- Division of Vascular and Endovascular Surgery, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - James T Heaton
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - James B Kobler
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - William G Austen
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael T Watkins
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Vascular and Endovascular Surgery, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Crawford RS, Albadawi H, Robaldo A, Peck MA, Abularrage CJ, Yoo HJ, Lamuraglia GM, Watkins MT. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice. J Surg Res 2013; 183:952-62. [PMID: 23528286 DOI: 10.1016/j.jss.2013.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND We designed studies to determine whether the ApoE-/- phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE-/- phenotype is an experimental model for atherosclerosis in humans. METHODS Aged female ApoE-/- and C57BL6 mice underwent femoral artery ligation, then were divided into sedentary and demand ischemia (exercise) groups on day 14. We assessed baseline and postexercise limb perfusion and hind limb function. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, we harvested plasma and skeletal muscle from ischemic limbs from sedentary and exercised mice. We assayed muscle for angiogenic and proinflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. RESULTS Hind limb ischemia was similar in ApoE-/- and C57 mice before the onset of exercise. Under sedentary conditions, plasma vascular endothelial cell growth factor and interleukin-6, but not keratinocyte chemoattractant factor (KC) or macrophage inflammatory protein-2 (MIP-2), were higher in ApoE (P < 0.0001). After exercise, plasma levels of vascular endothelial cell growth factor, KC, and MIP-2, but not IL-6, were lower in ApoE (P < 0.004). The cytokines KC and MIP-2 in muscle were greater in exercised ApoE-/- mice compared with C57BL6 mice (P = 0.01). Increased poly-ADP-ribose activity and mature muscle regeneration were associated with demand ischemia in the C57BL6 mice, compared with the ApoE-/- mice (P = 0.01). CONCLUSIONS Demand limb ischemia in the ApoE-/- phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration.
Collapse
Affiliation(s)
- Robert S Crawford
- Division of Vascular and Endovascular Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Oklu R, Albadawi H, Watkins MT, Monestier M, Sillesen M, Wicky S. Detection of extracellular genomic DNA scaffold in human thrombus: implications for the use of deoxyribonuclease enzymes in thrombolysis. J Vasc Interv Radiol 2012; 23:712-8. [PMID: 22525027 DOI: 10.1016/j.jvir.2012.01.072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Mechanisms underlying transition of a thrombus susceptible to tissue plasminogen activator (TPA) fibrinolysis to one that is resistant is unclear. Demonstration of a new possible thrombus scaffold may open new avenues of research in thrombolysis and may provide mechanistic insight into thrombus remodeling. MATERIALS AND METHODS Ten human thrombus samples were collected during cases of thrombectomy and open surgical repair of abdominal aortic aneurysms (five samples < 3 d old and five samples > 1 y old). Additionally, an acute murine hindlimb ischemia model was created to evaluate thrombus samples in mice. Human sections were immunostained for the H2A/H2B/DNA complex, myeloperoxidase, fibrinogen, and von Willebrand factor. Mouse sections were immunostained with the H2A antibody. All samples were further evaluated after hematoxylin and eosin and Masson trichrome staining. RESULTS An extensive network of extracellular histone/DNA complex was demonstrated in the matrix of human ex vivo thrombus. This network is present throughout the highly cellular acute thrombus. However, in chronic thrombi, detection of the histone/DNA network was predominantly in regions of low collagen content and high cell density, which were mostly near the lumen. These regions of high cell density contained neutrophils and monocytes. Similarly, sections from the acute murine hindlimb ischemia model also exhibited extensive immunoreactivity to the histone antibody in the extracellular space within murine thrombi. CONCLUSIONS Extensive detection of genomic DNA associated with histones in the extracellular matrix of human and mouse thrombi suggest the presence of a new thrombus-associated scaffold.
Collapse
Affiliation(s)
- Rahmi Oklu
- Division of Vascular Imaging and Intervention, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Choi SK, Galán M, Kassan M, Partyka M, Trebak M, Matrougui K. Poly(ADP-ribose) polymerase 1 inhibition improves coronary arteriole function in type 2 diabetes mellitus. Hypertension 2012; 59:1060-8. [PMID: 22454481 DOI: 10.1161/hypertensionaha.111.190140] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with microvascular dysfunction. We hypothesized that increased poly(ADP-ribose) polymerase 1 (PARP-1) activity contributes to microvascular dysfunction in T2DM. T2DM (db(-)/db(-)) and nondiabetic control (db(-)/db(+)) mice were treated with 2 different PARP-1 inhibitors (INO-1001, 5 mg/kg per day and ABT-888, 15 mg/kg per day) for 2 weeks. Isolated coronary arterioles were mounted in an arteriograph. Pressure-induced myogenic tone was significantly potentiated, whereas endothelium-dependent relaxation was significantly attenuated in diabetic mice compared with control mice. These results were associated with decreased endothelial NO synthase phosphorylation and cGMP level and increased PARP-1 activity in coronary arterioles from diabetic mice compared with control mice. Interestingly, PARP-1 inhibitors significantly reduced the potentiation of myogenic tone, improved endothelium-dependent relaxation, restored endothelial NO synthase phosphorylation and cGMP, and attenuated cleaved PARP-1. These results were supported by in vitro studies indicating that downregulation of PARP-1 in mesenteric resistance arteries using PARP-1 short hairpin RNA lentiviral particles significantly improved endothelium-dependent relaxation in mesenteric resistance arteries from diabetic mice compared with control mice. The inhibition of NO synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the endothelium-dependent relaxation in coronary arterioles and mesenteric resistance arteries from control and diabetic mice treated with PARP-1 inhibitors and PARP-1 short hairpin RNA lentiviral particles. In addition, we demonstrated that enhanced cleaved PARP-1, its binding to DNA, and DNA damage were reduced after PARP-1 inhibition in cultured endothelial cells stimulated with high glucose. We provide evidence that T2DM impairs microvascular function by an enhanced PARP-1 activity-dependent mechanism. Therefore, PARP-1 could be a potential target for overcoming diabetic microvascular complications.
Collapse
Affiliation(s)
- Soo-Kyoung Choi
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
5
|
Choi SK, Galán M, Partyka M, Trebak M, Belmadani S, Matrougui K. Chronic inhibition of epidermal growth factor receptor tyrosine kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2) augments vascular response to limb ischemia in type 2 diabetic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:410-8. [PMID: 22067908 DOI: 10.1016/j.ajpath.2011.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/03/2011] [Accepted: 09/28/2011] [Indexed: 01/18/2023]
Abstract
Type 2 diabetes is a key risk factor for ischemia-dependent pathology; therefore, a significant medical need exists to develop novel therapies that increase the formation of new vessels. We explored the therapeutic potential of epidermal growth factor receptor tyrosine kinase (EGFRtk) and extracellular signal-regulated kinase 1/2 (ERK1/2) inhibition in impaired ischemia-induced neovascularization in type 2 diabetes. Unilateral femoral artery ligation was performed in diabetic (db(-)/db(-)) and their control (db(-)/db(+)) mice for 4 weeks, followed by treatments with EGFRtk and ERK1/2 inhibitors (AG1478, 10 mg/kg/day and U0126, 400 μg/kg/day, respectively) for 3 weeks. Neovascularization, blood flow recovery, vascular and capillary density, and endothelial nitric oxide synthase activity were significantly impaired and were associated with enhanced EGFRtk and ERK1/2 activity in db(-)/db(-) mice. EGFRtk and ERK1/2 inhibitors did not have any effect in control mice, while in db(-)/db(-) mice there was a significant increase in neovascularization, blood flow recovery, vascular and capillary density, endothelial nitric oxide synthase activity, and were associated with a decrease in EGFRtk and ERK1/2 activity. Our data demonstrated that the inhibition of EGFRtk and ERK1/2 restored ischemia-induced neovascularization and blood flow recovery in type 2 diabetic mice. Thus, EGFRtk and ERK1/2 could be possible targets to protect from ischemia-induced vascular pathology in type 2 diabetes.
Collapse
Affiliation(s)
- Soo-Kyoung Choi
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
6
|
Georgi MK, Vigilance J, Dewar AM, Frame MD. Terminal arteriolar network structure/function and plasma cytokine levels in db/db and ob/ob mouse skeletal muscle. Microcirculation 2011; 18:238-51. [PMID: 21418374 DOI: 10.1111/j.1549-8719.2011.00084.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the terminal arteriolar network structure and function in relation to circulating plasma cytokine levels in db/db, ob/ob, and their genetic background control, C57/bl6, mice. METHODS Arteriolar network size and erythrocyte distribution were observed in the resting cremaster muscle (n = 45, pentobarbital 50 mg/kg i.p.). Structural remodeling and inflammatory state were related to 21 plasma cytokine levels. RESULTS db/db networks were shorter, had fewer branches, and smaller diameters than C57/bl6 controls. ob/ob networks were longer, with similar branch numbers, however with non-uniform diameters. Shunting of erythrocytes to the specific terminal arteriolar branches of the network (functional rarefaction) was prominent in db/db and ob/ob, with further evidence of shunting between networks seen as no flow to 50% of ob/ob arteriolar networks. CONCLUSIONS Altered levels of plasma cytokines are consistent with structural remodeling seen in db/db, and a pro-inflammatory state for both db/db and ob/ob. Differences in network structure alone predict overall reduced uniform oxygen delivery in db/db or ob/ob. Shunting probably increases heterogeneous oxygen delivery and is strain-dependent.
Collapse
Affiliation(s)
- Melissa K Georgi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-5281, USA
| | | | | | | |
Collapse
|
7
|
Abbruzzese TA, Albadawi H, Kang J, Patel VI, Yoo JH, Lamuraglia GM, Watkins MT. Enoxaparin does not ameliorate limb ischemia-reperfusion injury. J Surg Res 2008; 147:260-6. [PMID: 18498878 DOI: 10.1016/j.jss.2008.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/09/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Since low molecular weight heparin has greater bioavailability and sustained serum levels in vivo than unfractionated heparin, it has been used to supplant unfractionated heparin to achieve therapeutic anticoagulation in humans. These studies were designed to determine whether treatment with enoxaparin could protect murine skeletal muscle from ischemia reperfusion injury. METHODS C57BL6 mice were divided into four groups. Sham control animals underwent 90 min of anesthesia alone. All other groups underwent 90 min of unilateral hindlimb ischemia. At the onset of reperfusion, animals received either normal saline (control and saline) or 4 mg/kg of enoxaparin subcutaneously twice daily. Groups were followed for 24 or 48 h reperfusion. Hindlimb skeletal muscle blood flow was measured by laser Doppler, and muscle was removed for histological and protein analysis. Tissue thrombosis was evaluated by thrombin antithrombin III (TAT III), local inflammation by measurement of proinflammatory cytokines (macrophage inflammatory protein-2: MIP-2, monocyte chemoattractant protein-1: MCP-1), and neutrophil infiltration by myeloperoxidase (MPO) using enzyme-linked immunosorbent assay. Plasma levels of Factor Xa were measured during reperfusion to confirm therapeutic levels of anticoagulation. Comparisons were calculated using analysis of variance. RESULTS At 24 h reperfusion, there was increased expression of MIP-2, MCP-1, MPO, and TAT III in saline and enoxaparin treated mice compared with control (*P < 0.05). By 48 h reperfusion, all parameters measured remained greater than control except for the enoxaparin treated mice whose TAT III levels were significantly less than untreated mice (P < 0.05). Despite documented therapeutic anticoagulation and decreased levels of markers of thrombosis in enoxaparin treated mice, there was no difference in tissue cytokines, inflammatory markers, degree of muscle fiber injury (31% +/- 8% versus 30% +/- 5%) or muscle flow between ischemia-reperfusion groups (2447 +/- 141 versus 2475 +/- 74 flux units) at 48 h reperfusion. CONCLUSIONS Post hoc administration of enoxaparin did not affect local tissue thrombosis, inflammatory markers, or muscle necrosis. This suggests that despite its potent in vivo activity, enoxaparin did not modulate skeletal muscle injury, thrombosis, or inflammatory following ischemia reperfusion. enoxaparin may not be useful in mediating skeletal muscle injury when administered in a clinically relevant scenario.
Collapse
Affiliation(s)
- Thomas A Abbruzzese
- Department of Surgery, Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Wound closure and metabolic parameter variability in a db/db mouse model for diabetic ulcers. J Surg Res 2008; 151:100-7. [PMID: 18619614 DOI: 10.1016/j.jss.2008.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/10/2007] [Accepted: 01/16/2008] [Indexed: 12/31/2022]
Abstract
BACKGROUND Diabetic foot ulcers are a major cause of nontraumatic lower extremity amputations. Wound-healing researchers commonly use db/db mice as a model for diabetes, while the excisional wound correlates well with chronic foot ulcers. Recent clinical trials identified a correlation between glycemic control and cardiovascular complications in diabetic patients. The purpose of this study was to determine if the severity of diabetes was related to poor wound healing and the broad wound closure variability observed in diabetic db/db mice. MATERIALS AND METHODS Adult female C57BLKS/J, db+/-, and db/db mice were anesthetized followed by creation of a 1.5 x 1.5 cm full-thickness excisional wound. Wound closure was measured on postoperative days (PODs) 1, 5, 7, 10, 14, and 21. Weight, fasting blood glucose, and fasting insulin were also measured during the study. RESULTS By POD 21 both wild-type and db+/- mice demonstrated complete wound closure. In db/db mice open wounds were still present at POD 21. There was a broad range of percent wound closure from 24 to 81% with a mean of 55%. Despite strong correlations between diabetic parameters, there was no significant correlation between wound closure rate and severity of diabetes. CONCLUSIONS Diabetic db/db mice exhibit a significant impairment of healing in the excisional wound model. The variability of wound closure for individual mice did not correlate with severity of obesity, hyperglycemia, hyperinsulinemia, or insulin resistance. An extensive evaluation of basic diabetes parameters does not provide significant insight into the wound-healing process in the db/db mouse model.
Collapse
|