1
|
Zhao L, Feng L, Shan R, Huang Y, Shen L, Fan M, Wang Y. Nanoparticle-based approaches for treating restenosis after vascular injury. Front Pharmacol 2024; 15:1427651. [PMID: 39512830 PMCID: PMC11540800 DOI: 10.3389/fphar.2024.1427651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Percutaneous coronary intervention (PCI) is currently the main method for treating coronary artery stenosis, but the incidence of restenosis after PCI is relatively high. Restenosis, the narrowing of blood vessels by more than 50% of the normal diameter after PCI, severely compromises the therapeutic efficacy. Therefore, preventing postinterventional restenosis is important. Vascular restenosis is mainly associated with endothelial injury, the inflammatory response, the proliferation and migration of vascular smooth muscle cells (VSMCs), excessive deposition of extracellular matrix (ECM) and intimal hyperplasia (IH) and is usually prevented by administering antiproliferative or anti-inflammatory drugs through drug-eluting stents (DESs); however, DESs can lead to uncontrolled drug release. In addition, as extracorporeal implants, they can cause inflammation and thrombosis, resulting in suboptimal treatment. Therefore, there is an urgent need for a drug carrier with controlled drug release and high biocompatibility for in vivo drug delivery to prevent restenosis. The development of nanotechnology has enabled the preparation of nanoparticle drug carriers with low toxicity, high drug loading, high biocompatibility, precise targeting, controlled drug release and excellent intracellular delivery ability. This review summarizes the advantages of nanoparticle drug carriers for treating vascular restenosis, as well as how nanoparticles have improved targeting, slowed the release of therapeutic agents, and prolonged circulation in vivo to prevent vascular restenosis more effectively. The overall purpose of this review is to present an overview of nanoparticle therapy for vascular restenosis. We expect these findings to provide insight into nanoparticle-based therapeutic approaches for vascular restenosis.
Collapse
Affiliation(s)
- Liangfeng Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liuliu Feng
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Rong Shan
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Luo Z, Li X, Wang L, Shu C. Impact of the transforming growth factor-β pathway on vascular restenosis and its mechanism. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1252-1259. [PMID: 37875366 PMCID: PMC10930841 DOI: 10.11817/j.issn.1672-7347.2023.230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 10/26/2023]
Abstract
As a crucial regulatory molecule in the context of vascular stenosis, transforming growth factor-β (TGF-β), plays a pivotal role in its initiation and progression. TGF-β, a member of the TGF-β superfamily, can bind to the TGF-β receptor and transduce extracellular to intracellular signals through canonical Smad dependent or noncanonical signaling pathways to regulate cell growth, proliferation, differentiation, and apoptosis. Restenosis remains one of the most challenging problems in cardiac, cerebral, and peripheral vascular disease worldwide. The mechanisms for occurrence and development of restenosis are diverse and complex. The TGF-β pathway exhibits diversity across various cell types. Hence, clarifying the specific roles of TGF-β within different cell types and its precise impact on vascular stenosis provides strategies for future research in the field of stenosis.
Collapse
Affiliation(s)
- Zhongchen Luo
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Xin Li
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Lunchang Wang
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Chang Shu
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China.
| |
Collapse
|
3
|
Ren Y, Zhang H. Emerging role of exosomes in vascular diseases. Front Cardiovasc Med 2023; 10:1090909. [PMID: 36937921 PMCID: PMC10017462 DOI: 10.3389/fcvm.2023.1090909] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes are biological small spherical lipid bilayer vesicles secreted by most cells in the body. Their contents include nucleic acids, proteins, and lipids. Exosomes can transfer material molecules between cells and consequently have a variety of biological functions, participating in disease development while exhibiting potential value as biomarkers and therapeutics. Growing evidence suggests that exosomes are vital mediators of vascular remodeling. Endothelial cells (ECs), vascular smooth muscle cells (VSMCs), inflammatory cells, and adventitial fibroblasts (AFs) can communicate through exosomes; such communication is associated with inflammatory responses, cell migration and proliferation, and cell metabolism, leading to changes in vascular function and structure. Essential hypertension (EH), atherosclerosis (AS), and pulmonary arterial hypertension (PAH) are the most common vascular diseases and are associated with significant vascular remodeling. This paper reviews the latest research progress on the involvement of exosomes in vascular remodeling through intercellular information exchange and provides new ideas for understanding related diseases.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Phillips PL, Wu XJ, Reyes L. Differential affinity chromatography reveals a link between Porphyromonas gingivalis-induced changes in vascular smooth muscle cell differentiation and the type 9 secretion system. Front Cell Infect Microbiol 2022; 12:983247. [PMID: 36483452 PMCID: PMC9722745 DOI: 10.3389/fcimb.2022.983247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Porphyromonas gingivalis is implicated in adverse pregnancy outcome. We previously demonstrated that intrauterine infection with various strains of P. gingivalis impairs the physiologic remodeling of the uterine spiral arteries (IRSA) during pregnancy, which underlies the major obstetrical syndromes. Women diagnosed with IRSA also have a greater risk for premature cardiovascular disease in later life. The dysregulated plasticity of vascular smooth muscle cells (VSMCs) is present in both IRSA and premature cardiovascular events. We hypothesized that VSMCs could serve as a bait to identify P. gingivalis proteins associated with dysregulated VSMC plasticity as seen in IRSA. We first confirmed that dams with P. gingivalis A7UF-induced IRSA also show perturbed aortic smooth muscle cell (AoSMC) plasticity along with the P. gingivalis colonization of the tissue. The in vitro infection of AoSMCs with IRSA-inducing strain A7UF also perturbed AoSMC plasticity that did not occur with infection by non-IRSA-inducing strain W83. Far-Western blotting with strain W83 and strain A7UF showed a differential binding pattern to the rat aorta and primary rat AoSMCs. The affinity chromatography/pull-down assay combined with mass spectrometry was used to identify P. gingivalis/AoSMC protein interactions specific to IRSA. Membrane proteins with a high binding affinity to AoSMCs were identified in the A7UF pull-down but not in the W83 pull-down, most of which were the outer membrane components of the Type 9 secretion system (T9SS) and T9SS cargo proteins. Additional T9SS cargo proteins were detected in greater abundance in the A7UF pull-down eluate compared to W83. None of the proteins enriched in the W83 eluate were T9SS components nor T9SS cargo proteins despite their presence in the prey preparations used in the pull-down assay. In summary, differential affinity chromatography established that the components of IRSA-inducing P. gingivalis T9SS as well as its cargo directly interact with AoSMCs, which may play a role in the infection-induced dysregulation of VSMC plasticity. The possibility that the T9SS is involved in the microbial manipulation of host cell events important for cell differentiation and tissue remodeling would constitute a new virulence function for this system.
Collapse
Affiliation(s)
- Priscilla L. Phillips
- Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, United States
| | - Xiao-jun Wu
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, Madison, WI, United States,*Correspondence: Leticia Reyes,
| |
Collapse
|
5
|
Si Y, Liu F, Wang D, Fang C, Tang X, Guo B, Shi Z, Dong Z, Guo D, Yue J, Fu W. Exosomal Transfer of miR-185 Is Controlled by hnRNPA2B1 and Impairs Re-endothelialization After Vascular Injury. Front Cell Dev Biol 2021; 9:619444. [PMID: 33959603 PMCID: PMC8093826 DOI: 10.3389/fcell.2021.619444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Dysfunction of endothelial cells (ECs) contributes to restenosis after vascular reconstruction for patients with coronary artery disease (CAD). The intercellular communication between ECs and vascular smooth muscle cells (VSMCs) might be critical in the development of restenosis and can be mediated by exosomes carrying functional microRNAs. miR-185 is reported to be associated with atherosclerosis, whether it plays a similar role in restenosis is unknown. In this study, we observed an elevated level of extracellular miR-185 in platelet-derived growth factor (PDGF)-stimulated VSMCs. The medium from PDGF-stimulated VSMCs promoted miR-185 expression in rat aortic ECs and inhibited EC angiogenesis. PDGF-stimulated VSMCs transferred miR-185 into ECs via exosomes. Furthermore, we found that the CXCL12 gene, a target of miR-185, is essential for the angiogenic potential of ECs. Exosomes derived from miR-185 mimic transfected VSMCs attenuated re-endothelialization after vascular injury. Moreover, we show that exosome-mediated miR-185 transfer is modulated by hnRNPA2B1. We also observed that hnRNPA2B1 is up-regulated during neointima formation and hnRNPA2B1 inhibition accelerates re-endothelialization and attenuates neointima formation following carotid injury. Taken together, our results indicate that exosomal miR-185 transfer from VSMCs to ECs is controlled by hnRNPA2B1 and impairs re-endothelialization after vascular injury.
Collapse
Affiliation(s)
- Yi Si
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Fei Liu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Dongqing Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Fang
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Baolei Guo
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jianing Yue
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
6
|
Levkovich TV, Pronko TP. ROLE OF THE TRANSFORMING GROWTH FACTOR β1 IN THE GENESIS OF ARTERIAL HYPERTENSION AND ITS COMPLICATIONS. JOURNAL OF THE GRODNO STATE MEDICAL UNIVERSITY 2021. [DOI: 10.25298/2221-8785-2021-19-1-16-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor beta 1 (TGFβ1) is an actively studied cytokine with rather contradictory effects. The article systematizes and summarizes the scientific data on TGFβ1 and its role in the development and progression of arterial hypertension, with an emphasis on arterial stiffness.
Collapse
|
7
|
Bujak K, Lejawa M, Gąsior M, Osadnik T. The CTGF gene -945 G/C polymorphism is associated with target lesion revascularization for in-stent restenosis. Exp Mol Pathol 2020; 118:104598. [PMID: 33358742 DOI: 10.1016/j.yexmp.2020.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Previous studies have shown that transforming growth factor β (TGF-β) and vascular endothelial growth factor A (VEGF-A) pathways are involved in the in-stent restenosis (ISR) process. The present study aimed to assess the relationship between single-nucleotide polymorphisms (SNPs) in genes encoding downstream proteins of TGF-β and VEGF-A pathways and the risk of target lesion revascularization (TLR) for in-stent restenosis. METHODS A total of 657 patients (with 781 treated lesions) who underwent percutaneous coronary intervention (PCI) with stent implantation at our center between 2007 and 2012 and completed a 4-year follow-up for clinically-driven TLR, were included. SNPs in CTGF (rs6918698), TGFBR2 (rs2228048), SMAD3 (rs17293632), KDR (rs2071559), CCL2 (rs1024610) were genotyped using TaqMan assay. RESULTS Major allele carriers of CTGF gene -945 G/C polymorphism (rs6918698) were significantly less likely to underwent clinically-driven TLR during follow-up than minor allele carriers. After adjustment for clinical, angiographic, and procedural covariates, CTGF polymorphism was significantly associated with TLR, and minor allele (C) carriers had nearly two times higher risk of developing ISR requiring TLR (HR of 1.93, 95%CI 1.15-3.24) compared to patients with major (GG) genotype. No significant relationship was found between other analyzed polymorphisms and cumulative incidence of TLR at 4-years. CONCLUSIONS Our results suggest that functional -945 G/C polymorphism in the gene encoding connective tissue growth factor is associated with the need for TLR in patients who underwent PCI for stable coronary artery disease.
Collapse
Affiliation(s)
- Kamil Bujak
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland.
| | - Mateusz Lejawa
- Kardio-Med Silesia, Zabrze, Poland; Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland; 2nd Department of Cardiology and Angiology, Silesian Center for Heart Diseases, Zabrze, Poland
| |
Collapse
|
8
|
Abstract
Revascularization surgeries such as coronary artery bypass grafting (CABG) are sometimes necessary to manage coronary heart disease (CHD). However, more than half of these surgeries fail within 10 years due to the development of intimal hyperplasia (IH) among others. The cytokine transforming growth factor-beta (TGFß) and its signaling components have been found to be upregulated in diseased or injured vessels, and to promote IH after grafting. Interventions that globally inhibit TGFß in CABG have yielded contrasting outcomes in in vitro and in vivo studies including clinical trials. With advances in molecular biology, it becomes clear that TGFß exhibits both protective and damaging roles, and only specific components such as some Smad-dependent TGFß signaling mediate vascular IH. The activin receptor-like kinase (ALK)-mediated Smad-dependent TGFß signaling pathways have been found to be activated in human vascular smooth muscle cells (VSMCs) following injury and in hyperplastic preimplantation vein grafts. It appears that focused targeting of TGFß pathway constitutes a promising therapeutic target to improve the outcome of CABG. This study dissects the role of TGFß pathway in CABG failure, with particular emphasis on the therapeutic potentials of specific targeting of Smad-dependent and ALK-mediated signaling.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- Department of Veterinary Pharmacology and Toxicology, 58989Ahmadu Bello University, Zaria, Nigeria.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Wei X, Fang Z, Sheng J, Wang Y, Lu P. Honokiol-mesoporous Silica Nanoparticles Inhibit Vascular Restenosis via the Suppression of TGF-β Signaling Pathway. Int J Nanomedicine 2020; 15:5239-5252. [PMID: 32801689 PMCID: PMC7399453 DOI: 10.2147/ijn.s250911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction The main pathological mechanism of restenosis after percutaneous coronary intervention (PCI) is intimal hyperplasia, which is mainly caused by proliferation and migration of vascular smooth muscle cells (VSMCs). Our previous study found that honokiol (HNK), a small-molecule polyphenol, can inhibit neointimal hyperplasia after balloon injury, but its specific mechanism is still unclear. Moreover, poor water solubility as well as low bioavailability of honokiol has limited its practical use. Methods We used mesoporous silica nanoparticles (MSNPs) as a standard substance to encapsulate HNK and then assemble into honokiol-mesoporous silica nanoparticles, and we investigated the effect of these nanoparticles on the process of restenosis after common carotid artery injury in rats. Results We report a promising delivery system that loads HNK into MSNPs and finally assembles it into a nanocomposite particle. These HNK-MSNPs not merely inhibited proliferation and migration of VSMCs by reducing phosphorylation of Smad3, but also showed a higher suppression of intimal thickening than the free-honokiol-treated group in a rat model of balloon injury. Conclusion To sum up, this drug delivery system supplies a potent nano-platform for improving the biological effects of HNK and provides a promising strategy for preventing vascular restenosis.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Zhiwei Fang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jing Sheng
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital of Yangpu District, Shanghai 200438, People's Republic of China
| | - Ping Lu
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
10
|
Röhl S, Suur BE, Lengquist M, Seime T, Caidahl K, Hedin U, Arner A, Matic L, Razuvaev A. Lack of PCSK6 Increases Flow-Mediated Outward Arterial Remodeling in Mice. Cells 2020; 9:cells9041009. [PMID: 32325687 PMCID: PMC7225991 DOI: 10.3390/cells9041009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Proprotein convertases (PCSKs) process matrix metalloproteases and cytokines, but their function in the vasculature is largely unknown. Previously, we demonstrated upregulation of PCSK6 in atherosclerotic plaques from symptomatic patients, localization to smooth muscle cells (SMCs) in the fibrous cap and positive correlations with inflammation, extracellular matrix remodeling and cytokines. Here, we hypothesize that PCSK6 could be involved in flow-mediated vascular remodeling and aim to evaluate its role in the physiology of this process using knockout mice. Pcsk6−/− and wild type mice were randomized into control and increased blood flow groups and induced in the right common carotid artery (CCA) by ligation of the left CCA. The animals underwent repeated ultrasound biomicroscopy (UBM) examinations followed by euthanization with subsequent evaluation using wire myography, transmission electron microscopy or histology. The Pcsk6−/− mice displayed a flow-mediated increase in lumen circumference over time, assessed with UBM. Wire myography revealed differences in the flow-mediated remodeling response detected as an increase in lumen circumference at optimal stretch with concomitant reduction in active tension. Furthermore, a flow-mediated reduction in expression of SMC contractile markers SMA, MYH11 and LMOD1 was seen in the Pcsk6−/− media. Absence of PCSK6 increases outward remodeling and reduces medial contractility in response to increased blood flow.
Collapse
Affiliation(s)
- Samuel Röhl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Bianca E. Suur
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Till Seime
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Anders Arner
- Department of Clinical Sciences Lund, Thoracic Surgery, Lund University, 221 84 Lund, Sweden;
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
- Correspondence: (L.M.); (A.R.); Tel.: +46-(0)-73-962-42-79 (L.M.); +46-(0)-76-238-44-75 (A.R.)
| | - Anton Razuvaev
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
- Correspondence: (L.M.); (A.R.); Tel.: +46-(0)-73-962-42-79 (L.M.); +46-(0)-76-238-44-75 (A.R.)
| |
Collapse
|
11
|
Röhl S, Rykaczewska U, Seime T, Suur BE, Diez MG, Gådin JR, Gainullina A, Sergushichev AA, Wirka R, Lengquist M, Kronqvist M, Bergman O, Odeberg J, Lindeman JHN, Quertermous T, Hamsten A, Eriksson P, Hedin U, Razuvaev A, Matic LP. Transcriptomic profiling of experimental arterial injury reveals new mechanisms and temporal dynamics in vascular healing response. JVS Vasc Sci 2020; 1:13-27. [PMID: 34617037 PMCID: PMC8489224 DOI: 10.1016/j.jvssci.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Objective Endovascular interventions cause arterial injury and induce a healing response to restore vessel wall homeostasis. Complications of defective or excessive healing are common and result in increased morbidity and repeated interventions. Experimental models of intimal hyperplasia are vital for understanding the vascular healing mechanisms and resolving the clinical problems of restenosis, vein graft stenosis, and dialysis access failure. Our aim was to systematically investigate the transcriptional, histologic, and systemic reaction to vascular injury during a prolonged time. Methods Balloon injury of the left common carotid artery was performed in male rats. Animals (n = 69) were euthanized before or after injury, either directly or after 2 hours, 20 hours, 2 days, 5 days, 2 weeks, 6 weeks, and 12 weeks. Both injured and contralateral arteries were subjected to microarray profiling, followed by bioinformatic exploration, histologic characterization of the biopsy specimens, and plasma lipid analyses. Results Immune activation and coagulation were key mechanisms in the early response, followed by cytokine release, tissue remodeling, and smooth muscle cell modulation several days after injury, with reacquisition of contractile features in later phases. Novel pathways related to clonal expansion, inflammatory transformation, and chondro-osteogenic differentiation were identified and immunolocalized to neointimal smooth muscle cells. Analysis of uninjured arteries revealed a systemic component of the reaction after local injury, underlined by altered endothelial signaling, changes in overall tissue bioenergy metabolism, and plasma high-density lipoprotein levels. Conclusions We demonstrate that vascular injury induces dynamic transcriptional landscape and metabolic changes identifiable as early, intermediate, and late response phases, reaching homeostasis after several weeks. This study provides a temporal “roadmap” of vascular healing as a publicly available resource for the research community. Endovascular intervention causes an injury to the arterial wall that subsequently induces a healing response to restore the vessel wall homeostasis. Complications after vascular interventions related to defective or excessive healing response, such as thrombosis or restenosis, are common and result in increased morbidity, suffering of the patient, need for repeated interventions, and possibly death. Thus, there is a need for better understanding of the underlying molecular mechanisms during vascular injury and healing response to identify and to assess the risk of complications in patients. Using an experimental model of vascular injury, this study demonstrates the full landscape of dynamic transcriptional changes in the resolution of vascular injury, accompanied also by systemic variations in plasma lipid levels and reaching homeostasis several weeks after injury. These results can guide the development of new strategies and molecular targets for modulation of the intimal response on endovascular interventions.
Collapse
Affiliation(s)
- Samuel Röhl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Urszula Rykaczewska
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Till Seime
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Bianca E Suur
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | | | - Jesper R Gådin
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | | | | | - Robert Wirka
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Otto Bergman
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Jacob Odeberg
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Science for Life Laboratory, Sweden and the Department of Haematology, Coagulation Unit, Karolinska University Hospital, Stockholm, Sweden
| | | | - Thomas Quertermous
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Anders Hamsten
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Per Eriksson
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Anton Razuvaev
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | | |
Collapse
|
12
|
Zhang J, McIntosh BE, Wang B, Brown ME, Probasco MD, Webster S, Duffin B, Zhou Y, Guo LW, Burlingham WJ, Kent C, Ferris M, Thomson JA. A Human Pluripotent Stem Cell-Based Screen for Smooth Muscle Cell Differentiation and Maturation Identifies Inhibitors of Intimal Hyperplasia. Stem Cell Reports 2019; 12:1269-1281. [PMID: 31080110 PMCID: PMC6565755 DOI: 10.1016/j.stemcr.2019.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/04/2023] Open
Abstract
Contractile to synthetic phenotypic switching of smooth muscle cells (SMCs) contributes to stenosis in vascular disease and vascular transplants. To generate more contractile SMCs, we performed a high-throughput differentiation screen using a MYH11-NLuc-tdTomato human embryonic stem cell reporter cell line. We identified RepSox as a factor that promotes differentiation of MYH11-positive cells by promoting NOTCH signaling. RepSox induces SMCs to exhibit a more contractile phenotype than SMCs generated using PDGF-BB and TGF-β1, two factors previously used for SMC differentiation but which also cause intimal hyperplasia. In addition, RepSox inhibited intimal hyperplasia caused by contractile to synthetic phenotypic switching of SMCs in a rat balloon injury model. Thus, in addition to providing more contractile SMCs that could prove useful for constructing artificial blood vessels, this study suggests a strategy for identifying drugs for inhibiting intimal hyperplasia that act by driving contractile differentiation rather than inhibiting proliferation non-specifically. Fully defined differentiation of contractile (95% MYH11+) smooth muscle cells (SMCs) RepSox-NOTCH signal promotes SMC differentiation and inhibits intimal hyperplasia RepSox-SMCs could reduce the risk of intimal hyperplasia compared with PDGF/TGF-SMCs Applying SMC differentiation for high-throughput screening of anti-restenosis drugs
Collapse
Affiliation(s)
- Jue Zhang
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA.
| | - Brian E McIntosh
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Bowen Wang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew E Brown
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA; Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mitchell D Probasco
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Sarah Webster
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Bret Duffin
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Ying Zhou
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Craig Kent
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Ferris
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Computer Sciences, Industrial & Systems Engineering, Mathematics, Optimization, Wisconsin Institute for Discovery, Madison, WI 53715, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93117, USA.
| |
Collapse
|
13
|
Yang S, Mi X, Chen Y, Feng C, Hou Z, Hui R, Zhang W. MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. J Cell Mol Med 2018. [PMID: 29512862 PMCID: PMC5908109 DOI: 10.1111/jcmm.13567] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial senescence contributes to atherosclerosis and coronary artery disease (CAD), but the mechanisms are yet to be clarified. We identified that microRNA‐216a (miR‐216a) significantly increased in senescent endothelial cells. The replicative senescence model of human umbilical vein endothelial cells (HUVECs) was established to explore the role of miR‐216a in endothelial ageing and dysfunction. Luciferase assay indicated that Smad3 was a direct target of miR‐216a. Stable expression of miR‐216a induced a premature senescence‐like phenotype in HUVECs with an impairment in proliferation and migration and led to an increased adhesion to monocytes by inhibiting Smad3 expression and thereafter modulating the degradation of NF‐κB inhibitor alpha (IκBα) and activation of adhesion molecules. Conversely, inhibition of endogenous miR‐216a in senescent HUVECs rescued Smad3 and IκBα expression and inhibited monocytes attachment. Plasma miR‐216a was significantly higher in old CAD patients (>50 years) and associated with increased 31% risk for CAD (odds ratio 1.31, 95% confidence interval 1.03‐1.66; P = .03) compared with the matched healthy controls (>50 years). Taken together, our data suggested that miR‐216a promotes endothelial senescence and inflammation as an endogenous inhibitor of Smad3/IκBα pathway, which might serve as a novel target for ageing‐related atherosclerotic diseases.
Collapse
Affiliation(s)
- Shujun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Xuenan Mi
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Congrui Feng
- Beijing Institute for Brain Disorders Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Zhihui Hou
- Department of Radiology, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College& Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China.,Beijing Institute for Brain Disorders Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Wang Y, Zhao D, Sheng J, Lu P. Local honokiol application inhibits intimal thickening in rabbits following carotid artery balloon injury. Mol Med Rep 2017; 17:1683-1689. [PMID: 29257208 PMCID: PMC5780111 DOI: 10.3892/mmr.2017.8076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 07/24/2017] [Indexed: 01/10/2023] Open
Abstract
Honokiol is a natural bioactive product with anti-tumor, anti-inflammatory, anti-oxidative, anti-angiogenic and neuroprotective properties. The present study aimed to investigate the effects of honokiol treatment on intimal thickening following vascular balloon injury. The current study determined that perivascular honokiol application reduced intimal thickening in rabbits 14 days after carotid artery injury, it may inhibit vascular smooth muscle cell (VSMCs) proliferation and reduce collagen deposition in local arteries. The findings of the presents study also suggested that honikiol may increase the mRNA expression levels of matrix metalloproteinase‑1 (MMP‑1), MMP‑2 and MMP‑9 and decrease tissue inhibitor of metalloproteinase‑1 (TIMP‑1) mRNA expression in the rabbit arteries. Additionally, perivascular honokiol application inhibited intimal thickening, possibly via inhibition of the phosphorylation of SMAD family member 2/3.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jing Sheng
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ping Lu
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
15
|
Li YQ, Wang JY, Qian ZQ, Li YL, Li WN, Gao Y, Yang DL. Osthole inhibits intimal hyperplasia by regulating the NF-κB and TGF-β1/Smad2 signalling pathways in the rat carotid artery after balloon injury. Eur J Pharmacol 2017. [PMID: 28648404 DOI: 10.1016/j.ejphar.2017.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osthole (7-methoxy-8-isopentenoxy-coumarin), a compound extracted from Cnidiummonnieri (L.) Cusson seeds, has been found to exhibit potent therapeutic effects in cancer due to its ability to inhibit inflammation and cell proliferation. However, its effects on arterial wall hypertrophy-related diseases remain unclear. Therefore, in this study, we aimed to investigate the effects of Osthole on intimal hyperplasia in a rat model of carotid artery balloon injury. We established the balloon-induced carotid artery injury rat model in male Sprague-Dawley rats, after which we administered Osthole (20mg/kg/day or 40mg/kg/day) or volume-matched normal saline orally by gavage for 14 consecutive days. Intimal hyperplasia and the degree of vascular smooth muscle cell proliferation were then evaluated by histopathological examination of the changes in the carotid artery, as well as by examination of proliferating cell nuclear antigen (PCNA) expression. Tumour necrosis factor-ɑ (TNF-α), interleukin-1β (IL-1β), transforming growth factor-beta (TGF-β1) and PCNA mRNA expression levels were examined by real-time RT-PCR, while nuclear factor-κB (NF-κB (p65)), IκB-α, TGF-β1 and phospho-Smad2 (p-Smad2) protein expression levels were analysed by immunohistochemistry or western blot analysis. We found that Osthole significantly attenuated neointimal thickness and decreased the elevations in PCNA protein expression induced by balloon injury. Moreover, Osthole down-regulated the pro-inflammatory factors TNF-α and IL-1β and NF-κB (p65), whose expression had been upregulated after balloon injury. Moreover, IκB-α protein expression levels increased following Osthole treatment. In addition, the elevations in TGF-β1 and p-Smad2 protein expression induced by balloon injury were both significantly attenuated by Osthole administration. We concluded that Osthole significantly inhibited neointimal hyperplasia in balloon-induced rat carotid artery injury and that the mechanism by which this occurs may involve NF-κB, IL-1β and TNF-ɑ down-regulation, which alleviates the inflammatory response, and TGF-β1/Smad2 signalling pathway inhibition.
Collapse
Affiliation(s)
- Yi-Qi Li
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China; Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Jun-Yi Wang
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Zhi-Qiang Qian
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Ye-Li Li
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Wen-Na Li
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Yang Gao
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Dan-Li Yang
- Joint International Committee of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of the Ministry of Education; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, China.
| |
Collapse
|
16
|
Chen G, Shi X, Wang B, Xie R, Guo LW, Gong S, Kent KC. Unimolecular Micelle-Based Hybrid System for Perivascular Drug Delivery Produces Long-Term Efficacy for Neointima Attenuation in Rats. Biomacromolecules 2017; 18:2205-2213. [PMID: 28613846 DOI: 10.1021/acs.biomac.7b00617] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At present, there are no clinical options for preventing neointima-caused (re)stenosis after open surgery such as bypass surgery for treating flow-limiting vascular disease. Perivascular drug delivery is a promising strategy, but in translational research, it remains a major challenge to achieve long-term (e.g., > 3 months) anti(re)stenotic efficacy. In this study, we engineered a unique drug delivery system consisting of durable unimolecular micelles, formed by single multiarm star amphiphilic block copolymers with only covalent bonds, and a thermosensitive hydrogel formed by a poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) triblock copolymer (abbreviated as triblock gel) that is stable for about 4 weeks in vitro. The drug-containing unimolecular micelles (UMs) suspended in Triblock gel were able to sustain rapamycin release for over 4 months. Remarkably, even 3 months after perivascular application of the rapamycin-loaded micelles in Triblock gel in the rat model, the intimal/medial area ratio (a restenosis measure) was still 80% inhibited compared to the control treated with empty micelle/gel (no drug). This could not be achieved by applying rapamycin in Triblock gel alone, which reduced the intimal/medial ratio only by 27%. In summary, we created a new UM/Triblock gel hybrid system for perivascular drug delivery, which produced a rare feat of 3-month restenosis inhibition in animal tests. This system exhibits a real potential for further translation into an anti(re)stenotic application with open surgery.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xudong Shi
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Bowen Wang
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Ruosen Xie
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Lian-Wang Guo
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Shaoqin Gong
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - K Craig Kent
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Zhang H, Ren KF, Chang H, Wang JL, Ji J. Surface-mediated transfection of a pDNA vector encoding short hairpin RNA to downregulate TGF-β1 expression for the prevention of in-stent restenosis. Biomaterials 2017; 116:95-105. [DOI: 10.1016/j.biomaterials.2016.11.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/28/2016] [Accepted: 11/24/2016] [Indexed: 01/14/2023]
|
18
|
Wang ZF, Wang NP, Harmouche S, Philip T, Pang XF, Bai F, Zhao ZQ. Postconditioning attenuates coronary perivascular and interstitial fibrosis through modulating angiotensin II receptors and angiotensin-converting enzyme 2 after myocardial infarction. J Surg Res 2016; 211:178-190. [PMID: 28501115 DOI: 10.1016/j.jss.2016.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/28/2016] [Accepted: 11/28/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Postconditioning (Postcon) is known to reduce infarct size. This study tested the hypothesis that Postcon attenuates the perivascular and interstitial fibrosis after myocardial infarction through modulating angiotensin II-activated fibrotic cascade. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to 45-min coronary occlusion followed by 1 and 6 wk of reperfusion. Postcon was applied at the onset of reperfusion with four cycles of 10/10-s reperfusion-ischemia at the onset of reperfusion. Preconditioning (Precon) with two cycles of 5/5-min ischemia-reperfusion was applied before coronary occlusion. RESULTS Postcon reduced angiotensin-converting enzyme protein and expression in the perivascular area and intermyocardium, coincident with the less-expressed angiotensin II receptor, type 1, enhanced angiotensin II receptor, type 2, and angiotensin converting enzyme 2. Postcon lowered the monocyte chemoattractant protein-1 and inhibited the populations of interstitial macrophages (60 ± 12 versus 84 ± 9.5 number per high-powered field [HPF] in control, P < 0.05). Along with these modulations, Postcon also downregulated transforming growth factor β1 protein and inhibited proliferation of α-smooth muscle actin expressing myofibroblasts (41 ± 11 versus 79 ± 8.2 number per HPF in control, P < 0.05), consistent with downregulated phospho-Smad2 and phospho-Smad3. Furthermore, the synthesis of collagen I and III was attenuated, and the perivascular-interstitial fibrosis was inhibited by Postcon as demonstrated by reduced perivascular fibrosis ratio (0.6 ± 0.6 versus 1.6 ± 0.5 per HPF in control, P < 0.05) and smaller collagen-rich area (16 ± 4.7 versus 34 ± 9.2% per HPF in control, P < 0.05). Precon conferred a comparable level of protection as Postcon did in all parameters measured, suggesting protection trigged by this endogenous stimulation can be achieved when it was applied either before ischemia or after reperfusion. CONCLUSIONS These results suggest that Postcon could be selected as an adjunctive intervention with other existing therapeutic drugs to treat the fibrosis-derived heart failure patients after myocardial infarction.
Collapse
Affiliation(s)
- Zhang-Feng Wang
- Department of Otolaryngology, First Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, P. R. China
| | - Ning-Ping Wang
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, Georgia
| | - Suzanna Harmouche
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, Georgia
| | - Tiji Philip
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, Georgia
| | - Xue-Fen Pang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Feng Bai
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Zhi-Qing Zhao
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, Georgia; Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China.
| |
Collapse
|
19
|
Bodewes TCF, Johnson JM, Auster M, Huynh C, Muralidharan S, Contreras M, LoGerfo FW, Pradhan-Nabzdyk L. Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model. FASEB J 2016; 31:109-119. [PMID: 27671229 DOI: 10.1096/fj.201600501r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
In an effort to inhibit the response to vascular injury that leads to intimal hyperplasia, this study investigated the in vivo efficacy of intraluminal delivery of thrombospondin-2 (TSP-2) small interfering RNA (siRNA). Common carotid artery (CCA) balloon angioplasty injury was performed in rats. Immediately after denudation, CCA was transfected intraluminally (15 min) with one of the following: polyethylenimine (PEI)+TSP-2 siRNA, saline, PEI only, or PEI+control siRNA. CCA was analyzed at 24 h or 21 d by using quantitative real-time PCR and immunohistochemistry. TSP-2 gene and protein expression were significantly up-regulated after endothelial denudation at 24 h and 21 d compared with contralateral untreated, nondenuded CCA. Treatment with PEI+TSP-2 siRNA significantly suppressed TSP-2 gene expression (3.1-fold) at 24 h and TSP-2 protein expression, cell proliferation, and collagen deposition up to 21 d. These changes could be attributed to changes in TGF-β and matrix metalloproteinase-9, the downstream effectors of TSP-2. TSP-2 knockdown induced anti-inflammatory M2 macrophage polarization at 21 d; however, it did not significantly affect intima/media ratios. In summary, these data demonstrate effective siRNA transfection of the injured arterial wall and provide a clinically effective and translationally applicable therapeutic strategy that involves nonviral siRNA delivery to ameliorate the response to vascular injury.-Bodewes, T. C. F., Johnson, J. M., Auster, M., Huynh, C., Muralidharan, S., Contreras, M., LoGerfo, F. W., Pradhan-Nabzdyk, L. Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model.
Collapse
Affiliation(s)
- Thomas C F Bodewes
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands; and
| | - Joel M Johnson
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Auster
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Cindy Huynh
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Sriya Muralidharan
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mauricio Contreras
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank W LoGerfo
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
20
|
Derkacz A, Protasiewicz M, Rola P, Podgorska K, Szymczyszyn A, Gutherc R, Poręba R, Doroszko A. Effects of intravascular low-level laser therapy during coronary intervention on selected growth factors levels. Photomed Laser Surg 2016; 32:582-7. [PMID: 25302462 DOI: 10.1089/pho.2013.3700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the effect of intravascular low-level laser therapy (LLLT) on selected growth factor levels in subjects undergoing percutaneous coronary interventions (PCI). BACKGROUND DATA Restenosis remains the main problem with the long-term efficacy of PCI, and growth factors are postulated to play a crucial role in the restenosis cascade. MATERIALS AND METHODS In a randomized prospective study, an 808 nm LLLT (100 mW/cm2, continuous wave laser, 9 J/cm2, illuminated area 1.6-2.5 cm2) was delivered intracoronarily to patients during PCI. Fifty-two patients underwent irradiation with laser light, and 49 constituted the control group. In all individuals, serum levels of insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and fibroblast growth factor-2 (FGF-2) were measured before angioplasty, then 6 and 12 h and 1 month after the procedure. In all patients, a control angiography was performed 6 months later. RESULTS There were no significant differences in IGF-1 and VEGF levels between the groups. While evaluating FGF-2, we observed its significantly lower levels in the irradiated patients during each examination. There was a significant increase in TGF-β1 level in control group after 12 h of observation. In the irradiated individuals, control angiography revealed smaller late lumen loss and smaller late lumen loss index as compared with the control group. The restenosis rate was 15.0% in the treated group, and 32.4% in the control group, respectively. CONCLUSIONS LLLT decreases levels of TGF-β1 and FGF-2 in patients undergoing coronary intervention, which may explain smaller neointima formation.
Collapse
Affiliation(s)
- Arkadiusz Derkacz
- 1 Department of Internal Medicine and Hypertension, Wroclaw Medical University , Wroclaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yu Q, Shi X, Greer T, Lietz CB, Kent KC, Li L. Evaluation and Application of Dimethylated Amino Acids as Isobaric Tags for Quantitative Proteomics of the TGF-β/Smad3 Signaling Pathway. J Proteome Res 2016; 15:3420-31. [PMID: 27457343 DOI: 10.1021/acs.jproteome.6b00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isobaric labeling has become a widespread tool for quantitative proteomic studies. Here, we report the development and evaluation of several dimethylated amino acids as novel isobaric tags for quantitative proteomics. Four-plex dimethylated alanine (DiAla), valine (DiVal), and leucine (DiLeu) have been synthesized, sharing common features of peptide tagging and reporter ion production. DiAla and DiLeu are shown to achieve complete labeling. These two tags' impacts on peptide fragmentation and quantitation are further evaluated using HEK293 cell lysate. DiAla labeling generates more abundant backbone fragmentation whereas DiLeu labeling produces more intense reporter ions. Nonetheless, both tags enable accurate quantitative analysis of HEK293 cell proteomes. DiAla and DiLeu tags are then applied to study the TGF-β/Smad3 pathway with four differentially treated mouse vascular smooth muscle (MOVAS) cells. Our MS data reveal proteome-wide changes of AdSmad3 as compared to the GFP control, consistent with previous findings of causing smooth muscle cell (SMC) dedifferentiation.1 Additionally, the other two novel mutations on the hub protein Smad3, Y226A, and D408H, show compromised TGF-β/Smad3-dependent gene transcription and reversed phenotypic switch. These results are further corroborated with Western blotting and demonstrate that the novel DiAla and DiLeu isobaric tagging reagents provide useful tools for multiplex quantitative proteomics.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Tyler Greer
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Christopher B Lietz
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - K Craig Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Shi X, Guo LW, Seedial S, Takayama T, Wang B, Zhang M, Franco SR, Si Y, Chaudhary MA, Liu B, Kent KC. Local CXCR4 Upregulation in the Injured Arterial Wall Contributes to Intimal Hyperplasia. Stem Cells 2016; 34:2744-2757. [PMID: 27340942 PMCID: PMC5113668 DOI: 10.1002/stem.2442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/02/2016] [Accepted: 05/28/2016] [Indexed: 01/06/2023]
Abstract
CXCR4 is a stem/progenitor cell surface receptor specific for the cytokine stromal cell‐derived factor‐1 (SDF‐1α). There is evidence that bone marrow‐derived CXCR4‐expressing cells contribute to intimal hyperplasia (IH) by homing to the arterial subintima which is enriched with SDF‐1α. We have previously found that transforming growth factor‐β (TGFβ) and its signaling protein Smad3 are both upregulated following arterial injury and that TGFβ/Smad3 enhances the expression of CXCR4 in vascular smooth muscle cells (SMCs). It remains unknown, however, whether locally induced CXCR4 expression in SM22 expressing vascular SMCs plays a role in neointima formation. Here, we investigated whether elevated TGFβ/Smad3 signaling leads to the induction of CXCR4 expression locally in the injured arterial wall, thereby contributing to IH. We found prominent CXCR4 upregulation (mRNA, 60‐fold; protein, 4‐fold) in TGFβ‐treated, Smad3‐expressing SMCs. Chromatin immunoprecipitation assays revealed a specific association of the transcription factor Smad3 with the CXCR4 promoter. TGFβ/Smad3 treatment also markedly enhanced SDF‐1α‐induced ERK1/2 phosphorylation as well as SMC migration in a CXCR4‐dependent manner. Adenoviral expression of Smad3 in balloon‐injured rat carotid arteries increased local CXCR4 levels and enhanced IH, whereas SMC‐specific depletion of CXCR4 in the wire‐injured mouse femoral arterial wall produced a 60% reduction in IH. Our results provide the first evidence that upregulation of TGFβ/Smad3 in injured arteries induces local SMC CXCR4 expression and cell migration, and consequently IH. The Smad3/CXCR4 pathway may provide a potential target for therapeutic interventions to prevent restenosis. Stem Cells2016;34:2744–2757
Collapse
Affiliation(s)
- Xudong Shi
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Stephen Seedial
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Toshio Takayama
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bowen Wang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mengxue Zhang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sarah R Franco
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yi Si
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mirnal A Chaudhary
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bo Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - K Craig Kent
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Aortic Remodelling Is Improved by 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside Involving the Smad3 Pathway in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:789027. [PMID: 26693246 PMCID: PMC4677031 DOI: 10.1155/2015/789027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 12/04/2022]
Abstract
Hypertension is a common health problem that substantially increases the risk of cardiovascular disease. The condition increases blood pressure, which causes alterations in vascular structure and leads to the development of vascular pathologies. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), a resveratrol analogue extracted from a Chinese medicinal plant, has been proven to have numerous vascular protection functions. This study investigated whether THSG can improve vascular remodeling, which has thus far remained unclear. Orally administering THSG to spontaneously hypertensive rats (SHRs) aged 12 weeks for 14 weeks significantly inhibited intima-media thickness in the lower parts of the aortic arch, increased the vascular diastolic rate in response to acetylcholine, and reduced remodelling-related mRNA expression, such as that of ACTA2, CCL3, COL1A2, COL3A1, TIMP1 WISP2, IGFBP1, ECE1, KLF5, MYL1 BMP4, FN1, and PAI-1. Immunofluorescence staining also showed an inhibitory effect similar to that of THSG on PAI-1 protein expression in rat aortas. Results from immunoprecipitation and a Western blot assay showed that THSG inhibited the acetylation of Smad3. A chromatin immunoprecipitation assay showed that THSG prevented Smad3 binding to the PAI-1 proximal promoter in SHR aortas. In conclusion, our results demonstrated that the inhibitory effect of THSG on aortic remodelling involved the deacetylating role of Smad3 with increasing blood flow and with constant blood pressure.
Collapse
|
24
|
Zhang H, Chang H, Wang LM, Ren KF, Martins MCL, Barbosa MA, Ji J. Effect of Polyelectrolyte Film Stiffness on Endothelial Cells During Endothelial-to-Mesenchymal Transition. Biomacromolecules 2015; 16:3584-93. [PMID: 26477358 DOI: 10.1021/acs.biomac.5b01057] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT), during which endothelial cells (ECs) transdifferentiate into mesenchymal phenotype, plays a key role in the development of vascular implant complications such as endothelium dysfunction and in-stent restenosis. Substrate stiffness has been confirmed as a key factor to influence EC behaviors; however, so far, the relationship between substrate stiffness and EndMT has been rarely studied. Here, ECs were cultured on the (poly(L-lysine)/hyaluronate acid) (PLL/HA) multilayer films with controlled stiffness for 2 weeks, and their EndMT behaviors were studied. We demonstrated that ECs lost their markers (vWf and CD31) in a stiffness-dependent manner even without supplement of growth factors, and the softer film favored the maintaining of EC phenotype. Further, induced by transforming growth factor β1 (TGF-β1), ECs underwent EndMT, as characterized by losing their typical cobblestone morphology and markers and gaining smooth muscle cell markers (α-smooth muscle actin and calponin). Interestingly, stronger EndMT was observed when ECs were cultured on the stiffer film. Collectively, our findings suggest that substrate stiffness has significant effects on EndMT, and a softer substrate is beneficial to ECs by keeping their phenotype and inhibiting EndMT, which presents a new strategy for surface design of vascular implant materials.
Collapse
Affiliation(s)
- He Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Hao Chang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Li-mei Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Ke-feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai, China
| | - M Cristina L Martins
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto , Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Mário A Barbosa
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto , Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
25
|
Abstract
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.
Collapse
|
26
|
Abstract
Formation of foam cell macrophages, which sequester extracellular modified lipids, is a key event in atherosclerosis. How lipid loading affects macrophage phenotype is controversial, with evidence suggesting either pro- or anti-inflammatory consequences. To investigate this further, we compared the transcriptomes of foamy and non-foamy macrophages that accumulate in the subcutaneous granulomas of fed-fat ApoE null mice and normal chow fed wild-type mice in vivo. Consistent with previous studies, LXR/RXR pathway genes were significantly over-represented among the genes up-regulated in foam cell macrophages. Unexpectedly, the hepatic fibrosis pathway, associated with platelet derived growth factor and transforming growth factor-β action, was also over-represented. Several collagen polypeptides and proteoglycan core proteins as well as connective tissue growth factor and fibrosis-related FOS and JUN transcription factors were up-regulated in foam cell macrophages. Increased expression of several of these genes was confirmed at the protein level in foam cell macrophages from subcutaneous granulomas and in atherosclerotic plaques. Moreover, phosphorylation and nuclear translocation of SMAD2, which is downstream of several transforming growth factor-β family members, was also detected in foam cell macrophages. We conclude that foam cell formation in vivo leads to a pro-fibrotic macrophage phenotype, which could contribute to plaque stability, especially in early lesions that have few vascular smooth muscle cells.
Collapse
Affiliation(s)
- Anita C. Thomas
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Wouter J. Eijgelaar
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Mat J. A. P. Daemen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Academisch Medisch Centrum (AMC), Amsterdam, The Netherlands
| | - Andrew C. Newby
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
Youn SW, Park KK. Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int J Mol Sci 2015; 16:11804-33. [PMID: 26006249 PMCID: PMC4463731 DOI: 10.3390/ijms160511804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| | - Kwan-Kyu Park
- Department of Pathology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| |
Collapse
|
28
|
Iaconetti C, De Rosa S, Polimeni A, Sorrentino S, Gareri C, Carino A, Sabatino J, Colangelo M, Curcio A, Indolfi C. Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cellsin vitroandin vivo. Cardiovasc Res 2015; 107:522-33. [DOI: 10.1093/cvr/cvv141] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
|
29
|
Fragoso JM, Zuñiga-Ramos J, Arellano-González M, Alvarez-León E, Villegas-Torres BE, Cruz-Lagunas A, Delgadillo-Rodriguez H, Peña-Duque MA, Martínez-Ríos MA, Vargas-Alarcón G. The T29C (rs1800470) polymorphism of the transforming growth factor-β1 (TGF-β1) gene is associated with restenosis after coronary stenting in Mexican patients. Exp Mol Pathol 2015; 98:13-7. [DOI: 10.1016/j.yexmp.2014.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 12/01/2022]
|
30
|
Gao F, Chambon P, Tellides G, Kong W, Zhang X, Li W. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling. Biochem Biophys Res Commun 2014; 454:245-50. [PMID: 25451249 DOI: 10.1016/j.bbrc.2014.10.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2(f/f)) and their corresponding wild-type background mice (MyhCre.Tgfbr2(WT/WT)) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.
Collapse
Affiliation(s)
- Fu Gao
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104; INSERM U596; ULP, Collége de France) and Institut Clinique de la Souris, ILLKIRCH, Strasbourg, France
| | - George Tellides
- Department of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Kong
- Department of Physiology and Pathophysiology, Basic Medical College of Peking University, Beijing, People's Republic of China
| | - Xiaoming Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China.
| | - Wei Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
31
|
ALK5 and ALK1 play antagonistic roles in transforming growth factor β-induced podosome formation in aortic endothelial cells. Mol Cell Biol 2014; 34:4389-403. [PMID: 25266657 DOI: 10.1128/mcb.01026-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor β (TGF-β) and related cytokines play a central role in the vascular system. In vitro, TGF-β induces aortic endothelial cells to assemble subcellular actin-rich structures specialized for matrix degradation called podosomes. To explore further this TGF-β-specific response and determine in which context podosomes form, ALK5 and ALK1 TGF-β receptor signaling pathways were investigated in bovine aortic endothelial cells. We report that TGF-β drives podosome formation through ALK5 and the downstream effectors Smad2 and Smad3. Concurrent TGF-β-induced ALK1 signaling mitigates ALK5 responses through Smad1. ALK1 signaling induced by BMP9 also antagonizes TGF-β-induced podosome formation, but this occurs through both Smad1 and Smad5. Whereas ALK1 neutralization brings ALK5 signals to full potency for TGF-β-induced podosome formation, ALK1 depletion leads to cell disturbances not compatible with podosome assembly. Thus, ALK1 possesses passive and active modalities. Altogether, our results reveal specific features of ALK1 and ALK5 signaling with potential clinical implications.
Collapse
|
32
|
Madrid-Miller A, Chávez-Sánchez L, Careaga-Reyna G, Borrayo-Sánchez G, Chávez-Rueda K, Montoya-Guerrero SA, Abundes Velazco A, Ledesma-Velasco M, Legorreta-Haquet MV, Blanco-Favela F. Clinical outcome in patients with acute coronary syndrome and outward remodeling is associated with a predominant inflammatory response. BMC Res Notes 2014; 7:669. [PMID: 25253465 PMCID: PMC4192764 DOI: 10.1186/1756-0500-7-669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pro-inflammatory molecules and low-density lipoproteins play essential roles in the atherosclerosis. The aim of our study was to establish an association among the cytokines secreted by peripheral blood mononuclear cells and the serum concentration in patients with unstable angina and coronary outward remodeling before and after percutaneous coronary intervention. The clinical and coronary responses were evaluated 6 months after the procedure. FINDINGS Twenty-two patients with unstable angina were evaluated prior to after percutaneous coronary intervention and 6 months after procedure by coronary intravascular ultrasound. Eleven of the patients had recurrent angina, while 9 presented restenosis and an increase in the percentage of total plaque area. These 11 patients displayed higher levels of C-reactive protein than those without coronary events (1.27 vs. 0.43 mg/dl, respectively; p = 0.029) and a tendency to increase levels of interleukin (IL)-8 and transforming growth factor-β1, but lower levels of IL-10 (52.09 vs. 141.5 pg/ml, respectively; p = 0.035). Activated peripheral blood mononuclear cells from patients with restenosis presented higher levels of proliferation, CD86 expression and higher IL-1, and increased IL-10 compared to those in patients without restenosis. CONCLUSIONS Patients with unstable angina and coronary outward remodeling who displayed a pro-inflammatory response experienced recurrent coronary events and an increased percentage of total plaque area. In contrast, better outcomes were observed in patients with anti-inflammatory responses. This response could be secondary to low-density lipoproteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francisco Blanco-Favela
- Unidad de Investigación Médica en Inmunología, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Col, Doctores, CP: 06720 México City, México.
| |
Collapse
|
33
|
Guo LW, Wang B, Goel SA, Little C, Takayama T, Shi XD, Roenneburg D, DiRenzo D, Kent KC. Halofuginone stimulates adaptive remodeling and preserves re-endothelialization in balloon-injured rat carotid arteries. Circ Cardiovasc Interv 2014; 7:594-601. [PMID: 25074254 DOI: 10.1161/circinterventions.113.001181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Three major processes, constrictive vessel remodeling, intimal hyperplasia (IH), and retarded re-endothelialization, contribute to restenosis after vascular reconstructions. Clinically used drugs inhibit IH but delay re-endothelialization and also cause constrictive remodeling. Here we have examined halofuginone, an herbal derivative, for its beneficial effects on vessel remodeling and differential inhibition of IH versus re-endothelialization. METHODS AND RESULTS Two weeks after perivascular application to balloon-injured rat common carotid arteries, halofuginone versus vehicle (n=6 animals) enlarged luminal area 2.14-fold by increasing vessel size (adaptive remodeling; 123%), reducing IH (74.3%) without inhibiting re-endothelialization. Consistent with its positive effect on vessel expansion, halofuginone reduced collagen type 1 (but not type 3) production in injured arteries as well as that from adventitial fibroblasts in vitro. In support of its differential effects on IH versus re-endothelialization, halofuginone produced greater inhibition of vascular smooth muscle cell versus endothelial cell proliferation at concentrations ≈50 nmol/L. Furthermore, halofuginone at 50 nmol/L effectively blocked Smad3 phosphorylation in smooth muscle cells, which is known to promote smooth muscle cell proliferation, migration, and IH, but halofuginone had no effect on phospho-Smad3 in endothelial cells. CONCLUSIONS Periadventitial delivery of halofuginone dramatically increased lumen patency via adaptive remodeling and selective inhibition of IH without affecting endothelium recovery. Halofuginone is the first reported small molecule that has favorable effects on all 3 major processes involved in restenosis.
Collapse
Affiliation(s)
- Lian-Wang Guo
- From the Department of Surgery, University of Wisconsin, Madison.
| | - Bowen Wang
- From the Department of Surgery, University of Wisconsin, Madison
| | - Shakti A Goel
- From the Department of Surgery, University of Wisconsin, Madison
| | | | - Toshio Takayama
- From the Department of Surgery, University of Wisconsin, Madison
| | - Xu Dong Shi
- From the Department of Surgery, University of Wisconsin, Madison
| | - Drew Roenneburg
- From the Department of Surgery, University of Wisconsin, Madison
| | - Daniel DiRenzo
- From the Department of Surgery, University of Wisconsin, Madison
| | - K Craig Kent
- From the Department of Surgery, University of Wisconsin, Madison
| |
Collapse
|
34
|
Shi X, Guo LW, Seedial SM, Si Y, Wang B, Takayama T, Suwanabol PA, Ghosh S, DiRenzo D, Liu B, Kent KC. TGF-β/Smad3 inhibit vascular smooth muscle cell apoptosis through an autocrine signaling mechanism involving VEGF-A. Cell Death Dis 2014; 5:e1317. [PMID: 25010983 PMCID: PMC4123076 DOI: 10.1038/cddis.2014.282] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022]
Abstract
We have previously shown that in the presence of elevated Smad3, transforming growth factor-β (TGF-β) transforms from an inhibitor to a stimulant of vascular smooth muscle cell (SMC) proliferation and intimal hyperplasia (IH). Here we identify a novel mechanism through which TGF-β/Smad3 also exacerbates IH by inhibiting SMC apoptosis. We found that TGF-β treatment led to inhibition of apoptosis in rat SMCs following viral expression of Smad3. Conditioned media from these cells when applied to naive SMCs recapitulated this effect, suggesting an autocrine pathway through a secreted factor. Gene array of TGF-β/Smad3-treated cells revealed enhanced expression of vascular endothelial growth factor (VEGF), a known inhibitor of endothelial cell apoptosis. We then evaluated whether VEGF is the secreted mediator responsible for TGF-β/Smad3 inhibition of SMC apoptosis. In TGF-β/Smad3-treated cells, VEGF mRNA and protein as well as VEGF secretion were increased. Moreover, recombinant VEGF-A inhibited SMC apoptosis and a VEGF-A-neutralizing antibody reversed the inhibitory effect of conditioned media on SMC apoptosis. Stimulation of SMCs with TGF-β led to the formation of a complex of Smad3 and hypoxia-inducible factor-1α (HIF-1α) that in turn activated the VEGF-A promoter and transcription. In rat carotid arteries following arterial injury, Smad3 and VEGF-A expression were upregulated. Moreover, Smad3 gene transfer further enhanced VEGF expression as well as inhibited SMC apoptosis. Finally, blocking either the VEGF receptor or Smad3 signaling in injured carotid arteries abrogated the inhibitory effect of Smad3 on vascular SMC apoptosis. Taken together, our study reveals that following angioplasty, elevation of both TGF-β and Smad3 leads to SMC secretion of VEGF-A that functions as an autocrine inhibitor of SMC apoptosis. This novel pathway provides further insights into the role of TGF-β in the development of IH.
Collapse
Affiliation(s)
- X Shi
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - L-W Guo
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - S M Seedial
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - Y Si
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - B Wang
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - T Takayama
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - P A Suwanabol
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - S Ghosh
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - D DiRenzo
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - B Liu
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| | - K C Kent
- Department of Surgery, University of Wisconsin, 1111 Highland Avenue, WIMR Building, Madison, WI 53705, USA
| |
Collapse
|
35
|
Yu X, Takayama T, Goel SA, Shi X, Zhou Y, Kent KC, Murphy WL, Guo LW. A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia. J Control Release 2014; 191:47-53. [PMID: 24852098 DOI: 10.1016/j.jconrel.2014.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 01/02/2023]
Abstract
Intimal hyperplasia produces restenosis (re-narrowing) of the vessel lumen following vascular intervention. Drugs that inhibit intimal hyperplasia have been developed, however there is currently no clinical method of perivascular drug-delivery to prevent restenosis following open surgical procedures. Here we report a poly(ε-caprolactone) (PCL) sheath that is highly effective in preventing intimal hyperplasia through perivascular delivery of rapamycin. We first screened a series of bioresorbable polymers, i.e., poly(lactide-co-glycolide) (PLGA), poly(lactic acid) (PLLA), PCL, and their blends, to identify desired release kinetics and sheath physical properties. Both PLGA and PLLA sheaths produced minimal (<30%) rapamycin release within 50days in PBS buffer. In contrast, PCL sheaths exhibited more rapid and near-linear release kinetics, as well as durable integrity (>90days) as evidenced in both scanning electron microscopy and subcutaneous embedding experiments. Moreover, a PCL sheath deployed around balloon-injured rat carotid arteries was associated with a minimum rate of thrombosis compared to PLGA and PLLA. Morphometric analysis and immunohistochemistry revealed that rapamycin-loaded perivascular PCL sheaths produced pronounced (85%) inhibition of intimal hyperplasia (0.15±0.05 vs 1.01±0.16), without impairment of the luminal endothelium, the vessel's anti-thrombotic layer. Our data collectively show that a rapamycin-loaded PCL delivery system produces substantial mitigation of neointima, likely due to its favorable physical properties leading to a stable yet flexible perivascular sheath and steady and prolonged release kinetics. Thus, a PCL sheath may provide useful scaffolding for devising effective perivascular drug delivery particularly suited for preventing restenosis following open vascular surgery.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Toshio Takayama
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Shakti A Goel
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Xudong Shi
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Yifan Zhou
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA; Department of Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA.
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
36
|
Bendjama K, Guionaud S, Aras G, Arber N, Badimon L, Bamberger U, Bratfalean D, Brott D, David M, Doessegger L, Firat H, Gallas JF, Gautier JC, Hoffmann P, Kraus S, Padro T, Saadoun D, Szczesny P, Thomann P, Vilahur G, Lawton M, Cacoub P. Translation Strategy for the Qualification of Drug-induced Vascular Injury Biomarkers. Toxicol Pathol 2014; 42:658-71. [DOI: 10.1177/0192623314527644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug-induced vascular injury (DIVI) is a common preclinical toxicity usually characterized by hemorrhage, vascular endothelial and smooth muscle damage, and inflammation. DIVI findings can cause delays or termination of drug candidates due to low safety margins. The situation is complicated by the absence of sensitive, noninvasive biomarkers for monitoring vascular injury and the uncertain relevance to humans. The Safer And Faster Evidence-based Translation (SAFE-T) consortium is a public–private partnership funded within the European Commission’s Innovative Medicines Initiative (IMI) aiming to accelerate drug development by qualifying biomarkers for drug-induced organ injuries, including DIVI. The group is using patients with vascular diseases that have key histomorphologic features (endothelial damage, smooth muscle damage, and inflammation) in common with those observed in DIVI, and has selected candidate biomarkers associated with these features. Studied populations include healthy volunteers, patients with spontaneous vasculitides and other vascular disorders. Initial results from studies with healthy volunteers and patients with vasculitides show that a panel of biomarkers can successfully discriminate the population groups. The SAFE-T group plans to seek endorsement from health authorities (European Medicines Agency and Food and Drug Administration) to qualify the biomarkers for use in regulatory decision-making processes.
Collapse
Affiliation(s)
| | | | | | - Nadir Arber
- Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Uwe Bamberger
- Boehringer Ingelheim Pharma GmbH & Co. KG Nonclinical Drug Safety Biberach/Riss, Germany
| | | | - David Brott
- AstraZeneca Pharmaceuticals, Translational Patient Safety and Enabling Sciences, Wilmington, Delaware, USA
| | - Maayan David
- Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | - Peter Hoffmann
- Novartis Pharmaceuticals Corporation, Preclinical safety, East Hanover, New Jersey, USA
| | - Sarah Kraus
- Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Teresa Padro
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David Saadoun
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France; Département Hospitalo-Universitaire I2B, UPMC Univ Paris 06, F-75005, Paris, France; INSERM UMR 7211, F-75005, Paris, France; INSERM, UMR_S 959, F-75013, Paris, France; CNRS, UMR 7211, F-75005, Paris, France
| | | | | | - Gemma Vilahur
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Michael Lawton
- Pfizer Worldwide Research & Development, Drug Safety Research & Development, Groton, Connecticut, USA
| | - Patrice Cacoub
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France; Département Hospitalo-Universitaire I2B, UPMC Univ Paris 06, F-75005, Paris, France; INSERM UMR 7211, F-75005, Paris, France; INSERM, UMR_S 959, F-75013, Paris, France; CNRS, UMR 7211, F-75005, Paris, France
| |
Collapse
|
37
|
Curtin AE, Zhou L. An agent-based model of the response to angioplasty and bare-metal stent deployment in an atherosclerotic blood vessel. PLoS One 2014; 9:e94411. [PMID: 24732072 PMCID: PMC3986389 DOI: 10.1371/journal.pone.0094411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 03/16/2014] [Indexed: 01/13/2023] Open
Abstract
PURPOSE While animal models are widely used to investigate the development of restenosis in blood vessels following an intervention, computational models offer another means for investigating this phenomenon. A computational model of the response of a treated vessel would allow investigators to assess the effects of altering certain vessel- and stent-related variables. The authors aimed to develop a novel computational model of restenosis development following an angioplasty and bare-metal stent implantation in an atherosclerotic vessel using agent-based modeling techniques. The presented model is intended to demonstrate the body's response to the intervention and to explore how different vessel geometries or stent arrangements may affect restenosis development. METHODS The model was created on a two-dimensional grid space. It utilizes the post-procedural vessel lumen diameter and stent information as its input parameters. The simulation starting point of the model is an atherosclerotic vessel after an angioplasty and stent implantation procedure. The model subsequently generates the final lumen diameter, percent change in lumen cross-sectional area, time to lumen diameter stabilization, and local concentrations of inflammatory cytokines upon simulation completion. Simulation results were directly compared with the results from serial imaging studies and cytokine levels studies in atherosclerotic patients from the relevant literature. RESULTS The final lumen diameter results were all within one standard deviation of the mean lumen diameters reported in the comparison studies. The overlapping-stent simulations yielded results that matched published trends. The cytokine levels remained within the range of physiological levels throughout the simulations. CONCLUSION We developed a novel computational model that successfully simulated the development of restenosis in a blood vessel following an angioplasty and bare-metal stent deployment based on the characteristics of the vessel cross-section and stent. A further development of this model could ultimately be used as a predictive tool to depict patient outcomes and inform treatment options.
Collapse
Affiliation(s)
- Antonia E. Curtin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Leming Zhou
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Shi X, DiRenzo D, Guo LW, Franco SR, Wang B, Seedial S, Kent KC. TGF-β/Smad3 stimulates stem cell/developmental gene expression and vascular smooth muscle cell de-differentiation. PLoS One 2014; 9:e93995. [PMID: 24718260 PMCID: PMC3981734 DOI: 10.1371/journal.pone.0093995] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.
Collapse
MESH Headings
- Animals
- Aorta
- Cell Dedifferentiation/genetics
- Cell Division/genetics
- Cells, Cultured
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Hyperplasia
- Male
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Recombinant Fusion Proteins/metabolism
- Smad3 Protein
- Transcription, Genetic/genetics
- Transcriptome
- Transduction, Genetic
- Transforming Growth Factor beta1
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Xudong Shi
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Daniel DiRenzo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| | - Sarah R. Franco
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Bowen Wang
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Stephen Seedial
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - K. Craig Kent
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
- * E-mail: (LWG); (KCK)
| |
Collapse
|
39
|
High-throughput screening identifies idarubicin as a preferential inhibitor of smooth muscle versus endothelial cell proliferation. PLoS One 2014; 9:e89349. [PMID: 24586708 PMCID: PMC3933427 DOI: 10.1371/journal.pone.0089349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/20/2014] [Indexed: 01/21/2023] Open
Abstract
Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis). Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC) proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC) lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS) format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection). We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.
Collapse
|
40
|
Ostriker A, Horita HN, Poczobutt J, Weiser-Evans MCM, Nemenoff RA. Vascular smooth muscle cell-derived transforming growth factor-β promotes maturation of activated, neointima lesion-like macrophages. Arterioscler Thromb Vasc Biol 2014; 34:877-86. [PMID: 24526697 DOI: 10.1161/atvbaha.114.303214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To define the contribution of vascular smooth muscle cell (SMC)-derived factors to macrophage phenotypic modulation in the setting of vascular injury. APPROACH AND RESULTS By flow cytometry, macrophages (M4) were the predominant myeloid cell type recruited to wire-injured femoral arteries, in mouse, compared with neutrophils or eosinophils. Recruited macrophages from injured vessels exhibited a distinct expression profile relative to circulating mononuclear cells (peripheral blood monocytes; increased: interleukin-6, interleukin-10, interleukin-12b, CC chemokine receptor [CCR]3, CCR7, tumor necrosis factor-α, inducible nitric oxide synthase, arginase 1; decreased: interleukin-12a, matrix metalloproteinase [MMP]9). This phenotype was recapitulated in vitro by maturing rat bone marrow cells in the presence of macrophage-colony stimulating factor and 20% conditioned media from cultured rat SMC (sMϕ) compared with maturation in macrophage-colony stimulating factor alone (M0). Recombinant transforming growth factor (TGF)-β1 recapitulated the effect of SMC conditioned media. Macrophage maturation studies performed in the presence of a pan-TGF-β neutralizing antibody, a TGF-β receptor inhibitor, or conditioned media from TGF-β-depleted SMCs confirmed that the SMC-derived factor responsible for macrophage activation was TGF-β. Finally, the effect of SMC-mediated macrophage activation on SMC biology was assessed. SMCs cocultured with sMϕ exhibited increased rates of proliferation relative to SMCs cultured alone or with M0 macrophages. CONCLUSIONS SMC-derived TGF-β modulates the phenotype of maturing macrophages in vitro, recapitulating the phenotype found in vascular lesions in vivo. SMC-modulated macrophages induce SMC activation to a greater extent than control macrophages.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Cell Proliferation
- Cells, Cultured
- Coculture Techniques
- Culture Media, Conditioned/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Humans
- Macrophage Activation
- Macrophage Colony-Stimulating Factor/metabolism
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Paracrine Communication
- Phenotype
- RNA Interference
- Rats
- Time Factors
- Transfection
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta1/metabolism
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Allison Ostriker
- From the Department of Medicine, Division of Renal Diseases and Hypertension (H.N.H., J.P., M.C.M.W.-E., R.A.N.), Department of Pharmacology (A.O., M.C.M.W.-E., R.A.N.), and Cardiovascular and Pulmonary Research Laboratory (M.C.M.W.-E., R.A.N.), University of Colorado Denver, Aurora
| | | | | | | | | |
Collapse
|
41
|
Crosstalk between TGF-β/Smad3 and BMP/BMPR2 signaling pathways via miR-17-92 cluster in carotid artery restenosis. Mol Cell Biochem 2013; 389:169-76. [PMID: 24378993 DOI: 10.1007/s11010-013-1938-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
In the recent decades, carotid angioplasty and stenting (CAS) has been developed into a credible option for the patients with carotid stenosis. However, restenosis remains a severe and unsolved issue after CAS treatment. Restenosis is characterized by neointimal hyperplasia, which is partially caused by vascular smooth muscle cells (VSMC) proliferation. However, the molecular mechanism involved in the restenosis is still unclear. In this study, we demonstrated a functional crosstalk between two TGF-β superfamily signaling pathway members, Smad3 and BMPR2, in VSMC proliferation. Smad3 plays an important role in the TGF-β/Smad3 signaling pathway, and is significantly upregulated in the carotid artery with restenosis to promote VSMC proliferation. In contrast, BMP receptor II (BMPR2), an inhibitor of VSMC proliferation is downregulated in carotid restenosis. We further found that BMPR2 downregulation is mediated by miR-17-92 cluster, which is transcriptionally regulated by Smad3. Thus, Smad3 upregulation and Smad3/miR-17-92 cluster-dependent BMPR2 downregulation are likely to promote VSMC proliferation and restenosis. Taken together, our results may provide novel clues for early diagnosis of carotid restenosis and developing new therapeutic strategy.
Collapse
|
42
|
Yan X, Zhu MJ, Dodson MV, Du M. Developmental programming of fetal skeletal muscle and adipose tissue development. J Genomics 2013; 1:29-38. [PMID: 25031653 PMCID: PMC4091428 DOI: 10.7150/jgen.3930] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development.
Collapse
Affiliation(s)
- Xu Yan
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071
| | - Mei-Jun Zhu
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071
| | - Michael V Dodson
- 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164
| | - Min Du
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071 ; 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164
| |
Collapse
|
43
|
Guo T, Fang M, Zhang D, Li X. Combination treatment with asiaticoside and rapamycin: A new hope for in-stent restenosis. Exp Ther Med 2013; 6:557-561. [PMID: 24137226 PMCID: PMC3786836 DOI: 10.3892/etm.2013.1155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to investigate and characterize the efficacy and mechanism of action of asiaticoside in combination with rapamycin in the inhibition of in-stent restenosis (ISR). The effects of asiaticoside combined with rapamycin on cell proliferation in vitro were evaluated by MTT assay. The mRNA expression was analyzed by quantitative polymerase chain reaction (qPCR). Enzyme-linked immunosorbent assay (ELISA) was used to confirm protein synthesis. The cell growth inhibition rate in the combination group was significantly higher compared with those in the asiaticoside and rapamycin groups for human aortic fibroblasts (HAFs; 63.50±3.83, 53.06±8.10 and 60.34±4.9%, respectively) and human aortic smooth muscle cells (HASMCs; 33.12±1.35, 26.21±7.59 and 28.27±4.92, respectively; P<0.05). However, for human coronary artery endothelial cells (HCAECs), the cell growth inhibition rates in the combination, asiaticoside and rapamycin groups were 11.09±1.17, 26.22±4.24 and 34.80±2.80%, respectively (P<0.05), as detected by MTT assay. The qPCR assay showed that in the combination group the level of von Willebrand factor (vWF) mRNA was downregulated, while platelet endothelial cell adhesion molecule (PECAM-1) and endothelial nitric oxide synthase (eNOS) mRNAs were upregulated in HCAECs compared with the rapamycin group (P<0.05). Transforming growth factor (TGF)-β1 and TIMP1 mRNAs were downregulated while Smad7 and matrix metalloproteinase 1 (MMP1) mRNAs were upregulated in HAFs compared with the rapamycin and AT groups (P<0.05). The ELISA showed that the type I collagen level was significantly reduced in HASMCs and HAFs (P<0.05). The data suggest that asiaticoside combined with rapamycin may be effective in the reduction of ISR.
Collapse
Affiliation(s)
- Tian Guo
- Medical School, Tongji University, Shanghai 200092
| | | | | | | |
Collapse
|
44
|
Goel SA, Guo LW, Shi XD, Kundi R, Sovinski G, Seedial S, Liu B, Kent KC. Preferential secretion of collagen type 3 versus type 1 from adventitial fibroblasts stimulated by TGF-β/Smad3-treated medial smooth muscle cells. Cell Signal 2012; 25:955-60. [PMID: 23280188 DOI: 10.1016/j.cellsig.2012.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/12/2012] [Accepted: 12/24/2012] [Indexed: 01/08/2023]
Abstract
Restenosis, or arterial lumen re-narrowing, occurs in 30-50% of the patients undergoing angioplasty. Adaptive remodeling is the compensatory enlargement of the vessel size, and has been reported to prevent the deleterious effects of restenosis. Our previous studies have shown that elevated transforming growth factor (TGF-β) and its signaling protein Smad3 in the media layer induce adaptive remodeling of angioplastied rat carotid artery accompanying an increase of total collagen in the adventitia. In order to gain insights into a possible role of collagen in Smad3-induced adaptive remodeling, here we have investigated a mechanism of cell-cell communication between medial smooth muscle cells (SMCs) and adventitial fibroblasts in regulating the secretion of two major collagen subtypes. We have identified a preferential collagen-3 versus collagen-1 secretion by adventitial fibroblasts following stimulation by the conditioned medium from the TGF-β1-treated/Smad3-expressing medial smooth muscle cells (SMCs), which contained higher levels of CTGF and IGF2 as compared to control medium. Treating the TGF-β/Smad3-stimulated SMCs with an siRNA to either CTGF or IGF2 reversed the effect of conditioned media on preferential collagen-3 secretion from fibroblasts. Moreover, recombinant CTGF and IGF2 together stimulated adventitial fibroblasts to preferentially secrete collagen-3 versus collagen-1. This is the first study to identify a preferential secretion of collagen-3 versus collagen-1 from adventitial fibroblasts as a result of TGF-β/Smad3 stimulation of medial SMCs, and that CTGF and IGF2 function together to mediate this signaling communication between the two cell types.
Collapse
Affiliation(s)
- Shakti A Goel
- Department of Surgery, University of Wisconsin, 1111 Highland Ave, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Du M, Huang Y, Das AK, Yang Q, Duarte MS, Dodson MV, Zhu MJ. Meat Science and Muscle Biology Symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci 2012; 91:1419-27. [PMID: 23100595 DOI: 10.2527/jas.2012-5670] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beef cattle are raised for their lean tissue, and excessive fat accumulation accounts for large amounts of waste. On the other hand, intramuscular fat or marbling is essential for the palatability of beef. In addition, tender beef is demanded by consumers, and connective tissue contributes to the background toughness of beef. Recent studies show that myocytes, adipocytes, and fibroblasts are all derived from a common pool of progenitor cells during embryonic development. It appears that during early embryogenesis, multipotent mesenchymal stem cells first diverge into either myogenic or adipogenic-fibrogenic lineages; myogenic progenitor cells further develop into muscle fibers and satellite cells whereas adipogenic-fibrogenic lineage cells develop into the stromal-vascular fraction of skeletal muscle where reside adipocytes, fibroblasts, and resident fibro-adipogenic progenitor cells (the counterpart of satellite cells). Strengthening myogenesis (i.e., formation of muscle cells) enhances lean growth, promoting intramuscular adipogenesis (i.e., formation of fat cells) increases marbling, and reducing intramuscular fibrogenesis (i.e., formation of fibroblasts and synthesis of connective tissue) improves overall tenderness of beef. Because the abundance of progenitor cells declines as animals age, it is more effective to manipulate progenitor cell differentiation at an early developmental stage. Nutritional, environmental, and genetic factors shape progenitor cell differentiation; however, up to now, our knowledge regarding mechanisms governing progenitor cell differentiation remains rudimentary. In summary, altering mesenchymal progenitor cell differentiation through nutritional management of cows, or fetal programming, is a promising method to improve cattle performance and carcass value.
Collapse
Affiliation(s)
- M Du
- Department of Animal Sciences, Washington State University, Pullman 99164, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
It has been appreciated over the past two decades that arterial remodelling, in addition to intimal hyperplasia, contributes significantly to the degree of restenosis that develops following revascularization procedures. Remodelling appears to be an adventitia-based process that is contributed to by multiple factors including cytokines and growth factors that regulate extracellular matrix or phenotypic transformation of vascular cells including myofibroblasts. In this review, we summarize the currently available information from animal models as well as clinical investigations regarding arterial remodelling. The factors that contribute to this process are presented with an emphasis on potential therapeutic methods to enhance favourable remodelling and prevent restenosis.
Collapse
Affiliation(s)
- Shakti A Goel
- Department of Surgery, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, USA
| | | | | | | |
Collapse
|
47
|
Qu Z, Yu J, Ruan Q. TGF-β1-induced LPP expression dependant on Rho kinase during differentiation and migration of bone marrow-derived smooth muscle progenitor cells. ACTA ACUST UNITED AC 2012; 32:459-465. [PMID: 22886954 DOI: 10.1007/s11596-012-0080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 12/24/2022]
Abstract
Lipoma preferred partner (LPP) has been identified as a protein which is highly selective for smooth muscle progenitor cells (SMPCs) and regulates differentiation and migration of SMPCs, but mechanisms of LPP expression are not elucidated clearly. The aim of the present study was to discuss the mechanisms by which LPP expression is regulated in the differentiation and migration of SMPCs induced by TGF-β1. It was found that TGF-β1 could significantly increase the expression of LPP, smooth muscle α-actin, smooth muscle myosin heavy chain (SM-MHC), and smoothelin in SMPCs. Moreover, inactivation of Rho kinase (ROK) with ROK inhibitors significantly inhibited LPP mRNA expression in TGF-β1-treated SMPCs and mouse aortic smooth muscle cells (MAoSMCs). At the same time, LPP silencing with short interfering RNA significantly decreased SMPCs migration. In conclusion, LPP appears to be a ROK-dependant SMPCs differentiation marker that plays a role in regulating SMPCs migration.
Collapse
Affiliation(s)
- Zhiling Qu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiurong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
48
|
Suwanabol PA, Seedial SM, Shi X, Zhang F, Yamanouchi D, Roenneburg D, Liu B, Kent KC. Transforming growth factor-β increases vascular smooth muscle cell proliferation through the Smad3 and extracellular signal-regulated kinase mitogen-activated protein kinases pathways. J Vasc Surg 2012; 56:446-54. [PMID: 22521802 PMCID: PMC3408812 DOI: 10.1016/j.jvs.2011.12.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 12/15/2011] [Accepted: 12/18/2011] [Indexed: 01/26/2023]
Abstract
INTRODUCTION We have previously demonstrated that transforming growth factor-β (TGF-β) in the presence of elevated levels of Smad3, its primary signaling protein, stimulates rat vascular smooth muscle cell (VSMC) proliferation and intimal hyperplasia. The mechanism is partly through the nuclear exportation of phosphorylated cyclin-dependent kinase inhibitor p27. The objective of this study is to clarify the downstream pathways through which Smad3 produces its proliferative effect. Specifically, we evaluated the role of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TGF-β-induced VSMC proliferation. METHODS Cultured rat aortic VSMCs were incubated with TGF-β at varying concentrations and times, and phosphorylated ERK was measured by Western blotting. Smad3 was enhanced in VSMCs using an adenovirus expressing Smad3 or inhibited with small interfering RNA (siRNA). For in vivo experiments, male Sprague-Dawley rats underwent carotid balloon injury, followed by intraluminal infection with an adenovirus expressing Smad3. Arteries were harvested at 3 days and subjected to immunohistochemistry for Smad3, phospho-ERK MAPK, and proliferating cell nuclear antigen. RESULTS In cultured VSMCs, TGF-β induced activation and phosphorylation of ERK MAPK in a time-dependent and concentration-dependent manner. Overexpression of the signaling protein Smad3 enhanced TGF-β-induced activation of ERK MAPK, whereas inhibition of Smad3 with a siRNA blocked ERK MAPK phosphorylation in response to TGF-β. These data suggest that Smad3 acts as a signaling intermediate between TGF-β and ERK MAPK. Inhibition of ERK MAPK activation with PD98059 completely blocked the ability of TGF-β/Smad3 to stimulate VSMC proliferation, demonstrating the importance of ERK MAPK in this pathway. Immunoprecipitation of phospho-ERK MAPK and blotting with Smad3 revealed a physical association, suggesting that activation of ERK MAPK by Smad3 requires a direct interaction. In an in vivo rat carotid injury model, overexpression of Smad3 resulted in an increase in phosphorylated ERK MAPK as well as increased VSMC proliferation as measured by proliferating cell nuclear antigen. CONCLUSIONS Our findings demonstrate a mechanism through which TGF-β stimulates VSMC proliferation. Although TGF-β has been traditionally identified as an inhibitor of proliferation, our data suggest that TGF-β enhances VSMC proliferation through a Smad3/ERK MAPK signaling pathway. These findings at least partly explain the mechanism by which TGF-β enhances intimal hyperplasia. Knowledge of this pathway provides potential novel targets that may be used to prevent restenosis.
Collapse
Affiliation(s)
| | | | - Xudong Shi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792 U.S.A
| | - Fan Zhang
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792 U.S.A
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792 U.S.A
| | - Drew Roenneburg
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792 U.S.A
| | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792 U.S.A
| | - K. Craig Kent
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792 U.S.A
| |
Collapse
|
49
|
Suwanabol PA, Seedial SM, Zhang F, Shi X, Si Y, Liu B, Kent KC. TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302:H2211-9. [PMID: 22447946 PMCID: PMC3378292 DOI: 10.1152/ajpheart.00966.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/21/2012] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/physiopathology
- Cell Proliferation/drug effects
- Cells, Cultured
- In Vitro Techniques
- Male
- Models, Animal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Phosphatidylinositol 3-Kinases/physiology
- Phosphorylation/physiology
- Proto-Oncogene Proteins c-akt/physiology
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/physiology
- Smad3 Protein/antagonists & inhibitors
- Smad3 Protein/drug effects
- Smad3 Protein/physiology
- Time Factors
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta/physiology
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/drug effects
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Pasithorn A Suwanabol
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin, Madison, 53592-7375, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Restenosis and therapy. Int J Vasc Med 2012; 2012:406236. [PMID: 22489270 PMCID: PMC3303576 DOI: 10.1155/2012/406236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/11/2011] [Accepted: 12/05/2011] [Indexed: 01/03/2023] Open
Abstract
The vascular disease involves imbalanced function of the blood vessels. Risk factors playing a role in development of impaired vessel functions will be briefly discussed. In ischemia/reperfusion (I/R), ischemic hypoxia is one of the cardinal risk factors of restenosis. Various insults are shown to initiate the phenotype switch of VSMCs. The pathological process, leading to activated inflammatory process, complement activation, and release of growth factors, initiate the proliferation of VSMCs in the media and cause luminal narrowing and impaired vascular function. The review summarizes the alteration process and demonstrates some of the clinical genetic background showing the role of complement and the genotypes of mannose-binding lectin (MBL2). Those could be useful markers of carotid restenosis after stent implantation. Gene therapy and therapeutic angiogenesis is proposed for therapy in restenosis. We suggest a drug candidate (iroxanadine), which ensures a noninvasive treatment by reverse regulation of the highly proliferating VSMCs and the disturbed function of ECs.
Collapse
|