1
|
Kansakar U, Trimarco V, Manzi MV, Cervi E, Mone P, Santulli G. Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms. Nutrients 2024; 16:2060. [PMID: 38999808 PMCID: PMC11243481 DOI: 10.3390/nu16132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Bromelain is a mixture of proteolytic enzymes primarily extracted from the fruit and stem of the pineapple plant (Ananas comosus). It has a long history of traditional medicinal use in various cultures, particularly in Central and South America, where pineapple is native. This systematic review will delve into the history, structure, chemical properties, and medical indications of bromelain. Bromelain was first isolated and described in the late 19th century by researchers in Europe, who identified its proteolytic properties. Since then, bromelain has gained recognition in both traditional and modern medicine for its potential therapeutic effects.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Valentina Trimarco
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University, 80131 Naples, Italy
| | - Maria V. Manzi
- Department of Advanced Biomedical Sciences, Federico II University Hospital, 80131 Naples, Italy
| | - Edoardo Cervi
- Vein Clinic, University of Brescia, 25100 Brescia, Italy
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
- Casa di Cura “Montevergine”, 83013 Avellino, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, Federico II University Hospital, 80131 Naples, Italy
- Department of Molecular Pharmacology, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
2
|
Didamoony MA, Atwa AM, Abd El-Haleim EA, Ahmed LA. Bromelain ameliorates D-galactosamine-induced acute liver injury: role of SIRT1/LKB1/AMPK, GSK3β/Nrf2 and NF-κB p65/TNF-α/caspase-8, -9 signalling pathways. J Pharm Pharmacol 2022; 74:1765-1775. [PMID: 36227279 DOI: 10.1093/jpp/rgac071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The present research focused on estimating, for the first time, the potential protective effects of bromelain against D-galactosamine-induced acute liver injury in rats as well as identifying the possible underlying mechanisms. METHODS Silymarin (100 mg/kg/day, p.o.) as a reference drug or bromelain (20 and 40 mg/kg/day, p.o.) were administered for 10 days, and on the 8th day of the experiment, a single dose of galactosamine (400 mg/kg/i.p.) induced acute liver injury. KEY FINDINGS Pretreatment with bromelain improved liver functions and histopathological alterations induced by galactosamine. Bromelain ameliorated oxidative stress by inducing SIRT1 protein expression and increasing LKB1 content. This resulted in phosphorylating the AMPK/GSK3β axis, which stimulated Nrf2 activation in hepatic cells and thus increased the activity of its downstream antioxidant enzymes [HO-1 and NQO1]. Besides, bromelain exerted significant anti-apoptotic and anti-inflammatory effects by suppressing hepatic contents of TNF-α, NF-κB p65, as well as caspase-8 and caspase-9. The protective effects of bromelain40 were proved to be better than silymarin and bromelain20 in most of the assessed parameters. CONCLUSIONS Our results highlight the significant hepatoprotective effects of bromelain against acute liver injury through modulation of SIRT1/LKB1/AMPK, GSK3β/Nrf2 signalling in addition to NF-κB p65/TNF-α/ caspase-8 and -9 pathway.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Enas A Abd El-Haleim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
3
|
Encapsulation of Bromelain in Combined Sodium Alginate and Amino Acid Carriers: Experimental Design of Simplex-Centroid Mixtures for Digestibility Evaluation. Molecules 2022; 27:molecules27196364. [PMID: 36234901 PMCID: PMC9570880 DOI: 10.3390/molecules27196364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bromelain has potential as an analgesic, an anti-inflammatory, and in cancer treatments. Despite its therapeutic effects, this protein undergoes denaturation when administered orally. Microencapsulation processes have shown potential in protein protection and as controlled release systems. Thus, this paper aimed to develop encapsulating systems using sodium alginate as a carrier material and positively charged amino acids as stabilizing agents for the controlled release of bromelain in in vitro tests. The systems were produced from the experimental design of centroid simplex mixtures. Characterizations were performed by FTIR showing that bromelain was encapsulated in all systems. XRD analyses showed that the systems are semi-crystalline solids and through SEM analysis the morphology of the formed systems followed a pattern of rough microparticles. The application of statistical analysis showed that the systems presented behavior that can be evaluated by quadratic and special cubic models, with a p-value < 0.05. The interaction between amino acids and bromelain/alginate was evaluated, and free bromelain showed a reduction of 74.0% in protein content and 23.6% in enzymatic activity at the end of gastric digestion. Furthermore, a reduction of 91.6% of protein content and 65.9% of enzymatic activity was observed at the end of intestinal digestion. The Lis system showed better interaction due to the increased stability of bromelain in terms of the amount of proteins (above 63% until the end of the intestinal phase) and the enzymatic activity of 89.3%. Thus, this study proposes the development of pH-controlled release systems aiming at increasing the stability and bioavailability of bromelain in intestinal systems.
Collapse
|
4
|
Bromelain Protects Critically Perfused Musculocutaneous Flap Tissue from Necrosis. Biomedicines 2022; 10:biomedicines10061449. [PMID: 35740469 PMCID: PMC9220030 DOI: 10.3390/biomedicines10061449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Bromelain has previously been shown to prevent ischemia-induced necrosis in different types of tissues. In the present study, we, therefore, evaluated for the first time, the tissue-protective effects of bromelain in musculocutaneous flaps in mice. Adult C57BL/6N mice were randomly assigned to a bromelain treatment group and a control group. The animals were treated daily with intraperitoneal injections of 20 mg/kg bromelain or saline (control), starting 1 h before the flap elevation throughout a 10-day observation period. The random-pattern musculocutaneous flaps were raised on the backs of the animals and mounted into a dorsal skinfold chamber. Angiogenesis, nutritive blood perfusion and flap necrosis were quantitatively analyzed by means of repeated intravital fluorescence microscopy over 10 days after surgery. After the last microscopy, the flaps were harvested for additional histological and immunohistochemical analyses. Bromelain reduced necrosis of the critically perfused flap tissue by ~25%. The bromelain-treated flaps also exhibited a significantly higher functional microvessel density and an elevated formation of newly developed microvessels in the transition zone between the vital and necrotic tissues when compared to the controls. Immunohistochemical analyses demonstrated a markedly lower invasion of the myeloperoxidase-positive neutrophilic granulocytes and a significantly reduced number of cleaved caspase 3-positive apoptotic cells in the transition zone of bromelain-treated musculocutaneous flaps. These findings indicate that bromelain prevents flap necrosis by maintaining nutritive tissue perfusion and by suppressing ischemia-induced inflammation and apoptosis. Hence, bromelain may represent a promising compound to prevent ischemia-induced flap necrosis in clinical practice.
Collapse
|
5
|
Hikisz P, Bernasinska-Slomczewska J. Beneficial Properties of Bromelain. Nutrients 2021; 13:4313. [PMID: 34959865 PMCID: PMC8709142 DOI: 10.3390/nu13124313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
6
|
Bromelain, a Group of Pineapple Proteolytic Complex Enzymes ( Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods 2021; 10:foods10102249. [PMID: 34681298 PMCID: PMC8534447 DOI: 10.3390/foods10102249] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/22/2022] Open
Abstract
Bromelain is a complex combination of multiple endopeptidases of thiol and other compounds derived from the pineapple fruit, stem and/or root. Fruit bromelain and stem bromelain are produced completely distinctly and comprise unique compounds of enzymes, and the descriptor “Bromelain” originally referred in actuality to stem bromelain. Due to the efficacy of oral administration in the body, as a safe phytotherapeutic medication, bromelain was commonly suited for patients due to lack of compromise in its peptidase efficacy and the absence of undesired side effects. Various in vivo and in vitro studies have shown that they are anti-edematous, anti-inflammatory, anti-cancerous, anti-thrombotic, fibrinolytic, and facilitate the death of apoptotic cells. The pharmacological properties of bromelain are, in part, related to its arachidonate cascade modulation, inhibition of platelet aggregation, such as interference with malignant cell growth; anti-inflammatory action; fibrinolytic activity; skin debridement properties, and reduction of the severe effects of SARS-Cov-2. In this paper, we concentrated primarily on the potential of bromelain’s important characteristics and meditative and therapeutic effects, along with the possible mechanism of action.
Collapse
|
7
|
Chakraborty AJ, Mitra S, Tallei TE, Tareq AM, Nainu F, Cicia D, Dhama K, Emran TB, Simal-Gandara J, Capasso R. Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life (Basel) 2021; 11:317. [PMID: 33917319 PMCID: PMC8067380 DOI: 10.3390/life11040317] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Bromelain is an effective chemoresponsive proteolytic enzyme derived from pineapple stems. It contains several thiol endopeptidases and is extracted and purified via several methods. It is most commonly used as an anti-inflammatory agent, though scientists have also discovered its potential as an anticancer and antimicrobial agent. It has been reported as having positive effects on the respiratory, digestive, and circulatory systems, and potentially on the immune system. It is a natural remedy for easing arthritis symptoms, including joint pain and stiffness. This review details bromelain's varied uses in healthcare, its low toxicity, and its relationship to nanoparticles. The door of infinite possibilities will be opened up if further extensive research is carried out on this pineapple-derived enzyme.
Collapse
Affiliation(s)
- Arka Jyoti Chakraborty
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (A.J.C.); (S.M.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (A.J.C.); (S.M.)
| | - Trina E. Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia;
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia;
| | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
8
|
Zhou W, Ye C, Geng L, Chen G, Wang X, Chen W, Sa R, Zhang J, Zhang X. Purification and characterization of bromelain from pineapple (Ananas comosus L.) peel waste. J Food Sci 2021; 86:385-393. [PMID: 33415738 DOI: 10.1111/1750-3841.15563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022]
Abstract
Bromelain is widely used in food industry and pharmaceutical products due to its strong antioxidant properties. Therefore, the extraction of bromelain from pineapple peel may improve the profitability and sustainability of pineapple industry. The aim of this work is to show the purification, stability, and kinetics of bromelain from pineapple peel. By studying the stability of purified bromelain (PB), we found that the activity of PB was inhibited by Fe3+ , Al3+ , methanol, ethanol, and n-butyl alcohol, while it was increased in the presence of Ca2+ , ethylenediamine tetra acetic acid, glucose, D-xylose, maltose, potassium sodium tartrate, sodium citrate, citric acid, and sodium nitrite. These stability tests will expand the application and space acquisition of bromelain. The kinetics study indicated that the thermal inactivation of PB was conforming to the first-order reaction and the half-life (t1/2 ) of PB under different temperature conditions (45, 55, 65, and 75 °C) was 81.54, 31.12, 10.28, and 5.23 min, respectively. Therefore, the inactivation time of PB can be predicted at different temperatures for food heating processing. PRACTICAL APPLICATION: The potential of utilizing pineapple peel for bromelain extraction might improve the profitability and sustainability of the pineapple industry.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Molecular Cell Biology and New Drug, Jinzhou Medical University, Jinzhou, 121001, China
| | - Cuizhu Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Lijing Geng
- Geng, Guannan Chen, Wang, Weijie Chen, Sa, Junpeng Zhang, and Xiang Zhang are with College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121001, China.,Key Laboratory of Molecular Cell Biology and New Drug, Jinzhou Medical University, Jinzhou, 121001, China
| | - Guannan Chen
- Geng, Guannan Chen, Wang, Weijie Chen, Sa, Junpeng Zhang, and Xiang Zhang are with College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaoyu Wang
- Geng, Guannan Chen, Wang, Weijie Chen, Sa, Junpeng Zhang, and Xiang Zhang are with College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121001, China
| | - Weijie Chen
- Geng, Guannan Chen, Wang, Weijie Chen, Sa, Junpeng Zhang, and Xiang Zhang are with College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121001, China
| | - Rina Sa
- Geng, Guannan Chen, Wang, Weijie Chen, Sa, Junpeng Zhang, and Xiang Zhang are with College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121001, China
| | - Junpeng Zhang
- Geng, Guannan Chen, Wang, Weijie Chen, Sa, Junpeng Zhang, and Xiang Zhang are with College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiang Zhang
- Geng, Guannan Chen, Wang, Weijie Chen, Sa, Junpeng Zhang, and Xiang Zhang are with College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121001, China
| |
Collapse
|
9
|
Combined anthocyanins and bromelain supplement improves endothelial function and skeletal muscle oxygenation status in adults: a double-blind placebo-controlled randomised crossover clinical trial. Br J Nutr 2020; 125:161-171. [PMID: 32660675 DOI: 10.1017/s0007114520002548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anthocyanins and bromelain have gained significant attention due to their antioxidative and anti-inflammatory properties. Both have been shown to improve endothelial function, blood pressure (BP) and oxygen utility capacity in humans; however, the combination of these two and the impacts on endothelial function, BP, total antioxidant capacity (TAC) and oxygen utility capacity have not been previously investigated. The purpose of this study was to investigate the impacts of a combined anthocyanins and bromelain supplement (BE) on endothelial function, BP, TAC, oxygen utility capacity and fatigability in healthy adults. Healthy adults (n 18, age 24 (sd 4) years) received BE or placebo in a randomised crossover design. Brachial artery flow-mediated dilation (FMD), BP, TAC, resting heart rate, oxygen utility capacity and fatigability were measured pre- and post-BE and placebo intake. The BE group showed significantly increased FMD, reduced systolic BP and improved oxygen utility capacity compared with the placebo group (P < 0·05). Tissue saturation and oxygenated Hb significantly increased following BE intake, while deoxygenated Hb significantly decreased (P < 0·05) during exercise. Additionally, TAC was significantly increased following BE intake (P < 0·05). There were no significant differences for resting heart rate, diastolic BP or fatigability index. These results suggest that BE intake is an effective nutritional therapy for improving endothelial function, BP, TAC and oxygen utility capacity, which may be beneficial to support vascular health in humans.
Collapse
|
10
|
Schulz A, Fuchs PC, Oplaender C, Valdez LB, Schiefer JL. Effect of Bromelain-Based Enzymatic Debridement on Skin Cells. J Burn Care Res 2019; 39:527-535. [PMID: 29901807 DOI: 10.1093/jbcr/irx011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several reports have concluded that enzymatic debridement based on Bromelain (NX) is selective and efficient. Although clinical trials showed that viable tissue is not damaged at the macroscopic level, the effect on the cellular level is largely unknown. The current study is meant to close this gap by evaluating whether NX has an effect on vital cells of the human dermis on a cellular level. In an experimental in vitro study design, the effect of NX on human keratinocytes, fibroblasts, and macrophages was analyzed. Enzymatic treatment was performed for 4 hours by using either cell culture medium or phosphate-buffered saline as diluting agent for NX. Cell viability and relative cell number in relation to untreated control cells were determined using a resazurin-based assay. In addition, the development of enzyme activity during clinical treatment was analyzed: wound fluid collected from a burn wound at different points of debridement was applied on collagen-elastin disks to prove enzymatic digestion activity. Both keratinocytes and fibroblasts were damaged by NX even at low concentrations. Both cell types showed improved survival when a medium was used for dissolving NX. Macrophages appeared to resist NX treatment more efficiently than the other cell types. In the clinical trial, NX activity in the wound fluid decreased clearly following 4 hours of enzymatic debridement. NX induces toxicity of vital skin cells in vitro. However, macrophages appear to be more resistant against NX treatment in vitro. The inflammatory responses of vital cells in the burn wound itself are likely to inhibit NX activity. The effect of this inflammatory process on NX activity will have to be investigated in future studies.
Collapse
Affiliation(s)
- Alexandra Schulz
- Department of Plastic Surgery, Hand Surgery, Burn Center, University of Witten/Herdecke, Cologne-Merheim Medical Center (CMMC), Germany
| | - Paul Christian Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, University of Witten/Herdecke, Cologne-Merheim Medical Center (CMMC), Germany
| | - Christian Oplaender
- Cell and Molecular Laboratory, Department of Trauma and Hand Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Leandra Börner Valdez
- Department of Plastic Surgery, Hand Surgery, Burn Center, University of Witten/Herdecke, Cologne-Merheim Medical Center (CMMC), Germany
| | - Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, University of Witten/Herdecke, Cologne-Merheim Medical Center (CMMC), Germany
| |
Collapse
|
11
|
EPOR 2/βcR 2-independendent effects of low-dose epoetin- α in porcine liver transplantation. Biosci Rep 2017; 37:BSR20171007. [PMID: 29127105 PMCID: PMC5715127 DOI: 10.1042/bsr20171007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemia–reperfusion injury (IRI) remains a key component of graft damage during transplantation. Erythropoietin (EPO) induces anti-inflammatory and anti-apoptotic effects via the EPOR2/βcR2 complex, with a potential risk of thrombosis. Previous work indicates that EPO has EPOR2/βcR2-independent protective effects via direct effects on the endothelium. As the EPOR2/βcR2 receptor has a very low affinity for EPO, we aimed to test the hypothesis that EPO doses below the level that stimulate this receptor elicit cytoprotective effects via endothelial stimulation in a porcine liver transplantation model. Landrace pigs underwent allogenic liver transplantation (follow-up: 6 h) with a portojugular shunt. Animals were divided into two groups: donor and recipient treatment with low-dose EPO (65 IU/kg) or vehicle, administered 6 h before cold perfusion and 30 min after warm reperfusion. Fourteen of 17 animals (82.4%) fulfilled the inclusion criteria. No differences were noted in operative values between the groups including hemoglobin, cold or warm ischemic time. EPO-treated animals showed a significantly lower histopathology score, reduced apoptosis, oxidative stress, and most important a significant up-regulation of endothelial nitric oxide (NO) synthase (eNOS). Donor and recipient treatment with low-dose EPO reduces the hepatic IRI via EPOR2/βcR2-independent cytoprotective mechanisms and represents a clinically applicable way to reduce IRI.
Collapse
|
12
|
Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep 2016; 5:283-288. [PMID: 27602208 PMCID: PMC4998156 DOI: 10.3892/br.2016.720] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain.
Collapse
Affiliation(s)
- Vidhya Rathnavelu
- Department of Oral Pathology and Microbiology, Faculty of Dental Science, Sri Ramachandra University, Chennai, Tamilnadu 600116, India
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Subramaniam Sohila
- Department of Physics, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu 637215, India
| | - Samikannu Kanagesan
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Rajendran Ramesh
- Department of Physics, Periyar University, Salem, Tamilnadu 636011, India
| |
Collapse
|
13
|
Maluegha DP, Widodo MA, Pardjianto B, Widjajanto E. The effects of bromelain on angiogenesis, nitric oxide, and matrix metalloproteinase-3 and -9 in rats exposed to electrical burn injury. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.wndm.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Aichele K, Bubel M, Deubel G, Pohlemann T, Oberringer M. Bromelain down-regulates myofibroblast differentiation in an in vitro wound healing assay. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:853-63. [PMID: 23771413 DOI: 10.1007/s00210-013-0890-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
Bromelain, a pineapple-derived enzyme mixture, is a widely used drug to improve tissue regeneration. Clinical and experimental data indicate a better outcome of soft tissue healing under the influence of bromelain. Proteolytic, anti-bacterial, anti-inflammatory, and anti-oedematogenic effects account for this improvement on the systemic level. It remains unknown, whether involved tissue cells are directly influenced by bromelain. In order to gain more insight into those mechanisms by which bromelain modulates tissue regeneration at the cellular level, we applied a well-established in vitro wound healing assay. Two main players of soft tissue healing--fibroblasts and microvascular endothelial cells--were used as mono- and co-cultures. Cell migration, proliferation, apoptosis, and the differentiation of fibroblasts to myofibroblasts as well as interleukin-6 were quantified in response to bromelain (36 × 10(-3) IU/ml) under normoxia and hypoxia. Bromelain attenuated endothelial cell and fibroblast proliferation in a moderate way. This proliferation decrease was not caused by apoptosis, rather, by driving cells into the resting state G0 of the cell cycle. Endothelial cell migration was not influenced by bromelain, whereas fibroblast migration was clearly slowed down, especially under hypoxia. Bromelain led to a significant decrease of myofibroblasts under both normoxic (from 19 to 12 %) and hypoxic conditions (from 22 to 15 %), coincident with higher levels of interleukin-6. Myofibroblast differentiation, a clear sign of fibrotic development, can be attenuated by the application of bromelain in vitro. Usage of bromelain as a therapeutic drug for chronic human wounds thus remains a very promising concept for the future.
Collapse
Affiliation(s)
- Kathrin Aichele
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Schneider M, Van Geyte K, Fraisl P, Kiss J, Aragonés J, Mazzone M, Mairbäurl H, De Bock K, Jeoung NH, Mollenhauer M, Georgiadou M, Bishop T, Roncal C, Sutherland A, Jordan B, Gallez B, Weitz J, Harris RA, Maxwell P, Baes M, Ratcliffe P, Carmeliet P. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology 2010; 138:1143-54.e1-2. [PMID: 19818783 DOI: 10.1053/j.gastro.2009.09.057] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 09/20/2009] [Accepted: 09/25/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Liver ischemia/reperfusion (I/R) injury is a frequent cause of organ dysfunction. Loss of the oxygen sensor prolyl hydroxylase domain enzyme 1 (PHD1) causes tolerance of skeletal muscle to hypoxia. We assessed whether loss or short-term silencing of PHD1 could likewise induce hypoxia tolerance in hepatocytes and protect them against hepatic I/R damage. METHODS Hepatic ischemia was induced in mice by clamping of the portal vessels of the left lateral liver lobe; 90 minutes later livers were reperfused for 8 hours for I/R experiments. Hepatocyte damage following ischemia or I/R was investigated in PHD1-deficient (PHD1(-/-)) and wild-type mice or following short hairpin RNA-mediated short-term inhibition of PHD1 in vivo. RESULTS PHD1(-/-) livers were largely protected against acute ischemia or I/R injury. Among mice subjected to hepatic I/R followed by surgical resection of all nonischemic liver lobes, more than half of wild-type mice succumbed, whereas all PHD1(-/-) mice survived. Also, short-term inhibition of PHD1 through RNA interference-mediated silencing provided protection against I/R. Knockdown of PHD1 also induced hypoxia tolerance of hepatocytes in vitro. Mechanistically, loss of PHD1 decreased production of oxidative stress, which likely relates to a decrease in oxygen consumption as a result of a reprogramming of hepatocellular metabolism. CONCLUSIONS Loss of PHD1 provided tolerance of hepatocytes to acute hypoxia and protected them against I/R-damage. Short-term inhibition of PHD1 is a novel therapeutic approach to reducing or preventing I/R-induced liver injury.
Collapse
Affiliation(s)
- Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|