1
|
Lu Q, Zhou L, Wang Z, Li X, Ding L, Qiu Y, Guo P, Ye C, Fu S, Wu Z, Liu Y. Baicalin Alleviate Apoptosis via PKC-MAPK Pathway in Porcine Peritoneal Mesothelial Cells Induced by Glaesserella parasuis. Molecules 2022; 27:molecules27165083. [PMID: 36014323 PMCID: PMC9414593 DOI: 10.3390/molecules27165083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Glaesserella parasuis (GPS), a causative agent of Glässer’s disease, is thought to be the main fatal cause of peritonitis in swine, thus resulting in high mortality and morbidity and significant economic losses to the swine industry. However, the mechanisms of GPS infection-induced apoptosis and possible therapeutic pathway for GPS infection in peritonitis remain unclear. Baicalin has important biological functions during disease treatment, such as antiviral, bacterial inhibition, anti-apoptosis, and anti-inflammatory. However, whether baicalin has anti-apoptotic effects during the process of GPS infection in peritonitis is unclear. In the present study, the anti-apoptotic effect and mechanisms of baicalin in GPS infection-induced apoptosis were investigated in porcine peritoneal mesothelial cells (PPMC). The results showed that baicalin could inhibit the apoptosis rate occurrence of PPMC induced by GPS to various degrees and inhibit the expression of apoptosis-related genes and cleaved caspase-3. Meanwhile, baicalin significantly antagonized the expression of p-JNK, p-p38, and p-ERK induced by GPS in PPMC. These findings for the first time demonstrate that baicalin exerted the effect of antagonizing GPS induced apoptosis in PPMC by inhibiting the activation of the PKC-MAPK pathway and could be a therapeutic option in the management of GPS infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yu Liu
- Correspondence: or ; Tel.: +86-27-83956175; Fax: +86-27-83956175
| |
Collapse
|
2
|
Bangash MN, Abbott TEF, Patel NSA, Hinds CJ, Thiemermann C, Pearse RM. The Effect of β 2-Adrenoceptor Agonists on Leucocyte-Endothelial Adhesion in a Rodent Model of Laparotomy and Endotoxemia. Front Immunol 2020; 11:1001. [PMID: 32670267 PMCID: PMC7326121 DOI: 10.3389/fimmu.2020.01001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/27/2020] [Indexed: 11/21/2022] Open
Abstract
Background: The β2-adrenoceptor agonist dopexamine may possess anti-inflammatory actions which could reduce organ injury during endotoxemia and laparotomy. Related effects on leucocyte-endothelial adhesion remain unclear. Methods: Thirty anesthetized Wistar rats underwent laparotomy followed by induction of endotoxemia with lipopolysaccharide and peptidoglycan (n = 24) or sham (n = 6). Animals received dopexamine at 0.5 or 1 μg kg−1 min−1 (D0.5 and D1), salbutamol at 0.1 μg kg−1 min−1, or saline vehicle (Sham and Control) for 5 h. Intravital microscopy was performed in the ileum of the small intestine to assess leucocyteendothelial adhesion, arteriolar diameter, and functional capillary density. Global hemodynamics and biochemical indices of renal and hepatic function were also measured. Results: Endotoxemia was associated with an increase in adherent leucocytes in post-capillary venules, intestinal arteriolar vasoconstriction as well-reduced arterial pressure and relative cardiac index, but functional capillary density in the muscularis was not significantly altered. Dopexamine and salbutamol administration were associated with reduced leucocyte-endothelial adhesion in post-capillary venules compared to control animals. Arteriolar diameter, arterial pressure and relative cardiac index all remained similar between treated animals and controls. Functional capillary density was similar for all groups. Control group creatinine was significantly increased compared to sham and higher dose dopexamine. Conclusions: In a rodent model of laparotomy and endotoxemia, β2-agonists were associated with reduced leucocyte-endothelial adhesion in post-capillary venules. This effect may explain some of the anti-inflammatory actions of these agents.
Collapse
Affiliation(s)
- Mansoor Nawaz Bangash
- Department of Critical Care & Anaesthesia, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Tom E F Abbott
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Nimesh S A Patel
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Charles Johnston Hinds
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Christoph Thiemermann
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rupert Mark Pearse
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Tolonen M, Kuuliala K, Kuuliala A, Leppäniemi A, Kylänpää ML, Sallinen V, Puolakkainen P, Mentula P. The Association Between Intra-abdominal View and Systemic Cytokine Response in Complicated Intra-abdominal Infections. J Surg Res 2019; 244:436-443. [PMID: 31326710 DOI: 10.1016/j.jss.2019.06.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND There is a wide variety of disease severity in patients with complicated intraabdominal infection (cIAI). The prognostic role of intraabdominal view (IAV) was recently studied, and an IAV score was introduced. The aim of this study was to analyze the associations between the preoperative levels of eight relevant circulating cytokines and IAV components, the IAV score, as well as outcome. MATERIALS AND METHODS This was a single-center prospective study. The study cohort consisted of operatively managed adult patients with a cIAI. Preoperative plasma levels of eight cytokines were determined. The operating surgeon filled a form describing IAV. Outcomes analyzed were 30-day mortality and the development of organ dysfunctions requiring intensive care unit admission. RESULTS A total of 131 patients with cIAI were analyzed, 30-day mortality was 9.9% (n = 13), and 28 (21.4%) patients had postoperative organ dysfunctions. All components of IAV, the IAV score, and outcomes were associated with various cytokine levels. Interleukin-8 was the most competent marker associating with all the variables assessed in this study: diffuse peritonitis (P < 0.001), substantial diffuse redness (P = 0.012), substantial diffuse fibrin (P = 0.003), fecal or bile as exudate (P = 0.001), nonappendiceal source of infection (P < 0.001), IAV Score groups (P < 0.001), organ dysfunctions (P < 0.001), and 30-day mortality (P = 0.035). CONCLUSIONS Various cytokines associate with the IAV and outcome. IL-8 showed the best overall performance. The results emphasize the role of the surgeons' perception of the IAV. IAV provides an approximation of the magnitude of the systemic inflammatory response.
Collapse
Affiliation(s)
- Matti Tolonen
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Krista Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ari Leppäniemi
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marja-Leena Kylänpää
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ville Sallinen
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Transplantation and Liver Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pauli Puolakkainen
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Panu Mentula
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Stephan F, Aarden LA, Zeerleder S. FSAP, a new player in inflammation? Hamostaseologie 2017; 32:51-5. [DOI: 10.5482/ha-1187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 12/11/2022] Open
Abstract
SummaryFactor VII-activating protease (FSAP) is a serine protease in plasma that has a role in coagulation and fibrinolysis. FVII could be activated by purified FSAP in a tissue factor independent manner and pro-urokinase has been demonstrated to be a substrate for purified FSAP in-vitro. However, the physiological role of FSAP in haemostasis remains unclear. More recently FSAP is suggested to be involved in inflammation. It modulates vascular permeability directly and indirectly by the generation of bradykinin. Furthermore, FSAP is activated by dead cells induced by the inflammatory response and subsequently removes nucleosomes from apoptotic cells. FSAP activation can be detected in sepsis patients as well. However, whether FSAP activation upon inflammation is beneficial or detrimental remains an open question.In this review the structure, activation mechanisms and the possible role of FSAP in inflammation are discussed.
Collapse
|
5
|
Stephan F, Bulder I, Luken BM, Hazelzet J, Wuillemin WA, Zeerleder S. Complexes of factor VII-activating protease with plasminogen activator inhibitor-1 in human sepsis. Thromb Haemost 2017; 112:219-21. [DOI: 10.1160/th13-12-1062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/14/2014] [Indexed: 01/28/2023]
|
6
|
Liu NN, Ou XL, Zheng ZW, Wu JY. Therapeutic effects of exogenous macrophages in mice with bacterial peritonitis. Shijie Huaren Xiaohua Zazhi 2016; 24:1076-1081. [DOI: 10.11569/wcjd.v24.i7.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the therapeutic effects of exogenous macrophages (U937) in mice with bacterial peritonitis.
METHODS: Sixty mice were randomized into three groups. Group A received injections of E. coli suspension and PBS. Group B received injections of E. coli suspension and gentamycin. Group C received injections of E. coli suspension and activated U937 cells. All dosages, included median lethal dose (LD50) of E. coli and maximum safe doses of activated U937 cells and gentamycin, were determined by pre-tests.
RESULTS: The weight and general condition of mice in groups B and C were significantly better than those of group A (P< 0.05). The fatality rate in groups B and C was lower than that of group A. Compared with group C, general condition and weight of mice in group B were better. The fatality rate in group B was 0, while that of group C was 20% (P < 0.01).
CONCLUSION: As a treatment for bacterial peritonitis, exogenous macrophages (U937) are better than gentamycin.
Collapse
|
7
|
Xiao Z, Wilson C, Robertson HL, Roberts DJ, Ball CG, Jenne CN, Kirkpatrick AW. Inflammatory mediators in intra-abdominal sepsis or injury - a scoping review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:373. [PMID: 26502877 PMCID: PMC4623902 DOI: 10.1186/s13054-015-1093-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/07/2015] [Indexed: 12/16/2022]
Abstract
Introduction Inflammatory and protein mediators (cytokine, chemokine, acute phase proteins) play an important, but still not completely understood, role in the morbidity and mortality of intra-abdominal sepsis/injury. We therefore systematically reviewed preclinical and clinical studies of mediators in intra-abdominal sepsis/injury in order to evaluate their ability to: (1) function as diagnostic/prognostic biomarkers; (2) serve as therapeutic targets; and (3) illuminate the pathogenesis mechanisms of sepsis or injury-related organ dysfunction. Methods We searched MEDLINE, PubMed, EMBASE and the Cochrane Library. Two investigators independently reviewed all identified abstracts and selected articles for full-text review. We included original studies assessing mediators in intra-abdominal sepsis/injury. Results Among 2437 citations, we selected 182 studies in the scoping review, including 79 preclinical and 103 clinical studies. Serum procalcitonin and C-reactive protein appear to be useful to rule out infection or monitor therapy; however, the diagnostic and prognostic value of mediators for complications/outcomes of sepsis or injury remains to be established. Peritoneal mediator levels are substantially higher than systemic levels after intra-abdominal infection/trauma. Common limitations of current studies included small sample sizes and lack of uniformity in study design and outcome measures. To date, targeted therapies against mediators remain experimental. Conclusions Whereas preclinical data suggests mediators play a critical role in intra-abdominal sepsis or injury, there is no consensus on the clinical use of mediators in diagnosing or managing intra-abdominal sepsis or injury. Measurement of peritoneal mediators should be further investigated as a more sensitive determinant of intra-abdominal inflammatory response. High-quality clinical trials are needed to better understand the role of inflammatory mediators. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1093-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengwen Xiao
- Regional Trauma Services, Foothills Medical Centre, 1403 - 29 Street NW, T2N 2T9, Calgary, AB, Canada.
| | - Crystal Wilson
- Regional Trauma Services, Foothills Medical Centre, 1403 - 29 Street NW, T2N 2T9, Calgary, AB, Canada.
| | - Helen Lee Robertson
- Health Sciences Library, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, T2N 4N1, Calgary, AB, Canada.
| | - Derek J Roberts
- Department of Surgery, Foothills Medical Centre, University of Calgary, 1403 - 29 Street NW, T2N 2T9, Calgary, AB, Canada. .,Department of Community Health Sciences (Division of Epidemiology), University of Calgary, 3280 Hospital Drive Northwest, T2N 4Z6, Calgary, AB, Canada.
| | - Chad G Ball
- Regional Trauma Services, Foothills Medical Centre, 1403 - 29 Street NW, T2N 2T9, Calgary, AB, Canada. .,Department of Surgery, Foothills Medical Centre, University of Calgary, 1403 - 29 Street NW, T2N 2T9, Calgary, AB, Canada.
| | - Craig N Jenne
- Department of Critical Care Medicine, Foothills Medical Centre, University of Calgary, 3134 Hospital Drive NW, T2N 5A1, Calgary, AB, Canada. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3280 Hospital Drive NW, T2N 4N1, Calgary, AB, Canada.
| | - Andrew W Kirkpatrick
- Regional Trauma Services, Foothills Medical Centre, 1403 - 29 Street NW, T2N 2T9, Calgary, AB, Canada. .,Department of Surgery, Foothills Medical Centre, University of Calgary, 1403 - 29 Street NW, T2N 2T9, Calgary, AB, Canada. .,Department of Critical Care Medicine, Foothills Medical Centre, University of Calgary, 3134 Hospital Drive NW, T2N 5A1, Calgary, AB, Canada.
| |
Collapse
|
8
|
S100A12 and soluble receptor for advanced glycation end products levels during human severe sepsis. Shock 2014; 40:188-94. [PMID: 23846410 DOI: 10.1097/shk.0b013e31829fbc38] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
S100A12 is highly expressed, and serum levels correlate with individual disease activity in patients with inflammatory diseases. We here sought to determine the extent of S100A12 release and its soluble high-affinity receptor for advanced glycation end products (sRAGE) in patients with severe sepsis stratified to the three most common infectious sources (lungs, abdomen, and urinary tract) and to determine S100A12 and sRAGE concentrations at the site of infection during peritonitis. Two patient populations were studied: (a) 51 patients with sepsis due to (i) peritonitis (n = 12), (ii) pneumonia (n = 29), or (iii) urinary tract infection (n = 10); and (b) 17 patients with peritonitis. In addition, eight healthy humans were studied after intravenous injection of lipopolysaccharide (4 ng/kg). Compared with healthy volunteers, patients with severe sepsis displayed increased circulating S100A12 concentrations at day 0 (591.2 ± 101.0 vs. 106.2 ± 15.6 ng/mL [control subjects], P < 0.0001) and at day 3 (637.2 ± 111.2 vs. 106.2 ± 15.6 ng/mL [control subjects], P < 0.0001). All three severe sepsis subgroups had elevated serum S100A12 concentrations at both time points (sepsis due to [i] peritonitis [393.5 ± 89.9 at day 0 and 337.9 ± 97.2 at day 3 vs. 106.2 ± 15.6 ng/mL, control subjects, P < 0.005 and P < 0.05, respectively]; [ii] pneumonia [716.9 ± 167.0 at day 0 and 787.5 ± 164.7 at day 3 vs. 106.2 ± 15.6 ng/mL, control subjects, both P < 0.0001]; and [iii] urinary tract infection [464.2 ± 115.6 at day 0 and 545.6 ± 254.9 at day 3 vs. 106.2 ± 15.6 ng/mL, control subjects, P < 0.0001 and P < 0.05, respectively]). Remarkably, patients with sepsis due to pneumonia had the highest S100A12 levels (716.9 ± 167.0 and 787.5 ± 164.7 ng/mL at days 0 and 3, respectively). S100A12 levels were not correlated to either Acute Physiology and Chronic Health Evaluation II scores (r = -0.185, P = 0.19) or Sepsis-Related Organ Failure Assessment scores (r = -0.194, P = 0.17). Intravenous lipopolysaccharide injection in healthy humans elevated systemic S100A12 levels (peak levels at 3 h of 59.6 ± 22.0 vs. 12.4 ± 3.6 ng/mL; t = 0 h, P < 0.005). In contrast to S100A12, sRAGE concentrations did not change during severe sepsis or human endotoxemia. During peritonitis, S100A12 concentrations in abdominal fluid (12945.8 ± 4142.1 ng/mL) were more than 100-fold higher than in concurrently obtained plasma (121.2 ± 80.4 ng/mL, P < 0.0005), whereas sRAGE levels in abdominal fluid (148.8 ± 36.0 pg/mL) were lower than those in plasma (648.7 ± 145.6 pg/mL, P < 0.005) and did not increase. In conclusion, in severe sepsis, S100A12 is released systemically irrespective of the primary source of infection. During abdominal sepsis, S100A12 release likely predominantly occurs at the site of infection. Concentrations of its high-affinity sRAGE do not change during infection or human endotoxemia.
Collapse
|
9
|
Stephan F, Dienava-Verdoold I, Bulder I, Wouters D, Mast AE, Te Velthuis H, Aarden LA, Zeerleder S. Tissue factor pathway inhibitor is an inhibitor of factor VII-activating protease. J Thromb Haemost 2012; 10:1165-71. [PMID: 22449009 PMCID: PMC3574557 DOI: 10.1111/j.1538-7836.2012.04712.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Factor VII-activating protease (FSAP) is a serine protease that circulates in plasma in its inactive single-chain form and can be activated upon contact with dead cells. When activated by apoptotic cells, FSAP leads to the release of nucleosomes. The serpins C1-inhibitor and α(2) -antiplasmin are reported to be the major inhibitors of FSAP. However, regulation of FSAP activity by Kunitz-type inhibitors is not well studied. OBJECTIVES To compare the inhibition of FSAP activity and FSAP-induced nucleosome release from apoptotic cells by tissue factor pathway inhibitor (TFPI) with that of C1-inhibitor and α(2) -antiplasmin. METHODS Apoptotic cells were incubated with plasma or FSAP in presence of the inhibitor, and nucleosome release was analyzed with flow cytometry. Monoclonal antibodies against TFPI and altered forms of TFPI were used to investigate which domains of TFPI contribute to FSAP inhibition. RESULTS AND CONCLUSIONS We show that TFPI abrogates FSAP activity and nucleosome release from apoptotic cells. TFPI is a much more efficient inhibitor than C1-inhibitor or α(2) -antiplasmin. The active site of K2 is required for inhibition of FSAP. A direct binding interaction between FSAP and the C-terminal domain of TFPI is also required for efficient inhibition. Inhibition of FSAP-induced nucleosome release by recombinant TFPI might, in part, explain the anti-inflammatory effects of recombinant TFPI infusion observed in animal and human sepsis.
Collapse
Affiliation(s)
- F Stephan
- Departments of Immunopathology, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Stephan F, Hazelzet JA, Bulder I, Boermeester MA, van Till JO, van der Poll T, Wuillemin WA, Aarden LA, Zeerleder S. Activation of factor VII-activating protease in human inflammation: a sensor for cell death. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R110. [PMID: 21466697 PMCID: PMC3219388 DOI: 10.1186/cc10131] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/05/2011] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Cell death is a central event in the pathogenesis of sepsis and is reflected by circulating nucleosomes. Circulating nucleosomes were suggested to play an important role in inflammation and were demonstrated to correlate with severity and outcome in sepsis patients. We recently showed that plasma can release nucleosomes from late apoptotic cells. Factor VII-activating protease (FSAP) was identified to be the plasma serine protease responsible for nucleosome release. The aim of this study was to investigate FSAP activation in patients suffering from various inflammatory diseases of increasing severity. METHODS We developed ELISAs to measure FSAP-C1-inhibitor and FSAP-α2-antiplasmin complexes in plasma. FSAP-inhibitor complexes were measured in the plasma of 20 adult patients undergoing transhiatal esophagectomy, 32 adult patients suffering from severe sepsis and 8 from septic shock and 38 children suffering from meningococcal sepsis. RESULTS We demonstrate plasma FSAP to be activated upon contact with apoptotic and necrotic cells by an assay detecting complexes between FSAP and its target serpins α2-antiplasmin and C1-inhibitor, respectively. By means of that assay we demonstrate FSAP activation in post-surgery patients, patients suffering from severe sepsis, septic shock and meningococcal sepsis. Levels of FSAP-inhibitor complexes correlate with nucleosome levels and correlate with severity and mortality in these patients. CONCLUSIONS These results suggest FSAP activation to be a sensor for cell death in the circulation and that FSAP activation in sepsis might be involved in nucleosome release, thereby contributing to lethality.
Collapse
Affiliation(s)
- Femke Stephan
- Department of Immunopathology, Sanquin Research at CLB and Landsteiner Laboratory of AMC, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|