1
|
Frank MG, Ball JB, Hopkins S, Kelley T, Kuzma AJ, Thompson RS, Fleshner M, Maier SF. SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory, physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids. Brain Behav Immun 2024; 121:87-103. [PMID: 39043345 DOI: 10.1016/j.bbi.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Long COVID is a major public health consequence of COVID-19 and is characterized by multiple neurological and neuropsychatric symptoms. SARS-CoV-2 antigens (e.g., spike S1 subunit) are found in the circulation of Long COVID patients, have been detected in post-mortem brain of COVID patients, and exhibit neuroinflammatory properties. Considering recent observations of chronic neuroinflammation in Long COVID patients, the present study explores the idea that antigens derived from SARS-CoV-2 might produce a long-term priming or sensitization of neuroinflammatory processes, thereby potentiating the magnitude and/or duration of the neuroinflammatory response to future inflammatory insults. Rats were administered S1 or vehicle intra-cisterna magna and 7d later challenged with vehicle or LPS. The neuroinflammatory, physiological, and behavioral responses to LPS were measured at various time points post-LPS. We found that prior S1 treatment potentiated many of these responses to LPS suggesting that S1 produces a protracted priming of these processes. Further, S1 produced a protracted reduction in basal brain corticosteroids. Considering the anti-inflammatory properties of corticosteroids, these findings suggest that S1 might disinhibit innate immune processes in brain by reducing anti-inflammatory drive, thereby priming neuroinflammatory processes. Given that hypocortisolism is observed in Long COVID, we propose that similar S1-induced innate immune priming processes might play role in the pathophysiology of Long COVID.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA.
| | - Jayson B Ball
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Shelby Hopkins
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Tel Kelley
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Angelina J Kuzma
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Robert S Thompson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| |
Collapse
|
2
|
Perovic V, Glisic S, Veljkovic M, Paessler S, Veljkovic V. In Silico Exploration of CD200 as a Therapeutic Target for COVID-19. Microorganisms 2024; 12:1185. [PMID: 38930566 PMCID: PMC11205781 DOI: 10.3390/microorganisms12061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
SARS-CoV-2, the pathogen causing COVID-19, continues to pose a significant threat to public health and has had major economic implications. Developing safe and effective vaccines and therapies offers a path forward for overcoming the COVID-19 pandemic. The presented study, performed by using the informational spectrum method (ISM), representing an electronic biology-based tool for analysis of protein-protein interactions, identified the highly conserved region of spike protein (SP) from SARS-CoV-2 virus, which is essential for recognition and targeting between the virus and its protein interactors on the target cells. This domain is suggested as a promising target for the drug therapy and vaccines, which could be effective against all currently circulating variants of SARS-CoV-2 viruses. The analysis of the virus/host interaction, performed by the ISM, also revealed OX-2 membrane glycoprotein (CD200) as a possible interactor of SP, which could serve as a novel therapeutic target for COVID-19 disease.
Collapse
Affiliation(s)
- Vladimir Perovic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, 11001 Belgrade, Serbia;
| | - Sanja Glisic
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, 11001 Belgrade, Serbia;
| | - Milena Veljkovic
- Department of Clinical Laboratory Medicine, Hospital for Cerebrovascular Diseases Sveti Sava, 11000 Belgrade, Serbia
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
3
|
Frank MG, Nguyen KH, Ball JB, Hopkins S, Kelley T, Baratta MV, Fleshner M, Maier SF. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain Behav Immun 2022; 100:267-277. [PMID: 34915155 PMCID: PMC8667429 DOI: 10.1016/j.bbi.2021.12.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 infection produces neuroinflammation as well as neurological, cognitive (i.e., brain fog), and neuropsychiatric symptoms (e.g., depression, anxiety), which can persist for an extended period (6 months) after resolution of the infection. The neuroimmune mechanism(s) that produces SARS-CoV-2-induced neuroinflammation has not been characterized. Proposed mechanisms include peripheral cytokine signaling to the brain and/or direct viral infection of the CNS. Here, we explore the novel hypothesis that a structural protein (S1) derived from SARS-CoV-2 functions as a pathogen-associated molecular pattern (PAMP) to induce neuroinflammatory processes independent of viral infection. Prior evidence suggests that the S1 subunit of the SARS-CoV-2 spike protein is inflammatory in vitro and signals through the pattern recognition receptor TLR4. Therefore, we examined whether the S1 subunit is sufficient to drive 1) a behavioral sickness response, 2) a neuroinflammatory response, 3) direct activation of microglia in vitro, and 4) activation of transgenic human TLR2 and TLR4 HEK293 cells. Adult male Sprague-Dawley rats were injected intra-cisterna magna (ICM) with vehicle or S1. In-cage behavioral monitoring (8 h post-ICM) demonstrated that S1 reduced several behaviors, including total activity, self-grooming, and wall-rearing. S1 also increased social avoidance in the juvenile social exploration test (24 h post-ICM). S1 increased and/or modulated neuroimmune gene expression (Iba1, Cd11b, MhcIIα, Cd200r1, Gfap, Tlr2, Tlr4, Nlrp3, Il1b, Hmgb1) and protein levels (IFNγ, IL-1β, TNF, CXCL1, IL-2, IL-10), which varied across brain regions (hypothalamus, hippocampus, and frontal cortex) and time (24 h and 7d) post-S1 treatment. Direct exposure of microglia to S1 resulted in increased gene expression (Il1b, Il6, Tnf, Nlrp3) and protein levels (IL-1β, IL-6, TNF, CXCL1, IL-10). S1 also activated TLR2 and TLR4 receptor signaling in HEK293 transgenic cells. Taken together, these findings suggest that structural proteins derived from SARS-CoV-2 might function independently as PAMPs to induce neuroinflammatory processes via pattern recognition receptor engagement.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States.
| | - Kathy H Nguyen
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Jayson B Ball
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Shelby Hopkins
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Tel Kelley
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Monika Fleshner
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, United States
| |
Collapse
|
4
|
Xiong Z, Ampudia Mesias E, Pluhar GE, Rathe SK, Largaespada DA, Sham YY, Moertel CL, Olin MR. CD200 Checkpoint Reversal: A Novel Approach to Immunotherapy. Clin Cancer Res 2020; 26:232-241. [PMID: 31624103 DOI: 10.1158/1078-0432.ccr-19-2234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Advances in immunotherapy have revolutionized care for some patients with cancer. However, current checkpoint inhibitors are associated with significant toxicity and yield poor responses for patients with central nervous system tumors, calling into question whether cancer immunotherapy can be applied to glioblastoma multiforme. We determined that targeting the CD200 activation receptors (CD200AR) of the CD200 checkpoint with a peptide inhibitor (CD200AR-L) overcomes tumor-induced immunosuppression. We have shown the clinical efficacy of the CD200AR-L in a trial in companion dogs with spontaneous high-grade glioma. Addition of the peptide to autologous tumor lysate vaccines significantly increased the median overall survival to 12.7 months relative to tumor lysate vaccines alone, 6.36 months. EXPERIMENTAL DESIGN This study was developed to elucidate the mechanism of the CD200ARs and develop a humanized peptide inhibitor. We developed macrophage cell lines with each of four CD200ARs knocked out to determine their binding specificity and functional response. Using proteomics, we developed humanized CD200AR-L to explore their effects on cytokine/chemokine response, dendritic cell maturation and CMV pp65 antigen response in human CD14+ cells. GMP-grade peptide was further validated for activity. RESULTS We demonstrated that the CD200AR-L specifically targets a CD200AR complex. Moreover, we developed and validated a humanized CD200AR-L for inducing chemokine response, stimulating immature dendritic cell differentiation and significantly enhanced an antigen-specific response, and determined that the use of the CD200AR-L downregulated the expression of CD200 inhibitory and PD-1 receptors. CONCLUSIONS These results support consideration of a CD200AR-L as a novel platform for immunotherapy against multiple cancers including glioblastoma multiforme.
Collapse
Affiliation(s)
- Zhengming Xiong
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | | | - G Elizabeth Pluhar
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
5
|
Erin N, Dilmaç S, Curry A, Duymuş Ö, Tanriover G, Prodeus A, Gariepy J, Gorczynski RM. CD200 mimetic aptamer PEG-M49 markedly increases the therapeutic effects of pegylated liposomal doxorubicin in a mouse model of metastatic breast carcinoma: an effect independent of CD200 receptor 1. Cancer Immunol Immunother 2019; 69:103-114. [PMID: 31811336 DOI: 10.1007/s00262-019-02444-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
We previously reported that CD200 overexpression in the host decreases progression and metastasis of the highly aggressive metastatic 4THM breast carcinoma. We have explored a possible synergistic interaction between the CD200 mimetic PEG-M49 and pegylated liposomal doxorubicin (Peg-Dox) in wild-type CD200 knockout (CD200-/-) and CD200 Receptor 1 knockout (CD200R1-/-) mice for the first time. A 4THM breast carcinoma model and three groups of BALB/c mice (wild type, CD200-/- and CD200R1-/-) were used. Five days after injection of tumor cells, mice were injected with Peg-Dox (ip, once a week) and PEG-M49 or a control aptamer (iv, every 3 days). Necropsies were performed either 12 (mid-point) or 24 (endpoint) days after injection and the extent of tumor growth, visceral metastasis and changes in the tumor-directed immune response were evaluated. PEG-M49 and Peg-Dox co-treatment induced complete tumor regression and loss of macroscopic lung metastasis in four out of seven WT mice. This synergistic anti-tumoral effect is thought to be due to Peg-M49-induced inhibition of Gr1 + CD11b + cells and Peg-Dox-induced increases in tumor-infiltrating CD8 + and CD8CD4 double-positive cells. Similar changes were observed in CD200R1-/- mice indicating that the primary effects of Peg-M49 are mediated by non-CD200R1 receptors. We also demonstrated for the first time that tumor growth, metastasis, and tumor infiltrating GR1 + CD11b + cells were markedly increased in CD200R1-/- mice, indicating an anti-inflammatory and protective role of CD200. CD200 mimetics might be a safe and effective immunomodulatory treatment in conjunction with classical chemotherapeutics for therapy of aggressive metastatic breast carcinoma.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Immunopharmacology and Immunooncology Research unit, Akdeniz University School of Medicine, B-Blok Kat 1 Immunoloji, 07070, Antalya, Turkey.
| | - Sayra Dilmaç
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Anna Curry
- University Health Network, Toronto General Hospital, Toronto, Canada
| | - Özlem Duymuş
- Department of Medical Pharmacology, Immunopharmacology and Immunooncology Research unit, Akdeniz University School of Medicine, B-Blok Kat 1 Immunoloji, 07070, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Aaron Prodeus
- Sunnybrook Cancer Centre, Toronto General Hospital, Toronto, Canada
| | - Jean Gariepy
- Sunnybrook Cancer Centre, Toronto General Hospital, Toronto, Canada
| | | |
Collapse
|
6
|
Frank MG, Annis JL, Watkins LR, Maier SF. Glucocorticoids mediate stress induction of the alarmin HMGB1 and reduction of the microglia checkpoint receptor CD200R1 in limbic brain structures. Brain Behav Immun 2019; 80:678-687. [PMID: 31078691 PMCID: PMC6662571 DOI: 10.1016/j.bbi.2019.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
Exposure to stressors primes neuroinflammatory responses to subsequent immune challenges and stress-induced glucocorticoids (GCs) play a mediating role in this phenomenon of neuroinflammatory priming. Recent evidence also suggests that the alarmin high-mobility group box-1 (HMGB1) and the microglial checkpoint receptor CD200R1 serve as proximal mechanisms of stress-induced neuroinflammatory priming. However, it is unclear whether stress-induced GCs play a causal role in these proximal mechanisms of neuroinflammatory priming; this forms the focus of the present investigation. Here, we found that exposure to a severe acute stressor (inescapable tailshock) induced HMGB1 and reduced CD200R1 expression in limbic brain regions and pharmacological blockade of GC signaling (RU486) mitigated these effects of stress. To confirm these effects of RU486, adrenalectomy (ADX) with basal corticosterone (CORT) replacement was used to block the stress-induced increase in GCs as well as effects on HMGB1 and CD200R1. As with RU486, ADX mitigated the effects of stress on HMGB1 and CD200R1. Subsequently, exogenous CORT was administered to determine whether GCs are sufficient to recapitulate the effects of stress. Indeed, exogenous CORT induced expression of HMGB1 and reduced expression of CD200R1. In addition, exposure of primary microglia to CORT also recapitulated the effects of stress on CD200R1 suggesting that CORT acts directly on microglia to reduce expression of CD200R1. Taken together, these findings suggest that GCs mediate the effects of stress on these proximal mechanisms of neuroinflammatory priming.
Collapse
Affiliation(s)
- Matthew G. Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA,Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA,Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience, 2860 Wilderness Place, Campus Box 603, University of Colorado Boulder, Boulder, CO 80301, USA, Tel: +1-303-919-8116,
| | - Jessica L. Annis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA,Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Steven F. Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA,Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| |
Collapse
|
7
|
Ritzel RM, Al Mamun A, Crapser J, Verma R, Patel AR, Knight BE, Harris N, Mancini N, Roy-O'Reilly M, Ganesh BP, Liu F, McCullough LD. CD200-CD200R1 inhibitory signaling prevents spontaneous bacterial infection and promotes resolution of neuroinflammation and recovery after stroke. J Neuroinflammation 2019; 16:40. [PMID: 30777093 PMCID: PMC6378746 DOI: 10.1186/s12974-019-1426-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ischemic stroke results in a robust inflammatory response within the central nervous system. As the immune-inhibitory CD200-CD200 receptor 1 (CD200R1) signaling axis is a known regulator of immune homeostasis, we hypothesized that it may play a role in post-stroke immune suppression after stroke. METHODS In this study, we investigated the role of CD200R1-mediated signaling in stroke using CD200 receptor 1-deficient mice. Mice were subjected to a 60-min middle cerebral artery occlusion and evaluated at days 3 and 7, representing the respective peak and early resolution stages of neuroinflammation in this model of ischemic stroke. Infarct size and behavioral deficits were assessed at both time points. Central and peripheral cellular immune responses were measured using flow cytometry. Bacterial colonization was determined in lung tissue homogenates both after acute stroke and in an LPS model of systemic inflammation. RESULTS In wild-type (WT) animals, CD200R1 was expressed on infiltrating monocytes and lymphocytes after stroke but was absent on microglia. Early after ischemia (72 h), CD200R1-knockout (KO) mice had significantly poorer survival rates and an enhanced susceptibility to spontaneous bacterial colonization of the respiratory tract compared to wild-type (WT) controls, despite no difference in infarct or neurological deficits. While the CNS inflammation was resolved by day 7 post-stroke in WT mice, brain-resident microglia and monocyte activation persisted in CD200R1-KO mice, accompanied by a delayed, augmented lymphocyte response. At this time point, CD200R1-KO mice displayed greater weight loss, more severe neurological deficits, and impaired motor function compared to WT. Systemically, CD200R1-KO mice exhibited signs of persistent infection including lymphopenia, T cell activation and memory conversion, and narrowing of the TCR repertoire. These findings were confirmed in a second model of acute neuroinflammation induced by systemic endotoxin challenge. CONCLUSION This study defines an essential role of CD200-CD200R1 signaling in stroke. Loss of CD200R1 led to high mortality, increased rates of post-stroke infection, and enhanced entry of peripheral leukocytes into the brain after ischemia, with no increase in infarct size. This suggests that the loss of CD200 receptor leads to enhanced peripheral inflammation that is triggered by brain injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77370, USA
| | - Joshua Crapser
- Neuroscience Department, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Rajkumar Verma
- Neuroscience Department, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Anita R Patel
- Neuroscience Department, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Brittany E Knight
- Neuroscience Department, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Nia Harris
- Neuroscience Department, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Nickolas Mancini
- Neuroscience Department, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Meaghan Roy-O'Reilly
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77370, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77370, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77370, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77370, USA.
| |
Collapse
|
8
|
Frank MG, Fonken LK, Annis JL, Watkins LR, Maier SF. Stress disinhibits microglia via down-regulation of CD200R: A mechanism of neuroinflammatory priming. Brain Behav Immun 2018; 69:62-73. [PMID: 29104062 PMCID: PMC5857401 DOI: 10.1016/j.bbi.2017.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Exposure to stressors primes the neuroinflammatory and microglial proinflammatory response to subsequent immune challenges, suggesting that stress might attenuate immunoregulatory mechanisms in the CNS microenvironment. CD200:CD200R is a key immunoregulatory signaling dyad that constrains microglial activation, and disruption of CD200:CD200R signaling primes microglia to subsequent immune challenges. Therefore, the present study examined the mediating role of CD200:CD200R signaling in stress-induced microglial priming. Here, we found that exposure to an acute stressor reduced CD200R expression across sub-regions of the hippocampus, amygdala as well as in isolated hippocampal microglia. A transcriptional suppressor of CD200R, CAAT/Enhancer Binding Proteinβ, was induced by stress and inversely associated with CD200R expression. To examine whether disrupted CD200:CD200R signaling plays a mediating role in stress-induced microglial priming, a soluble fragment of CD200 (mCD200Fc) was administered intra-cisterna magna prior to stressor exposure and stress-induced microglia priming assessed ex vivo 24 h later. Treatment with mCD200Fc blocked the stress-induced priming of the microglial pro-inflammatory response. Further, treatment with mCD200R1Fc recapitulated the effects of stress on microglial priming. We previously found that stress increases the alarmin high mobility group box-1 (HMGB1) in hippocampus, and that HMGB1 mediates stress-induced priming of microglia. Thus, we examined whether stress-induced increases in hippocampal HMGB1 are a consequence of disrupted CD200:CD200R signaling. Indeed, treatment with mCD200Fc prior to stress exposure blocked the stress-induced increase in hippocampal HMGB1. The present study suggests that stress exposure disrupts immunoregulatory mechanisms in the brain, which typically constrain the immune response of CNS innate immune cells. This attenuation of immunoregulatory mechanisms may thus permit a primed activation state of microglia to manifest.
Collapse
Affiliation(s)
- Matthew G. Frank
- Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience, Campus Box 345, University of Colorado Boulder, Boulder, CO, 80309-0345, USA, Tel: +1-303-919-8116, Fax: +1-303-492-2967,
| | | | | | | | | |
Collapse
|
9
|
Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand. J Neurosci 2017; 37:972-985. [PMID: 28123029 DOI: 10.1523/jneurosci.2199-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023] Open
Abstract
The central nervous system (CNS) is endowed with several immune-related mechanisms that contribute to its protection and maintenance in homeostasis and under pathology. Here, we discovered an additional mechanism that controls inflammatory responses within the CNS milieu under injurious conditions, involving CD200 ligand (CD200L) expressed by newly formed endothelial cells. We observed that CD200L is constitutively expressed in the mouse healthy CNS by endothelial cells of the blood-cerebrospinal fluid barrier and of the spinal cord meninges, but not by the endothelium of the blood-spinal cord barrier. Following spinal cord injury (SCI), newly formed endothelial cells, located only at the epicenter of the lesion site, expressed CD200L. Moreover, in the absence of CD200L expression by CNS-resident cells, functional recovery of mice following SCI was impaired. High throughput single-cell flow cytometry image analysis following SCI revealed CD200L-dependent direct interaction between endothelial and local CD200R+ myeloid cells, including activated microglia and infiltrating monocyte-derived macrophages (mo-MΦ). Absence of CD200L signaling, both in vitro and in vivo, resulted in a higher inflammatory response of the encountering macrophages, manifested by elevation in mRNA expression of Tnfα and Il1β, increased intracellular TNFα immunoreactivity, and reduced expression levels of macrophage factors that are associated with resolution of inflammation, Dectin-1, CD206 (mannose receptor), and IL-4R. Collectively, our results highlight the importance of CD200-mediated immune dialogue between endothelial cells and the local resident microglia and infiltrating mo-MΦ within the lesion area, as a mechanism that contributes to regulation of inflammation following acute CNS injury. SIGNIFICANCE STATEMENT This manuscript focuses on a novel mechanism of inflammation-regulation following spinal cord injury (SCI), orchestrated by CD200-ligand (CD200L) expressed by newly formed endothelial cells within the lesion site. Our study reveals that, in homeostasis, CD200L is expressed by endothelial cells of the mouse blood-cerebrospinal fluid barrier and of the blood-leptomeningeal barrier, but not by endothelial cells of the blood-spinal cord barrier. Following SCI, newly formed endothelial cells located within the epicenter of the lesion site were found to express CD200L at time points that were shown to be critical for repair. Our results reveal a direct interaction between CD200L+ endothelial cells and CD200R+ microglia and macrophages, resulting in attenuated inflammation, biasing macrophage phenotype toward inflammation-resolving cells, and promotion of functional recovery following SCI.
Collapse
|
10
|
Xiong Z, Ampudia-Mesias E, Shaver R, Horbinski CM, Moertel CL, Olin MR. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy. Immunotherapy 2017; 8:1059-71. [PMID: 27485078 DOI: 10.2217/imt-2016-0033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Zhengming Xiong
- University of Minnesota, Pediatrics, Division of Hematology and Oncology, Minneapolis, MN 55455, USA
| | - Elisabet Ampudia-Mesias
- University of Minnesota, Pediatrics, Division of Hematology and Oncology, Minneapolis, MN 55455, USA
| | - Rob Shaver
- University of Minnesota, Pediatrics, Division of Hematology and Oncology, Minneapolis, MN 55455, USA
| | - Craig M Horbinski
- Departments of Neurosurgery & Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Christopher L Moertel
- University of Minnesota, Pediatrics, Division of Hematology and Oncology, Minneapolis, MN 55455, USA
| | - Michael R Olin
- University of Minnesota, Pediatrics, Division of Hematology and Oncology, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Kobayashi K, Yano H, Umakoshi A, Matsumoto S, Mise A, Funahashi Y, Ueno Y, Kamei Y, Takada Y, Kumon Y, Ohnishi T, Tanaka J. A Truncated form of CD200 (CD200S) Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages. Neoplasia 2017; 18:229-41. [PMID: 27108386 PMCID: PMC4840271 DOI: 10.1016/j.neo.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/03/2022] Open
Abstract
CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L) but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs) in C6-CD200S tumors displayed dendritic cell (DC)-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas.
Collapse
Affiliation(s)
- Kana Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan; Department of Hepato-biliary pancreatic surgery and breast surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Akihiro Umakoshi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shirabe Matsumoto
- Department of Regeneration of Community Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Ayano Mise
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yu Funahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yoshitomo Ueno
- Department of Hepato-biliary pancreatic surgery and breast surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yoshiaki Kamei
- Department of Hepato-biliary pancreatic surgery and breast surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yasutsugu Takada
- Department of Hepato-biliary pancreatic surgery and breast surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yoshiaki Kumon
- Department of Regeneration of Community Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.
| |
Collapse
|
12
|
Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis. Sci Rep 2016; 6:38689. [PMID: 27929051 PMCID: PMC5144133 DOI: 10.1038/srep38689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
In sarcoidosis, the proinflammatory cytokines interferon gamma, tumour necrosis factor and interleukin-6 are released by monocyte-derived macrophages and lymphocytes in the lungs and other affected tissues. Regulatory receptors expressed on monocytes and macrophages act to suppress cytokine production, and reduced expression of regulatory receptors may thus promote tissue inflammation. The aim of this study was to characterise the role of regulatory receptors on blood monocytes in patients with sarcoidosis. Cytokine release in response to stimulation of whole blood was measured in healthy controls and Caucasian non-smoking patients with sarcoidosis who were not taking disease modifying therapy. Expression of the regulatory molecules IL-10R, SIRP-α/β, CD47, CD200R, and CD200L was measured by flow cytometry, and functional activity was assessed using blocking antibodies. Stimulated whole blood and monocytes from patients with sarcoidosis produced more TNF and IL-6 compared with healthy controls. 52.9% of sarcoidosis patients had monocytes characterised by low expression of CD200R, compared with 11.7% of controls (p < 0.0001). Patients with low monocyte CD200R expression produced higher levels of proinflammatory cytokines. In functional studies, blocking the CD200 axis increased production of TNF and IL-6. Reduced expression of CD200R on monocytes may be a mechanism contributing to monocyte and macrophage hyper-activation in sarcoidosis.
Collapse
|
13
|
Celik B, Yalcin AD, Genc GE, Bulut T, Kuloglu Genc S, Gumuslu S. CXCL8, IL-1β and sCD200 are pro-inflammatory cytokines and their levels increase in the circulation of breast carcinoma patients. Biomed Rep 2016; 5:259-263. [PMID: 27446554 PMCID: PMC4950671 DOI: 10.3892/br.2016.709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/03/2016] [Indexed: 02/05/2023] Open
Abstract
The influence of biomarkers on carcinogenesis has been investigated extensively. Whether they promote carcinogenesis or work against cancer development remains to be elucidated. To the best of our knowledge, the novel molecule cluster of differentiation 200 (CD200) has not been studied on human breast cancer subjects. The present study aimed to evaluate interleukin-1β (IL-1β), C-X-C motif chemokine ligand 8 (CXCL8), cancer antigen 15.3 (CA 15.3) and the soluble CD200 (sCD200) levels in the serum samples of breast carcinoma patients in order to predict their role in breast carcinoma. The subjects included individuals with early and advanced stage breast cancers, as well as healthy controls. Commercially available ELISA kits were used to measure the serum concentrations of sCD200, IL-1β, CXCL8, CA 15.3, C-reactive protein (CRP) and leukocyte count. A total of 130 subjects were recruited; 50 early stage cancer, 50 advanced stage and 30 control subjects. Serum sCD200, CXCL8, IL-1β and CRP levels were significantly higher in the early as well as the advanced stage breast cancer patients compared to the control group. The level of CA 15.3 was statistically different between early and advanced stage. There were significant positive correlations between IL-1β and CXCL8, and IL-1β and serum sCD200 levels in the control group. These correlations did not persist in the early or the advanced stage cancer groups except CRP and CA 15.3, but new correlations appeared between serum sCD200 level and leukocyte count for advanced stage breast cancer group. Multivariate regression correlation analysis revealed positive correlation between IL-1β and sCD200; and IL-1β and CXCL8. In conclusion, sCD200, CXCL8, CA 15.3 and IL-1β are proinflammatory molecules and their levels are influenced in breast cancer patients.
Collapse
Affiliation(s)
- Betul Celik
- Department of Pathology, Antalya Training and Research Hospital, 07100 Antalya, Turkey
- Correspondence to: Dr Betul Celik, Department of Pathology, Antalya Training and Research Hospital, Varlik Mahallesi Kazim Karabekir Cad, 07100 Antalya, Turkey, E-mail:
| | - Arzu Didem Yalcin
- Department of Internal Medicine, Allergy and Clinical Immunology Unit, Antalya Training and Research Hospital, 07100 Antalya, Turkey
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Gizem Esra Genc
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Tangul Bulut
- Department of Pathology, Antalya Training and Research Hospital, 07100 Antalya, Turkey
| | - Sibel Kuloglu Genc
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Saadet Gumuslu
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| |
Collapse
|
14
|
Holmannová D, Koláčková M, Kondělková K, Kuneš P, Krejsek J, Andrýs C. CD200/CD200R Paired Potent Inhibitory Molecules Regulating Immune and Inflammatory Responses; part I: CD200/CD200R Structure, Activation, and Function. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 55:12-7. [DOI: 10.14712/18059694.2015.68] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CD200/CD200R are highly conserved type I paired membrane glycoproteins that belong to the Ig superfamily containing a two immunoglobulin‑like domain (V, C). CD200 is broadly distributed in a variety of cell types, whereas CD200R is primarily expressed in myeloid and lymphoid cells. They fulfill multiple functions in regulating inflammation. The interaction between CD200/CD200R results in activation of the intracellular inhibitory pathway with RasGAP recruitment and thus contributes to effector cell inhibition. It was confirmed that the CD200R activation stimulates the differentiation of T cells to the Treg subset, upregulates indoleamine 2,3‑dioxygenase activity, modulates cytokine environment from a Th1 to a Th2 pattern, and facilitates an antiinflammatory IL‑10 and TGF‑β synthesis. CD200/CD200R are required for maintaining self‑tolerance. Many studies have demonstrated the importance of CD200 in controlling autoimmunity, inflammation, the development and spread of cancer, hypersensitivity, and spontaneous fetal loss.
Collapse
|
15
|
Moertel CL, Xia J, LaRue R, Waldron NN, Andersen BM, Prins RM, Okada H, Donson AM, Foreman NK, Hunt MA, Pennell CA, Olin MR. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. J Immunother Cancer 2014; 2:46. [PMID: 25598973 PMCID: PMC4296547 DOI: 10.1186/s40425-014-0046-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Immunological quiescence in the central nervous system (CNS) is a potential barrier to immune mediated anti-tumor response. One suppressive mechanism results from the interaction of parenchyma-derived CD200 and its receptor on myeloid cells. We suggest that CD200/CD200R interactions on myeloid cells expand the myeloid-derived suppressor cell (MDSC) population and that blocking tumor-derived CD200 will enhance the efficacy of immunotherapy. METHODS CD200 mRNA expression levels in human brain tumor tissue samples were measured by microarray. The amount of circulating CD200 protein in the sera of patients with brain tumors was determined by ELISA and, when corresponding peripheral blood samples were available, was correlated quantitatively with MDSCs. CD200-derived peptides were used as competitive inhibitors in a mouse model of glioblastoma immunotherapy. RESULTS CD200 mRNA levels were measured in human brain tumors, with different expression levels being noted among the sub groups of glioblastoma, medulloblastoma and ependymoma. Serum CD200 concentrations were highest in patients with glioblastoma and correlated significantly with MDSC expansion. Similarly, in vitro studies determined that GL261 cells significantly expanded a MDSC population. Interestingly, a CD200R antagonist inhibited the expansion of murine MDSCs in vitro and in vivo. Moreover, inclusion of CD200R antagonist peptide in glioma tumor lysate-derived vaccines slowed tumor growth and significantly enhanced survival. CONCLUSION These data suggest that CNS-derived tumors can evade immune surveillance by engaging CD200. Because of the homology between mouse and human CD200, our data also suggest that blockade of CD200 binding to its receptor will enhance the efficacy of immune mediated anti-tumor strategies for brain tumors.
Collapse
Affiliation(s)
- Christopher L Moertel
- />Department of Pediatrics, hematology/oncology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Junzhe Xia
- />Department of Pediatrics, hematology/oncology, University of Minnesota, Minneapolis, MN 55455 USA
- />Department of Neurosurgery, Hospital Number 1 of China Medical University, Shenyang, China
| | - Rebecca LaRue
- />Department of Pediatrics, hematology/oncology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Nate N Waldron
- />Department of Pediatrics, hematology/oncology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Brian M Andersen
- />Department of Pediatrics, hematology/oncology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robert M Prins
- />Department of Neurosurgery, UCLA Medical Center, Los Angeles, CA 90095 USA
| | - Hideho Okada
- />Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94158 USA
| | - Andrew M Donson
- />Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO 80045 USA
| | - Nicholas K Foreman
- />Department of Pediatrics, University of Colorado, Denver Anschutz Medical Center, Aurora, CO 80045 USA
| | - Matthew A Hunt
- />Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455 USA
| | | | - Michael R Olin
- />Department of Pediatrics, hematology/oncology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
16
|
Kim YK, Que R, Wang SW, Liu WF. Modification of biomaterials with a self-protein inhibits the macrophage response. Adv Healthc Mater 2014; 3:989-94. [PMID: 24573988 PMCID: PMC4272238 DOI: 10.1002/adhm.201300532] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Indexed: 12/27/2022]
Abstract
A biomaterial inhibits the host immune response by displaying an endo-genously expressed immunomodulatory molecule, CD200. Immobilization of CD200 onto biomaterial surfaces effectively suppresses macrophage activation and reduces inflammatory response to subcutaneously implanted materials.
Collapse
Affiliation(s)
- Yoon Kyung Kim
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
| | - Richard Que
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, USA
| | - Szu-Wen Wang
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, USA
- Department of Chemical Engineering & Materials Science, University of California, Irvine
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
- Department of Chemical Engineering & Materials Science, University of California, Irvine
| |
Collapse
|
17
|
Walker DG, Lue LF. Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains? FUTURE NEUROLOGY 2013; 8. [PMID: 24198718 DOI: 10.2217/fnl.13.14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD200 and its receptor, CD200 receptor (CD200R), have uniaue roles in controlling damaging inflammatory processes. At present, the only identified function for CD200 is as a ligand for CD200R. These proteins interact resulting in the activation of anti-inflammatory signaling by CD200R-expressing cells. When this interaction becomes deficient with aging or disease, chronic inflammation occurs, Experimental animal studies have demonstrated the consequences of disrupting CD200-CD200R interactions in the brain, but there have been few studies in human brains. Deficiency in neuronal CD200 may explain the chronic inflammation in human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and multiple sclerosis; however, deficits in the microglial expression of CD200R may also be of functional significance. The purpose of this review is to assess the data regarding the role of CD200-CD200R interactions in relation to the brain in order to determine if this could be a therapeutic target for human brain diseases with inflammatory components, and what additional studies are needed.
Collapse
Affiliation(s)
- Douglas G Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA
| | | |
Collapse
|
18
|
sCD200 Present in Mice Receiving Cardiac and Skin Allografts Causes Immunosuppression In Vitro and Induces Tregs. Transplantation 2013; 95:442-7. [DOI: 10.1097/tp.0b013e3182754c30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Abstract
The type 1 membrane glycoprotein CD200, widely expressed on multiple cells/tissues, uses a structurally similar receptor (CD200R1), whose expression is more restricted to cells of the myeloid and lymphoid lineages, to transmit signals affecting responses in multiple physiological systems. Thus CD200 expression is reported to exert effects on cancer growth, autoimmune and allergic disorders, infection, transplantation, bone development and homeostasis, and reproductive biology. It was initially thought, based on the idea that CD200R1 was mostly expressed on cells of myeloid origin, that CD200:CD200R1 interactions were primarily dedicated to controlling myeloid cell function. However additional members of the CD200R family have now also been identified, although their function(s) remain unclear, and CD200R1 itself is now known to be expressed by subsets of T cells and other cells. Together these observations add layers of complexity to our understanding of CD200-related regulation. In common with a number of physiological systems, the mechanism(s) of CD200-induced signaling seem to fit within a similar framework of opposing actions of kinases and phosphatases. This paper highlights the advances in our knowledge of immunoregulation achieved following CD200:CD200R interaction and the potential clinical applicability of that information.
Collapse
Affiliation(s)
- Reginald M. Gorczynski
- Departments of Surgery and Immunology, University Health Network and The Toronto Hospital, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
20
|
Cox FF, Carney D, Miller AM, Lynch MA. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav Immun 2012; 26:789-96. [PMID: 22041297 DOI: 10.1016/j.bbi.2011.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 12/11/2022] Open
Abstract
The glycoprotein, CD200, is primarily expressed on neurons and its cognate receptor CD200R is expressed principally on cells of the myeloid lineage, including microglia. The interaction of CD200 with its receptor plays a significant role in maintaining microglia in a quiescent state and therefore a decrease in CD200 expression in brain is associated with evidence of microglial activation. Conversely, activation of CD200R, for example using a CD200 fusion protein (CD200Fc), should result in a decrease in microglial activation. Here we assessed the effect of delivery of CD200Fc intrahippocampally on microglial activation and on long-term potentiation (LTP) in perforant path-granule cell synapses in young and aged rats. We hypothesized that the age-related changes in microglial activation would be attenuated by CD200Fc resulting in an improved ability of aged rats to sustain LTP. The data indicate that expression of markers of microglial activation including major histocompatibility complex Class II (MHCII) and CD40 mRNA, as well as MHCII immunoreactivity, were increased in hippocampus of aged, compared with young, rats and that these changes were associated with a deficit in LTP; these changes were attenuated in hippocampal tissue prepared from aged rats which received CD200Fc. Microglial activation and a deficit in LTP have also been reported in lipopolysaccharide (LPS)-treated rats and, here, we report that these changes were also attenuated in CD200Fc-treated animals. Thus the negative impact of microglial activation on the ability of aged and LPS-treated rats to sustain LTP is ameliorated when CD200R is activated by CD200Fc.
Collapse
Affiliation(s)
- F Fionnuala Cox
- Trinity College Institute for Neuroscience, Department of Physiology, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
21
|
Derlindati E, Dall'Asta M, Ardigò D, Brighenti F, Zavaroni I, Crozier A, Del Rio D. Quercetin-3-O-glucuronide affects the gene expression profile of M1 and M2a human macrophages exhibiting anti-inflammatory effects. Food Funct 2012; 3:1144-52. [DOI: 10.1039/c2fo30127j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Krejsek J, Kolackova M, Mandak J, Kunes P, Jankovicova K, Vlaskova D, Svitek V, Andrys C. Expression of CD200/CD200R regulatory molecules on granulocytes and monocytes is modulated by cardiac surgical operation. Perfusion 2010; 25:389-97. [DOI: 10.1177/0267659110381451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims: Cardiac surgical operation is inseparably linked to the induction of an inflammatory response. Both humoral and cellular regulatory mechanisms are operating to maintain body homeostasis. We followed the changes in the expression of CD200/CD200R regulatory molecules on monocytes and granulocyte of cardiac surgical patients operated on using either standard (OP) or modified “mini-invasive” cardiopulmonary bypass (MOP). Methods: Expression of CD200/CD200R regulatory molecules was determined by flow cytometry. Results: The expression of CD200R on granulocytes was increased after surgery in both groups of patients, but the increase was statistically significant only in OP patients (p<0.01). At this time point, there was a significant difference in CD200R expression on granulocytes when comparing OP to MOP patients, being higher in the former group (p<0.01). The expression of CD200R on monocytes was diminished after surgery and during an early postoperative period in both groups of patients. The expression of CD200 on monocytes was significantly diminished after surgery in both groups (p<0.01). Nonetheless, we observed an increase in CD200 expression in OP patients at the 3rd postoperative day. There was a statistically significantly increased CD200 expression on monocytes of OP patients (p<0.001) at the 3rd postoperative day when we compared OP and MOP groups. The expression of CD200 on granulocytes was significantly higher after surgery and at the 3rd postoperative day in OP when compared to MOP patients. Conclusions: CD200R expression on granulocytes was significantly increased, while CD200 and CD200R expression on monocytes was decreased after cardiac surgery.
Collapse
Affiliation(s)
- Jan Krejsek
- Department of Clinical Immunology and Allergy, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic,
| | - Martina Kolackova
- Department of Clinical Immunology and Allergy, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Jiri Mandak
- Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Pavel Kunes
- Department of Clinical Immunology and Allergy, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Karolina Jankovicova
- Department of Clinical Immunology and Allergy, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Dana Vlaskova
- Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Vladimir Svitek
- Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| |
Collapse
|
23
|
Identification of an Expressed Truncated Form of CD200, CD200tr, which is a Physiologic Antagonist of CD200-Induced Suppression. Transplantation 2008; 86:1116-24. [DOI: 10.1097/tp.0b013e318186fec2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|