1
|
Pharmacological prevention of intimal hyperplasia: A state-of-the-art review. Pharmacol Ther 2022; 235:108157. [PMID: 35183591 DOI: 10.1016/j.pharmthera.2022.108157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Intimal hyperplasia (IH) occurs in a considerable number of cases of blood vessel reconstruction by stenting or balloon angioplasty, venous bypass grafting, and arteriovenous dialysis accesses. It is triggered by endothelial injury during the vascular intervention and leads to vessel restenosis with life-threatening consequences for patients. To date, the drugs used for IH prevention in clinics-paclitaxel and rapalog drugs-have been focusing primarily on the vascular smooth muscle cell (VSMC) proliferation pathway of IH development. Limitations, such as endothelial toxicity and inappropriate drug administration timing, have spurred the search for new and efficient pharmacological approaches to control IH. In this state-of-the-art review, we present the pathways of IH development, focusing on the key events and actors involved in IH. Subsequently, we discuss different drugs and drug combinations interfering with these pathways based on their effect on peripheral circulation IH models in animal studies, or on clinical reports. The reports were obtained through an extensive search of peer-reviewed publications in Pubmed, Embase, and Google Scholar, with search equations composed based on five concepts around IH and their various combinations. To improve vascular intervention outcomes, rethinking of conventional therapeutic approaches to IH prevention is needed. Exploring local application of drugs and drug combinations acting on different pathophysiological pathways of IH development has the potential to provide effective and safe restenosis prevention.
Collapse
|
2
|
Somarathna M, Hwang PT, Millican RC, Alexander GC, Isayeva-Waldrop T, Sherwood JA, Brott BC, Falzon I, Northrup H, Shiu YT, Stubben CJ, Totenhagen J, Jun HW, Lee T. Nitric oxide releasing nanomatrix gel treatment inhibits venous intimal hyperplasia and improves vascular remodeling in a rodent arteriovenous fistula. Biomaterials 2022; 280:121254. [PMID: 34836683 PMCID: PMC8724452 DOI: 10.1016/j.biomaterials.2021.121254] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Vascular access is the lifeline for hemodialysis patients and the single most important component of the hemodialysis procedure. Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis patients, but nearly 60% of AVFs created fail to successfully mature due to early intimal hyperplasia development and poor outward remodeling. There are currently no therapies available to prevent AVF maturation failure. First, we showed the important regulatory role of nitric oxide (NO) on AVF development by demonstrating that intimal hyperplasia development was reduced in an overexpressed endothelial nitric oxide synthase (NOS3) mouse AVF model. This supported the rationale for the potential application of NO to the AVF. Thus, we developed a self-assembled NO releasing nanomatrix gel and applied it perivascularly at the arteriovenous anastomosis immediately following rat AVF creation to investigate its therapeutic effect on AVF development. We demonstrated that the NO releasing nanomatrix gel inhibited intimal hyperplasia formation (more than 70% reduction), as well as improved vascular outward remodeling (increased vein diameter) and hemodynamic adaptation (lower wall shear stress approaching the preoperative level and less vorticity). Therefore, direct application of the NO releasing nanomatrix gel to the AVF anastomosis immediately following AVF creation may enhance AVF development, thereby providing long-term and durable vascular access for hemodialysis.
Collapse
Affiliation(s)
- Maheshika Somarathna
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, AL, 35294, USA
| | - Patrick Tj Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA; Endomimetics, LLC, Birmingham, AL, 35242, USA
| | | | - Grant C Alexander
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA; Endomimetics, LLC, Birmingham, AL, 35242, USA
| | - Tatyana Isayeva-Waldrop
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, AL, 35294, USA
| | | | - Brigitta C Brott
- Endomimetics, LLC, Birmingham, AL, 35242, USA; Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, AL, 35233, USA
| | - Isabelle Falzon
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Hannah Northrup
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA; Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Chris J Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham, AL, 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA; Endomimetics, LLC, Birmingham, AL, 35242, USA
| | - Timmy Lee
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, AL, 35294, USA; Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| |
Collapse
|
3
|
Insights on Localized and Systemic Delivery of Redox-Based Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2468457. [PMID: 29636836 PMCID: PMC5832094 DOI: 10.1155/2018/2468457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside.
Collapse
|
4
|
Albaghdadi MS, Yang J, Brown JH, Mansukhani NA, Ameer GA, Kibbe MR. A Tailorable In-Situ Light-Activated Biodegradable Vascular Scaffold. ADVANCED MATERIALS TECHNOLOGIES 2017; 2:1600243. [PMID: 29578542 PMCID: PMC5860681 DOI: 10.1002/admt.201600243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biodegradable vascular scaffolds (BVS) are novel treatments for obstructive atherosclerotic cardiovascular disease that have been developed to overcome the limitations of traditional metallic drug-eluting stents (DES). The mechanical properties of bioabsorbable polymers used for the production of novel BVS are a key consideration for the clinical translation of this emerging technology. Herein, we describe the engineering of an in situ light-activated vascular scaffold (ILVS) comprised of a biodegradable citric acid-based elastomeric polymer, referred to as methacrylated poly-diol citrate (mPDC), and a diazeniumdiolate chitosan nitric oxide donor (chitoNO). In vitro studies demonstrate that the mechanical properties of the ILVS can be tailored to meet or exceed those of commercially available self-expanding bare metal stents (BMS). The radial compression strength of the ILVS is higher than that of a BMS despite undergoing degradation at physiologic conditions for 7 months. ILVS containing chitoNO provides sustained supraphysiologic levels of NO release. Lastly, ILVS were successfully cast in porcine arteries ex vivo using a custom designed triple balloon catheter, demonstrating translational potential. In conclusion, these data demonstrate the ability of an ILVS to provide tunable mechanical properties and drug-delivery capabilities for the vasculature, and thereby support mPDC as a promising material for the development of novel BVS platforms.
Collapse
Affiliation(s)
- Mazen S. Albaghdadi
- Department of Medicine, Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago Illinois
| | - Jian Yang
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Jessica H. Brown
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago Illinois
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Neel A. Mansukhani
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago Illinois
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guillermo A. Ameer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago Illinois
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois
| | - Melina R. Kibbe
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago Illinois
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
5
|
Qian Y, Matson JB. Gasotransmitter delivery via self-assembling peptides: Treating diseases with natural signaling gases. Adv Drug Deliv Rev 2017; 110-111:137-156. [PMID: 27374785 DOI: 10.1016/j.addr.2016.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are powerful signaling molecules that play a variety of roles in mammalian biology. Collectively called gasotransmitters, these gases have wide-ranging therapeutic potential, but their clinical use is limited by their gaseous nature, extensive reactivity, short half-life, and systemic toxicity. Strategies for gasotransmitter delivery with control over the duration and location of release are therefore vital for developing effective therapies. An attractive strategy for gasotransmitter delivery is though injectable or implantable gels, which can ideally deliver their payload over a controllable duration and then degrade into benign metabolites. Self-assembling peptide-based gels are well-suited to this purpose due to their tunable mechanical properties, easy chemical modification, and inherent biodegradability. In this review we illustrate the biological roles of NO, CO, and H2S, discuss their therapeutic potential, and highlight recent efforts toward their controlled delivery with a focus on peptide-based delivery systems.
Collapse
Affiliation(s)
- Yun Qian
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
6
|
Bahnson ESM, Havelka GE, Koo NC, Jiang Q, Kibbe MR. Periadventitial adipose tissue modulates the effect of PROLI/NO on neointimal hyperplasia. J Surg Res 2016; 205:440-445. [PMID: 27664894 DOI: 10.1016/j.jss.2016.06.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Periadventitial delivery of nitric oxide (NO) inhibits neointimal hyperplasia; however, the effect of periadventitial adipose tissue on the efficacy of NO at inhibiting neointimal hyperplasia has not been studied. The aim of our study was to assess the effect of NO in the presence and absence of periadventitial adipose tissue. We hypothesized that removal of periadventitial adipose tissue will increase neointimal formation and that NO will be more effective at inhibiting neointimal hyperplasia. METHODS The effect of NO on 3T3 fibroblasts, adventitial fibroblast (AF), and vascular smooth muscle cell (VSMC) proliferation was assessed by (3)H-thymidine incorporation in adipocyte-conditioned or regular media. The rat carotid artery balloon injury model was performed on male Sprague-Dawley rats. Before balloon injury, periadventitial adipose tissue was removed (excised model) or remained intact (intact model). Treatment groups included injury or injury with periadventitial application of PROLI/NO. Adiponectin receptor (AR) levels were assessed via immunofluorescence. RESULTS Adipocyte-conditioned media had an antiproliferative effect on 3T3 and AF and a proproliferative effect on VSMC in vitro. Interestingly, NO was less effective at inhibiting 3T3 and AF proliferation and more effective at inhibiting VSMC proliferation in adipocyte-conditioned media. In vivo, the excised group showed increased neointimal hyperplasia 2 wk after surgery compared with the intact group. NO reduced neointimal hyperplasia to a greater extent in the excised group compared with the intact group. Although NO inhibited or had no impact on AR levels in the intact group, NO increased AR levels in media and adventitia of the excised group. CONCLUSIONS These data show that periadventitial adipose tissue plays a role in regulating the arterial injury response and the efficacy of NO treatment in the vasculature.
Collapse
Affiliation(s)
- Edward S M Bahnson
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois
| | - George E Havelka
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois
| | - Nathaniel C Koo
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois
| | - Qun Jiang
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois
| | - Melina R Kibbe
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
7
|
Nitric Oxide Deficit Drives Intimal Hyperplasia in Mouse Models of Hypertension. Eur J Vasc Endovasc Surg 2016; 51:733-42. [DOI: 10.1016/j.ejvs.2016.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 01/26/2023]
|
8
|
Bahnson ESM, Kassam HA, Moyer TJ, Jiang W, Morgan CE, Vercammen JM, Jiang Q, Flynn ME, Stupp SI, Kibbe MR. Targeted Nitric Oxide Delivery by Supramolecular Nanofibers for the Prevention of Restenosis After Arterial Injury. Antioxid Redox Signal 2016; 24:401-18. [PMID: 26593400 PMCID: PMC4782035 DOI: 10.1089/ars.2015.6363] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS Cardiovascular interventions continue to fail as a result of arterial restenosis secondary to neointimal hyperplasia. We sought to develop and evaluate a systemically delivered nanostructure targeted to the site of arterial injury to prevent neointimal hyperplasia. Nanostructures were based on self-assembling biodegradable molecules known as peptide amphiphiles. The targeting motif was a collagen-binding peptide, and the therapeutic moiety was added by S-nitrosylation of cysteine residues. RESULTS Structure of the nanofibers was characterized by transmission electron microscopy and small-angle X-ray scattering. S-nitrosylation was confirmed by mass spectrometry, and nitric oxide (NO) release was assessed electrochemically and by chemiluminescent detection. The balloon carotid artery injury model was performed on 10-week-old male Sprague-Dawley rats. Immediately after injury, nanofibers were administered systemically via tail vein injection. S-nitrosylated (S-nitrosyl [SNO])-targeted nanofibers significantly reduced neointimal hyperplasia 2 weeks and 7 months following balloon angioplasty, with no change in inflammation. INNOVATION This is the first time that an S-nitrosothiol (RSNO)-based therapeutic was shown to have targeted local effects after systemic administration. This approach, combining supramolecular nanostructures with a therapeutic NO-based payload and a targeting moiety, overcomes the limitations of delivering NO to a site of interest, avoiding undesirable systemic side effects. CONCLUSION We successfully synthesized and characterized an RSNO-based therapy that when administered systemically, targets directly to the site of vascular injury. By integrating therapeutic and targeting chemistries, these targeted SNO nanofibers provided durable inhibition of neointimal hyperplasia in vivo and show great potential as a platform to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Edward S M Bahnson
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Hussein A Kassam
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Tyson J Moyer
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,3 Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois
| | - Wulin Jiang
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Courtney E Morgan
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Janet M Vercammen
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Qun Jiang
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Megan E Flynn
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Samuel I Stupp
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,3 Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois.,4 Department of Chemistry, Northwestern University , Evanston, Illinois.,5 Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,6 Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
| | - Melina R Kibbe
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
9
|
Bahnson ESM, Vavra AK, Flynn ME, Vercammen JM, Jiang Q, Schwartz AR, Kibbe MR. Long-term effect of PROLI/NO on cellular proliferation and phenotype after arterial injury. Free Radic Biol Med 2016; 90:272-86. [PMID: 26627935 PMCID: PMC4698201 DOI: 10.1016/j.freeradbiomed.2015.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Vascular interventions are associated with high failure rates from restenosis secondary to negative remodeling and neointimal hyperplasia. Periadventitial delivery of nitric oxide (NO) inhibits neointimal hyperplasia, preserving lumen patency. With the development of new localized delivery vehicles, NO-based therapies remain a promising therapeutic avenue for the prevention of restenosis. While the time course of events during neointimal development has been well established, a full characterization of the impact of NO donors on the cells that comprise the arterial wall has not been performed. Thus, the aim of our study was to perform a detailed assessment of proliferation, cellularity, inflammation, and phenotypic cellular modulation in injured arteries treated with the short-lived NO donor, PROLI/NO. PROLI/NO provided durable inhibition of neointimal hyperplasia for 6 months after arterial injury. PROLI/NO inhibited proliferation and cellularity in the media and intima at all of the time points studied. However, PROLI/NO caused an increase in adventitial proliferation at 2 weeks, resulting in increased cellularity at 2 and 8 weeks compared to injury alone. PROLI/NO promoted local protein S-nitrosation and increased local tyrosine nitration, without measurable systemic effects. PROLI/NO predominantly inhibited contractile smooth muscle cells in the intima and media, and had little to no effect on vascular smooth muscle cells or myofibroblasts in the adventitia. Finally, PROLI/NO caused a delayed and decreased leukocyte infiltration response after injury. Our results show that a short-lived NO donor exerts durable effects on proliferation, phenotype modulation, and inflammation that result in long-term inhibition of neointimal hyperplasia.
Collapse
Affiliation(s)
- Edward S M Bahnson
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Ashley K Vavra
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Megan E Flynn
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Janet M Vercammen
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Qun Jiang
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Amanda R Schwartz
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Melina R Kibbe
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States.
| |
Collapse
|
10
|
Microparticle levels after arterial injury and NO therapy in diabetes. J Surg Res 2015; 200:722-31. [PMID: 26490225 DOI: 10.1016/j.jss.2015.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Little is known about how arterial injury, nitric oxide (NO), or the diabetic milieu impact microparticle (MP) levels in the vasculature. We hypothesized that MP levels would increase following local arterial injury, and that NO would modify MP levels differently based on the metabolic environment. MATERIALS AND METHODS Type 1 diabetes was induced in male Lean Zucker (LZ) rats with streptozotocin, and type 2 diabetes was induced in male Zucker diabetic fatty rats through diet. Lean Zucker rats served as nondiabetic controls. The rat carotid balloon injury was performed ± NO (n > 4/group). Blood was obtained at intervals from baseline to 14 d after injury and analyzed for platelet MP (PMP), leukocyte MP (LMP), and endothelial MP (EMP) using fluorescence-activated cell sorting (FACS) analysis. RESULTS At baseline, type 1 diabetic rats had the highest EMP levels (P < 0.05). After arterial injury, type 1 and type 2 diabetic rats had a transient increase in EMP levels (P < 0.05) before decreasing below baseline levels. Both LMP and PMP levels generally declined after injury in all three animal models but were the lowest in both type 1 and type 2 diabetic rats. NO therapy had little impact on MP levels in nondiabetic and type 1 diabetic rats after injury. Conversely, NO caused a dramatic increase in EMP, LMP, and PMP levels in type 2 diabetic animals at early time points after injury (P < 0.05). CONCLUSIONS These data demonstrate that the diabetic milieu impacts MP levels at baseline, after arterial injury and with NO treatment.
Collapse
|
11
|
Rodriguez MP, Tsihlis ND, Emond ZM, Wang Z, Varu VN, Jiang Q, Vercammen JM, Kibbe MR. Nitric oxide affects UbcH10 levels differently in type 1 and type 2 diabetic rats. J Surg Res 2015; 196:180-9. [PMID: 25801975 DOI: 10.1016/j.jss.2015.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nitric oxide (NO) more effectively inhibits neointimal hyperplasia in type 2 diabetic versus nondiabetic and type 1 diabetic rodents. NO also decreases the ubiquitin-conjugating enzyme UbcH10, which is critical to cell-cycle regulation. This study seeks to determine whether UbcH10 levels in the vasculature of diabetic animal models account for the differential efficacy of NO at inhibiting neointimal hyperplasia. MATERIALS AND METHODS Vascular smooth muscle cells (VSMCs) harvested from nondiabetic lean Zucker (LZ) and type 2 diabetic Zucker diabetic fatty (ZDF) rats were exposed to high glucose (25 mM) and high insulin (24 nM) conditions to mimic the diabetic environment in vitro. LZ, streptozotocin-injected LZ (STZ, type 1 diabetic), and ZDF rats underwent carotid artery balloon injury (±10 mg PROLI/NO), and vessels were harvested at 3 and 14 d. UbcH10 was assessed by Western blotting and immunofluorescent staining. RESULTS NO more effectively reduced UbcH10 levels in LZ versus ZDF VSMCs; however, addition of insulin and glucose dramatically potentiated the inhibitory effect of NO on UbcH10 in ZDF VSMCs. Three days after balloon injury, Western blotting showed NO decreased free UbcH10 and increased polyubiquitinated UbcH10 levels by 35% in both STZ and ZDF animals. Fourteen days after injury, immunofluorescent staining showed increased UbcH10 levels throughout the arterial wall in all animal models. NO decreased UbcH10 levels in LZ and STZ rats but not in ZDF. CONCLUSIONS These data suggest a disconnect between UbcH10 levels and neointimal hyperplasia formation in type 2 diabetic models and contribute valuable insight regarding differential efficacy of NO in these models.
Collapse
Affiliation(s)
- Monica P Rodriguez
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nick D Tsihlis
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zachary M Emond
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zheng Wang
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vinit N Varu
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Qun Jiang
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Janet M Vercammen
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Melina R Kibbe
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Vascular Surgery, Department of Surgery, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
12
|
Bahnson ESM, Koo N, Cantu-Medellin N, Tsui AY, Havelka GE, Vercammen JM, Jiang Q, Kelley EE, Kibbe MR. Nitric oxide inhibits neointimal hyperplasia following vascular injury via differential, cell-specific modulation of SOD-1 in the arterial wall. Nitric Oxide 2014; 44:8-17. [PMID: 25460325 DOI: 10.1016/j.niox.2014.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
Superoxide (O2(•-)) promotes neointimal hyperplasia following arterial injury. Conversely, nitric oxide ((•)NO) inhibits neointimal hyperplasia through various cell-specific mechanisms, including redox regulation. What remains unclear is whether (•)NO exerts cell-specific regulation of the vascular redox environment following arterial injury to inhibit neointimal hyperplasia. Therefore, the aim of the present study was to assess whether (•)NO exerts cell-specific, differential modulation of O2(•-) levels throughout the arterial wall, establish the mechanism of such modulation, and determine if it regulates (•)NO-dependent inhibition of neointimal hyperplasia. In vivo, (•)NO increased superoxide dismutase-1 (SOD-1) levels following carotid artery balloon injury in a rat model. In vitro, (•)NO increased SOD-1 levels in vascular smooth muscle cells (VSMC), but had no effect on SOD-1 in endothelial cells or adventitial fibroblasts. This SOD-1 increase was associated with an increase in sod1 gene expression, increase in SOD-1 activity, and decrease in O2(•-) levels. Lastly, to determine the role of SOD-1 in (•)NO-mediated inhibition of neointimal hyperplasia, we performed the femoral artery wire injury model in wild type and SOD-1 knockout (KO) mice, with and without (•)NO. Interestingly, (•)NO inhibited neointimal hyperplasia only in wild type mice, with no effect in SOD-1 KO mice. In conclusion, these data show the cell-specific modulation of O2(•-) by (•)NO through regulation of SOD-1 in the vasculature, highlighting its importance on the inhibition of neointimal hyperplasia. These results also shed light into the mechanism of (•)NO-dependent redox balance, and suggest a novel VSMC redox target to prevent neointimal hyperplasia.
Collapse
Affiliation(s)
- Edward S M Bahnson
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois, USA
| | - Nathaniel Koo
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois, USA
| | | | - Aaron Y Tsui
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois, USA
| | - George E Havelka
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois, USA
| | - Janet M Vercammen
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois, USA
| | - Qun Jiang
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois, USA
| | - Eric E Kelley
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melina R Kibbe
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
13
|
Lavin B, Gómez M, Pello OM, Castejon B, Piedras MJ, Saura M, Zaragoza C. Nitric oxide prevents aortic neointimal hyperplasia by controlling macrophage polarization. Arterioscler Thromb Vasc Biol 2014; 34:1739-46. [PMID: 24925976 DOI: 10.1161/atvbaha.114.303866] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nitric oxide synthase 3 (NOS3) prevents neointima hyperplasia by still unknown mechanisms. To demonstrate the significance of endothelial nitric oxide in the polarization of infiltrated macrophages through the expression of matrix metalloproteinase (MMP)-13 in neointima formation. APPROACH AND RESULTS After aortic endothelial denudation, NOS3 null mice show elevated neointima formation, detecting increased mobilization of LSK (lineage-negative [Lin]-stem-cell antigen 1 [SCA1]+KIT+) progenitor cells, and high ratios of M1 (proinflammatory) to M2 (resolving) macrophages, accompanied by high expression of interleukin-5, interleukin-6, MCP-1 (monocyte chemoattractant protein), VEGF (vascular endothelial growth factor), GM-CSF (granulocyte-macrophage colony stimulating factor), interleukin-1β, and interferon-γ. In conditional c-Myc knockout mice, in which M2 polarization is defective, denuded aortas showed extensive wall thickening as well. Conditioned medium from NOS3-deficient endothelium induced extensive repolarization of M2 macrophages to an M1 phenotype, and vascular smooth muscle cells proliferated and migrated faster in conditioned medium from M1 macrophages. Among the different proteins participating in cell migration, MMP-13 was preferentially expressed by M1 macrophages. M1-mediated vascular smooth muscle cell migration was inhibited when macrophages were isolated from MMP-13-deficient mice, whereas exogenous administration of MMP-13 to vascular smooth muscle cell fully restored migration. Excess vessel wall thickening in mice lacking NOS3 was partially reversed by simultaneous deletion of MMP-13, indicating that NOS3 prevents neointimal hyperplasia by preventing MMP-13 activity. An excess of M1-polarized macrophages that coexpress MMP-13 was also detected in human carotid samples from endarterectomized patients. CONCLUSIONS These findings indicate that at least M1 macrophage-mediated expression of MMP-13 in NOS3 null mice induces neointima formation after vascular injury, suggesting that MMP-13 may represent a new promising target in vascular disease.
Collapse
Affiliation(s)
- Begoña Lavin
- From the Fundación Centro Nacional de Investigaciones Cardiovasculares CNIC Melchor Fernandez Almagro 3, Madrid, Spain (B.L., M.G., O.M.P., B.C., C.Z.); Departmento de Fisiología, Facultad de Medicina, Universidad de Alcala, Ctra Madrid-Barcelona, Alcala de Henares, Spain (M.S.); and Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain (M.J.P., C.Z.)
| | - Monica Gómez
- From the Fundación Centro Nacional de Investigaciones Cardiovasculares CNIC Melchor Fernandez Almagro 3, Madrid, Spain (B.L., M.G., O.M.P., B.C., C.Z.); Departmento de Fisiología, Facultad de Medicina, Universidad de Alcala, Ctra Madrid-Barcelona, Alcala de Henares, Spain (M.S.); and Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain (M.J.P., C.Z.)
| | - Oscar M Pello
- From the Fundación Centro Nacional de Investigaciones Cardiovasculares CNIC Melchor Fernandez Almagro 3, Madrid, Spain (B.L., M.G., O.M.P., B.C., C.Z.); Departmento de Fisiología, Facultad de Medicina, Universidad de Alcala, Ctra Madrid-Barcelona, Alcala de Henares, Spain (M.S.); and Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain (M.J.P., C.Z.)
| | - Borja Castejon
- From the Fundación Centro Nacional de Investigaciones Cardiovasculares CNIC Melchor Fernandez Almagro 3, Madrid, Spain (B.L., M.G., O.M.P., B.C., C.Z.); Departmento de Fisiología, Facultad de Medicina, Universidad de Alcala, Ctra Madrid-Barcelona, Alcala de Henares, Spain (M.S.); and Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain (M.J.P., C.Z.)
| | - Maria J Piedras
- From the Fundación Centro Nacional de Investigaciones Cardiovasculares CNIC Melchor Fernandez Almagro 3, Madrid, Spain (B.L., M.G., O.M.P., B.C., C.Z.); Departmento de Fisiología, Facultad de Medicina, Universidad de Alcala, Ctra Madrid-Barcelona, Alcala de Henares, Spain (M.S.); and Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain (M.J.P., C.Z.)
| | - Marta Saura
- From the Fundación Centro Nacional de Investigaciones Cardiovasculares CNIC Melchor Fernandez Almagro 3, Madrid, Spain (B.L., M.G., O.M.P., B.C., C.Z.); Departmento de Fisiología, Facultad de Medicina, Universidad de Alcala, Ctra Madrid-Barcelona, Alcala de Henares, Spain (M.S.); and Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain (M.J.P., C.Z.)
| | - Carlos Zaragoza
- From the Fundación Centro Nacional de Investigaciones Cardiovasculares CNIC Melchor Fernandez Almagro 3, Madrid, Spain (B.L., M.G., O.M.P., B.C., C.Z.); Departmento de Fisiología, Facultad de Medicina, Universidad de Alcala, Ctra Madrid-Barcelona, Alcala de Henares, Spain (M.S.); and Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain (M.J.P., C.Z.).
| |
Collapse
|
14
|
Lei J, Vodovotz Y, Tzeng E, Billiar TR. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 2013; 35:175-85. [DOI: 10.1016/j.niox.2013.09.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/02/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
|
15
|
Tsihlis ND, Vavra AK, Martinez J, Lee VR, Kibbe MR. Nitric oxide is less effective at inhibiting neointimal hyperplasia in spontaneously hypertensive rats. Nitric Oxide 2013; 35:165-74. [PMID: 24149190 DOI: 10.1016/j.niox.2013.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/14/2013] [Accepted: 10/10/2013] [Indexed: 11/15/2022]
Abstract
Exogenous administration of nitric oxide (NO) markedly decreases neointimal hyperplasia following arterial injury in several animal models. However, the effect of NO on neointimal hyperplasia in hypertension remains unknown. Here, we employ the spontaneously hypertensive rat (SHR) strain, inbred from Wistar Kyoto (WKY) rats, and the carotid artery balloon injury model to assess the effects of NO on neointimal hyperplasia development. 2weeks after arterial injury, we showed that both rat strains developed similar levels of neointimal hyperplasia, but local administration of NO was less effective at inhibiting neointimal hyperplasia in the SHR compared to WKY rats (58% vs. 79%, P<0.001). Interestingly, local administration of NO did not affect systemic blood pressure in either rat strain. Compared to WKY, the SHR displayed more proliferation in the media and adventitia following balloon injury, as measured by BrdU incorporation. The SHR also showed more inflammation in the adventitia after injury, as well as more vasa vasorum, than WKY rats. NO treatment reduced the vasa vasorum in the SHR but not WKY rats. Finally, while NO decreased both injury-induced proliferation and inflammation in the SHR, it did not return these parameters to levels seen in WKY rats. We conclude that NO is less effective at inhibiting neointimal hyperplasia in the SHR than WKY rats. This may be due to increased scavenging of NO in the SHR, leading to diminished bioavailability of NO. These data will help to develop novel NO-based therapies that will be equally effective in both normotensive and hypertensive patient populations.
Collapse
Affiliation(s)
- Nick D Tsihlis
- Division of Vascular Surgery, Northwestern University, Feinberg School of Medicine, United States; Institute for BioNanotechnology, Medicine Northwestern University, Feinberg School of Medicine, United States
| | | | | | | | | |
Collapse
|