1
|
Li Y, Ying W. Methylene blue reduces the serum levels of interleukin-6 and inhibits STAT3 activation in the brain and the skin of lipopolysaccharide-administered mice. Front Immunol 2023; 14:1181932. [PMID: 37325623 PMCID: PMC10266349 DOI: 10.3389/fimmu.2023.1181932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
It is valuable to search for novel and economical agents for inhibiting STAT3 activation and blocking increases in IL-6 levels, due to the important roles of STAT3 and IL-6 in inflammation. Since Methylene Blue (MB) has shown therapeutical potential for multiple diseases, it has become increasingly important to investigate the mechanisms underlying the effects of MB on inflammation. Using a mouse model of lipopolysaccharide (LPS)-induced inflammation, we investigated the mechanisms underlying the effects of MB on inflammation, obtaining the following findings: First, MB administration attenuated the LPS-induced increases in the serum levels of IL-6; second, MB administration attenuated LPS-induced STAT3 activation of the brain; and third, MB administration attenuated LPS-induced STAT3 activation of the skin. Collectively, our study has suggested that MB administration can decrease the levels of IL-6 and STAT3 activation - two important factors in inflammation. Since MB is a clinically used and relatively economical drug, our findings have suggested therapeutic potential of MB for multiple inflammation-associated diseases due to its effects on STAT3 activation and IL-6 levels.
Collapse
Affiliation(s)
| | - Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Luo W, Tao Y, Chen S, Luo H, Li X, Qu S, Chen K, Zeng C. Rosmarinic Acid Ameliorates Pulmonary Ischemia/Reperfusion Injury by Activating the PI3K/Akt Signaling Pathway. Front Pharmacol 2022; 13:860944. [PMID: 35645792 PMCID: PMC9132383 DOI: 10.3389/fphar.2022.860944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Pulmonary ischemia/reperfusion (IR) injury is the leading cause of acute lung injury, which is mainly attributed to reactive oxygen species (ROS) induced cell injuries and apoptosis. Since rosmarinic acid (RA) has been identified as an antioxidant natural ester, this natural compound might protect against pulmonary IR injury. In this study, the mice were given RA daily (50, 75, or 100 mg/kg) by gavage for 7 days before the pulmonary IR injury. We found that hypoxemia, pulmonary edema, and serum inflammation cytokines were aggravated in pulmonary IR injury. RA pretreatment (75 and 100 mg/kg) effectively reversed these parameters, while 50 mg/kg RA pretreatment was less pronounced. Our data also indicated RA pretreatment mitigated the upregulation of pro-oxidant NADPH oxidases (NOX2 and NOX4) and the downregulation of anti-oxidant superoxide dismutases (SOD1 and SOD2) upon IR injury. In vitro studies showed RA preserved the viability of anoxia/reoxygenation (AR)-treated A549 cells (a human lung epithelial cell line), and the results showed the protective effect of RA started at 5 μM concentration, reached its maximum at 15 μM, and gradually decreased at 20–25 μM. Besides, RA pretreatment (15 μM) greatly reduced the lactate dehydrogenase release levels subjected to AR treatment. Moreover, the results of our research revealed that RA eliminated ROS production and reduced alveolar epithelial cell apoptosis through activating the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, which was supported by using wortmannin, because in the presence of wortmannin, the RA-mediated protection was blocked. Meanwhile, wortmannin also reversed the protective effects of RA in mice. Together, our results demonstrate the beneficial role of RA in pulmonary IR injury via PI3K/Akt-mediated anti-oxidation and anti-apoptosis, which could be a promising therapeutic intervention for pulmonary IR injury.
Collapse
Affiliation(s)
- Wenbin Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Shengnan Chen
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoping Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Ken Chen
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Ken Chen, ; Chunyu Zeng,
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Ken Chen, ; Chunyu Zeng,
| |
Collapse
|
3
|
Effects of Methylene Blue on Ovarian Torsion-Detorsion Injury in a Rat Model. J Pediatr Adolesc Gynecol 2020; 33:506-510. [PMID: 32593749 DOI: 10.1016/j.jpag.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 06/15/2020] [Indexed: 02/05/2023]
Abstract
STUDY OBJECTIVES Methylene blue (MB) is an antioxidant that ameliorates ischemia-reperfusion injury in several tissues. We analyzed the effects of MB as an inhibitor of torsion-detorsion injury in rat ovaries. METHODS Rats were randomly divided into 5 groups. Group 1 was the sham group, in which only laparotomy was performed. Group 2 was the torsion group, with 3 hours of ischemia. Group 3 was the torsion + MB group, with 3 hours of ischemia after MB administration. Group 4 was the torsion-detorsion group, with 3 hours of ischemia and reperfusion. Finally, group 5 was the torsion-detorsion + MB group, with 3 hours of ischemia and MB administration before detorsion/reperfusion. Ovary injuries were histopathologically scored. Malondialdehyde (MDA) and total protein levels in ovarian tissues were determined, and long pentraxin-3 (PTX3) levels were measured in ovarian tissue using an enzyme-linked immunosorbent assay. RESULTS In comparing group 4 with group 5 and group 2 with 3, histopathological parameters reflecting injury were significantly increased in groups 4 and 2. Group 3 generated increased MDA levels when compared with group 2 (P < .05). However, there was no significant difference between groups 2 and 3 in terms of plasma PTX3 levels. MDA and PTX3 levels decreased in group 5 in comparison with group 4 for MDA (P < .000) and PTX3 levels (P < .01). CONCLUSIONS MB alleviated ischemia-reperfusion ovary injury in our experimental model.
Collapse
|
4
|
Creatine Supply Attenuates Ischemia-Reperfusion Injury in Lung Transplantation in Rats. Nutrients 2020; 12:nu12092765. [PMID: 32927837 PMCID: PMC7551831 DOI: 10.3390/nu12092765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is one of the factors limiting the success of lung transplantation (LTx). IRI increases death risk after transplantation through innate immune system activation and inflammation induction. Some studies have shown that creatine (Cr) protects tissues from ischemic damage by its antioxidant action. We evaluated the effects of Cr supplementation on IRI after unilateral LTx in rats. Sixty-four rats were divided into four groups: water + 90 min of ischemia; Cr + 90 min of ischemia; water + 180 min of ischemia; and Cr + 180 min of ischemia. Donor animals received oral Cr supplementation (0.5 g/kg/day) or vehicle (water) for five days prior to LTx. The left lung was exposed to cold ischemia for 90 or 180 min, followed by reperfusion for 2 h. We evaluated the ventilatory mechanics and inflammatory responses of the graft. Cr-treated animals showed a significant decrease in exhaled nitric oxide levels and inflammatory cells in blood, bronchoalveolar lavage fluid and lung tissue. Moreover, edema, cell proliferation and apoptosis in lung parenchyma were reduced in Cr groups. Finally, TLR-4, IL-6 and CINC-1 levels were lower in Cr-treated animals. We concluded that Cr caused a significant decrease in the majority of inflammation parameters evaluated and had a protective effect on the IRI after LTx in rats.
Collapse
|
5
|
Assessment of effects of methylene blue on intestinal ischemia and reperfusion in a rabbit model: hemodynamic, histological and immunohistochemical study. BMC Vet Res 2020; 16:54. [PMID: 32050965 PMCID: PMC7014715 DOI: 10.1186/s12917-020-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intestinal ischemia-reperfusion (IR) is an important clinical occurrence seen in common diseases, such as gastric dilatation-volvulus in dogs or colic in horses. Limited data is available on the use of methylene blue in veterinary medicine for intestinal ischemia-reperfusion. The present study aimed to compare the hemodynamic, histopathological, and immunohistochemical effects of two doses of methylene blue in two rabbit model groups In one group, 5 mg/kg IV was administered, and in another, 20 mg/kg IV was administered following a constant rate infusion (CRI) of 2 mg/kg/h that lasted 6 h. All the groups, including a control group had intestinal ischemia-reperfusion. Immunohistochemical analysis was performed using caspase-3. RESULTS During ischemia, hemodynamic depression with reduced perfusion and elevated lactate were observed. During reperfusion, methylene blue (MB) infusion generated an increase in cardiac output due to a positive chronotropic effect, an elevation of preload, and an intense positive inotropic effect. The changes in heart rate and blood pressure were significantly greater in the group in which methylene blue 5 mg/kg IV was administered (MB5) than in the group in which methylene blue 20 mg/kg IV dose was administered (MB20). In addition, lactate and stroke volume variations were significantly reduced, and vascular resistance was significantly elevated in the MB5 group compared with the control group and MB20 group. The MB5 group showed a significant decrease in the intensity of histopathological lesion scores in the intestines and a decrease in caspase-3 areas, in comparison with other groups. CONCLUSIONS MB infusion produced improvements in hemodynamic parameters in rabbits subjected to intestinal IR, with increased cardiac output and blood pressure. An MB dosage of 5 mg/kg IV administered at a CRI of 2 mg/kg/h exhibited the most protective effect against histopathological damage caused by intestinal ischemia-reperfusion. Further studies with MB in clinical veterinary pathologies are recommended to fully evaluate these findings.
Collapse
|
6
|
Miranda LE, Mente ED, Fernandes Molina CA, Sumarelli Albuquerque AA, Rubens de Nadai T, Arcêncio L, Basile-Filho A, Barbosa Evora PR. Methylene blue and the NO/cGMP pathway in solid organs transplants. Minerva Anestesiol 2020; 86:423-432. [PMID: 31994368 DOI: 10.23736/s0375-9393.20.13841-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway has a significative influence in hemodynamic changes that occur in transplants. Classically, the ischemia-reperfusion syndrome (IRS) is characterized by hypotension and low vascular resistance, when cGMP and nitric oxide (NO) are increased, contributing to oxidative stress, within an inflammatory context. These mechanisms occur in several types of transplants, such as liver, heart, lungs, kidney, which are a therapeutic choice in several clinical conditions when conventional treatments failed. It is well known the significant relation between graft dysfunction or rejection and ischemia-reperfusion injury that is linked to inflammatory response and NO/cGMP pathway activation. This review aims to study the NO/cGMP pathway in solid organ transplants. Finally, we inquire whether physicians do not underestimate the NO/cGMP pathway.
Collapse
Affiliation(s)
- Luiz E Miranda
- Division of Cardiothoracic Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Enio D Mente
- Division of Cardiothoracic Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carlos A Fernandes Molina
- Division of Cardiothoracic Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Agnes A Sumarelli Albuquerque
- Division of Cardiothoracic Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tales Rubens de Nadai
- Division of Cardiothoracic Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Livia Arcêncio
- Division of Cardiothoracic Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anibal Basile-Filho
- Division of Cardiothoracic Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo R Barbosa Evora
- Division of Cardiothoracic Surgery, Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil -
| |
Collapse
|
7
|
Abreu MDM, Almeida FMD, Santos KBD, Assis EACPD, Hamada RKF, Jatene FB, Pêgo-Fernandes PM, Pazetti R. Does methylene blue attenuate inflammation in nonischemic lungs after lung transplantation? J Bras Pneumol 2018; 44:378-382. [PMID: 30517338 PMCID: PMC6467587 DOI: 10.1590/s1806-37562017000000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 12/07/2017] [Indexed: 11/22/2022] Open
Abstract
Objective: To evaluate whether methylene blue (MB) could minimize the effects of ischemia-reperfusion injury in the nonischemic lung on a lung transplantation rodent model. Methods: Forty female Sprague-Dawley rats were divided into 20 donors and 20 recipients. The 20 recipient rats were divided into two groups (n = 10) according to the treatment (0.9% saline vs. 1% MB solutions). All animals underwent unilateral lung transplantation. Recipients received 2 mL of saline or MB intraperitoneally prior to transplantation. After 2 h of reperfusion, the animals were euthanized and histopathological and immunohistochemical analyses were performed in the nonischemic lung. Results: There was a significant decrease in inflammation-neutrophil count and intercellular adhesion molecule-1 (ICAM-1) expression in lung parenchyma were higher in the saline group in comparison with the MB group-and in apoptosis-caspase-3 expression was higher in the saline group and Bcl-2 expression was higher in MB group. Conclusions: MB is an effective drug for the protection of nonischemic lungs against inflammation and apoptosis following unilateral lung transplantation in rats.
Collapse
Affiliation(s)
- Marcus da Matta Abreu
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Francine Maria de Almeida
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Kelli Borges Dos Santos
- . Núcleo de Pesquisa em Transplante, Faculdade de Enfermagem, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
| | | | | | - Fabio Biscegli Jatene
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Paulo Manuel Pêgo-Fernandes
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Rogerio Pazetti
- . Departamento de Cardiopneumologia, Disciplina de Cirurgia Torácica, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| |
Collapse
|
8
|
Effect of Hepatic Preconditioning with the Use of Methylene Blue on the Liver of Wistar Rats Submitted to Ischemia and Reperfusion. Transplant Proc 2018; 50:841-847. [PMID: 29661450 DOI: 10.1016/j.transproceed.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The liver may be injured in situations where it is submitted to ischemia, such as partial hepatectomy and liver transplantation. In all cases, ischemia is followed by reperfusion and, although it is essential for the reestablishment of tissue function, reperfusion may cause greater damage than ischemia, an injury characterized as ischemia-reperfusion (I/R) damage. The aim of this work was to analyze the effect of ischemic preconditioning with the use of methylene blue (MB; 15 mg/kg) 5 or 15 minutes before I/R (IRMB5' and IRMB15', respectively) on the hepatic injury occurring after I/R. METHODS Twenty-eight male Wistar rats were used, and liver samples submitted to partial ischemia (IR) or not (NI) were obtained from the same animal. The samples were divided into 7 groups. Data were analyzed statistically by means of the nonparametric Mann-Whitney test and Wilcoxon Matched test, with the level of significance set at 5% (P < .05). RESULTS The rate of oxygen consumption by state 3 mitochondria was inhibited in all ischemic groups compared with the sham group (SH vs IR: P = .0052; SH vs IRMB5': P = .0006; SH vs IRMB15': P = .0048), which did not occur in the nonischemic contralateral portion of the same liver (SH vs NI: P = .7652; SH vs NIMB5': P = .059; SH vs NIMB15': P = .3153). The inhibition of the rate of oxygen consumption by state 3 mitochondria was maintained in the presence of MB (IR vs IRMB5': P = .4563; IR vs IRMB15': P = .9021). The respiratory control ratio was reduced in all ischemic groups compared with the sham group, owing to the inhibition of oxygen consumption in state 3 (SH vs IR: P = .0151; SH vs IRMB5': P = .005; SH vs IRMB15': P = .0007). CONCLUSIONS Methylene blue had no effect on the mitochondrial respiratory parameters studied, but was able to reduce lipid peroxidation, preventing the production of reactive oxygen species (SH vs IRMB15': P = .0210).
Collapse
|
9
|
Privistirescu AI, Sima A, Duicu OM, Timar R, Roșca MG, Sturza A, Muntean DM. Methylene blue alleviates endothelial dysfunction and reduces oxidative stress in aortas from diabetic rats. Can J Physiol Pharmacol 2018; 96:1012-1016. [PMID: 29894646 DOI: 10.1139/cjpp-2018-0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction and the related increase in reactive oxygen species (ROS) production are important events in the pathophysiology of diabetes mellitus (DM). Methylene blue (MB) has been systematically investigated for its protective effects against refractory hypotension and mitochondrial dysfunction. We have previously demonstrated that MB improved mitochondrial respiration and partially decreased oxidative stress in diabetic rat hearts. The present study was aimed to investigate whether MB modulates vascular function and ROS production in thoracic aortic rings isolated from rats with streptozotocin-induced DM (after 4 weeks of hyperglycemia). The effects of MB (0.1 μM, 30 min ex vivo incubation) on vascular reactivity in organ chamber (phenylephrine-induced contraction, acetylcholine-induced relaxation) and H2O2 production (assessed by ferrous iron xylenol orange oxidation assay) were investigated in vascular preparations with intact endothelium and after denudation. DM elicited a significant alteration of vascular function: increased contractility to phenylephrine, attenuation of acetylcholine-dependent relaxation, and augmented H2O2 generation. Ex vivo incubation with MB partially reversed all these changes (by approximately 70%) in vascular segments with intact endothelial layer (but not in denuded vessels). In conclusion, MB might be useful in alleviating endothelial dysfunction and mitigating endothelial oxidative stress, observations that clearly require further investigation in the setting of cardiometabolic disease.
Collapse
Affiliation(s)
- Andreea I Privistirescu
- a Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Alexandra Sima
- b Department of Internal Medicine II - Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Oana M Duicu
- a Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Romulus Timar
- b Department of Internal Medicine II - Diabetes, Nutrition and Metabolic Diseases, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Mariana G Roșca
- d Department of Foundational Sciences, Central Michigan University College of Medicine, 2630 Denison Drive, Research Building Room 105, Mount Pleasant, MI 48858, USA
| | - Adrian Sturza
- a Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Danina M Muntean
- a Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| |
Collapse
|
10
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
11
|
Methylene Blue Attenuates Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats. Mediators Inflamm 2018; 2018:2508620. [PMID: 29713238 PMCID: PMC5866857 DOI: 10.1155/2018/2508620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/13/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022] Open
Abstract
Objective This study was aimed to investigate the protective effect of methylene blue against lung injury induced by reperfusion of ischemic hindlimb in a rat model. Methods Twenty-four healthy adult male Sprague-Dawley rats were equally randomized into three groups: sham (SM) group, ischemia reperfusion (IR) group, and methylene blue (MB) group. Rats in both IR and MB groups were subjected to 4 h of ischemia by clamping the left femoral artery and then followed by 4 h of reperfusion. Treatment with 1% methylene blue (50 mg/kg) was administrated intraperitoneally at 10 min prior to reperfusion in the MB group. After 4 h of reperfusion, malondialdehyde (MDA) level, myeloperoxidase (MPO), and superoxide dismutase (SOD) activities in lung tissue were detected; inflammatory cytokines, including IL-1β and IL-6, were measured in bronchoalveolar lavage fluid (BALF); correspondingly, the morphological changes and water content in both gastrocnemius muscle and lung samples were evaluated. Results Hindlimb IR caused remarkable morphological abnormalities and edema in both muscle and lung tissues. SOD activity was decreased, both the MPO activity and MDA level in lung tissue, as well as IL-1β and IL-6 levels in BALF, were increased in the IR group (p < 0.05). Compared with the IR group, SOD activity was increased, whereas MPO activity and MDA level in lung tissue and IL-1β and IL-6 levels in BALF were decreased in the MB group (p < 0.05). Also, the histological damage and edema in both lung and muscle tissues were significantly attenuated by the treatment of methylene blue. Conclusion Methylene blue attenuates lung injury induced by hindlimb IR in rats, at least in part, by inhibiting oxidative stress.
Collapse
|
12
|
Heme oxygnease-1 induction by methylene blue protects RAW264.7 cells from hydrogen peroxide-induced injury. Biochem Pharmacol 2018; 148:265-277. [PMID: 29309766 DOI: 10.1016/j.bcp.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/04/2018] [Indexed: 01/23/2023]
Abstract
Although methylene blue (MB) has showed strong antioxidant effect, its effect related with heme oxygenase-1 (HO-1) is still unclear. Thus, we investigated the effects of MB on HO-1 protein content and enzyme activity, and its protective effect against hydrogen peroxide (H2O2)-induced oxidative damage in RAW264.7 macrophage. The cell viability and the release of lactate dehydrogenase of RAW264.7 were determined. The mitochondrial functions were valuated through these indexes: content of adenosine triphosphate, superoxide dismutase, concentration of reactive oxygen species and mitochondrial membrane potential. Meanwhile, high content screening tested generation of ROS, MMP and intracellular concentration of calcium ion. qRT-PCR valuated macrophage phenotype markers expression. Lastly, flow cytometry and caspase-3 detection analyzed RAW264.7 apoptosis. Our data showed that (1) Both pretreatment and posttreatment of MB increased HO-1 protein content and enzyme activity; (2) MB rescued cells from H2O2-induced mitochondrial dysfunction; (3) High content screening revealed that MB alleviated the changes including generation of reactive oxygen species, mitochondrial membrane potential and intracellular concentration of calcium ion in H2O2 exposed RAW264.7; (4) MB attenuated H2O2-induced apoptosis; (5) MB pretreatment decreased the expression of M1 macrophage markers (Tnf and Nos2) while increasing the expression of M2 macrophage markers (Mrc1 and Il10); (6) The beneficial effect of MB was abolished by zinc protoporphyrin IX (HO-1 activity inhibitor) or HO-1 siRNA. In summary, MB protects RAW264.7 cells from H2O2-induced injury through up-regulation HO-1.
Collapse
|
13
|
Tian WF, Zeng S, Sheng Q, Chen JL, Weng P, Zhang XT, Yuan JJ, Pang QF, Wang ZQ. Methylene Blue Protects the Isolated Rat Lungs from Ischemia-Reperfusion Injury by Attenuating Mitochondrial Oxidative Damage. Lung 2017; 196:73-82. [PMID: 29204685 DOI: 10.1007/s00408-017-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Impaired mitochondrial function is a key factor attributing to the lung ischemia reperfusion injury (LIRI). Methylene blue (MB) has been reported to attenuate brain and renal ischemia-reperfusion injury. We hypothesized that MB also could have a protective effect against LIRI by preventing mitochondrial oxidative damage. METHODS Isolated rat lungs were assigned to the following four groups (n = 6): a sham group: perfusion for 105 min without ischemia; I/R group: shutoff of perfusion and ventilation for 45 min followed by reperfusion for 60 min; and I/R + MB group and I/R + glutathione (GSH) group: 2 mg/kg MB or 4 μM glutathione were intraperitoneally administered for 2 h, and followed by 45 min of ischemia and 60 min of reperfusion. RESULTS MB lessened pulmonary dysfunction and severe histological injury induced by ischemia-reperfusion injury. MB reduced the production of reactive oxygen species and malondialdehyde and enhanced the activity of superoxide dismutase. MB also suppressed the opening of the mitochondrial permeability transition pore and partly preserved mitochondrial membrane potential. Moreover, MB inhibited the release of cytochrome c from the mitochondria into the cytosol and decreased apoptosis. Additionally, MB downregulated the mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18). CONCLUSION MB protects the isolated rat lungs against ischemia-reperfusion injury by attenuating mitochondrial damage.
Collapse
Affiliation(s)
- Wen-Fang Tian
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qiong Sheng
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Jun-Liang Chen
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Ping Weng
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Xiao-Tong Zhang
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Jia-Jia Yuan
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Qing-Feng Pang
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China.
| | - Zhi-Qiang Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jiangnan University, No. 200, Huihe Road, 214062, Wuxi, China.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Lungs are extremely susceptible to injury, and despite advances in surgical management and immunosuppression, outcomes for lung transplantation are the worst of any solid organ transplant. The success of lung transplantation is limited by high rates of primary graft dysfunction because of ischemia-reperfusion injury characterized by robust inflammation, alveolar damage, and vascular permeability. This review will summarize major mechanisms of lung ischemia-reperfusion injury with a focus on the most recent findings in this area. RECENT FINDINGS Over the past 18 months, numerous studies have described strategies to limit lung ischemia-reperfusion injury in experimental settings, which often reveal mechanistic insight. Many of these strategies involved the use of various antioxidants, anti-inflammatory agents, mesenchymal stem cells, and ventilation with gaseous molecules. Further advancements have been achieved in understanding mechanisms of innate immune cell activation, neutrophil infiltration, endothelial barrier dysfunction, and oxidative stress responses. SUMMARY Methods for prevention of primary graft dysfunction after lung transplant are urgently needed, and understanding mechanisms of ischemia-reperfusion injury is critical for the development of novel and effective therapeutic approaches. In doing so, both acute and chronic outcomes of lung transplant recipients will be significantly improved.
Collapse
|
15
|
Huang C, Hu W, Wang J, Tong L, Lu X, Wu F, Ling Y, Jiang B, Zhang W, Chen Z, Xiong Q, Qin Y, Yang R. Methylene blue increases the amount of HSF1 through promotion of PKA-mediated increase in HSF1-p300 interaction. Int J Biochem Cell Biol 2017; 84:75-88. [DOI: 10.1016/j.biocel.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
16
|
Zhao X, Zeng Q, Ren G, Cao J, Dou J, Gao Q. Pulmonary injury at the anhepatic phase without veno-venous bypass in portal hypertensive rats. Clin Exp Hypertens 2016; 38:624-630. [PMID: 27653544 DOI: 10.1080/10641963.2016.1182179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In order to understand the characterization and evolution of pulmonary injury, a portal hypertension rat model was used to imitate the anhepatic phase during standard orthotopic liver transplantation without veno-venous bypass. METHODS In this study, 135 healthy male Wistar rats were selected; in which 15 rats were assigned in the normal control (NC) group and the remaining 120 rats were used to establish a recoverable prehepatic portal hypertension model, which were further evenly divided into eight groups after ischemia-reperfusion: portal hypertensive control group (PHTC), R0h, R6h, R12h, R24h, R48h, R72h, and R7d groups. Meanwhile, arterial blood pressure, dry-to-wet weight ratios of the lung, alanine aminotransferase (ALT) level in serum, arterial oxygen pressure (PaO2), and myeloperoxidase (MPO) activity in lung tissue were measured. Morphology changes of the lung were observed using an optical microscope and a transmission electron microscope. RESULTS The portal hypertension rat model was successfully established three weeks after the first operation. These portal hypertensive rats could withstand 1 hour at the anhepatic phase. Pulmonary injury severity increased to the most at 12-24 hours, and decreased to normal at seven days after reperfusion. CONCLUSION Ischemia-reperfusion injury is an important mechanism that results in pulmonary injury after liver transplantation. It is safe for portal hypertensive rats to tolerate 1 hour at the anhepatic phase. Pulmonary injury was the most severe within 12-24 hours after ischemia-reperfusion.
Collapse
Affiliation(s)
- Xin Zhao
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Qiang Zeng
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Guijun Ren
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Jinglin Cao
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Jian Dou
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Qingjun Gao
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| |
Collapse
|
17
|
Mehaffey JH, Charles EJ, Sharma AK, Money DT, Zhao Y, Stoler MH, Lau CL, Tribble CG, Laubach VE, Roeser ME, Kron IL. Airway pressure release ventilation during ex vivo lung perfusion attenuates injury. J Thorac Cardiovasc Surg 2016; 153:197-204. [PMID: 27742245 DOI: 10.1016/j.jtcvs.2016.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/13/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Critical organ shortages have resulted in ex vivo lung perfusion gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of donation after circulatory death organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation during ex vivo lung perfusion improves lung function after transplantation. METHODS Two groups (n = 4 animals/group) of porcine donation after circulatory death donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of ex vivo lung perfusion rehabilitation with standard conventional volume-based ventilation or pressure-based airway pressure release ventilation. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for partial pressure of oxygen/inspired oxygen fraction ratios, airway pressures for calculation of compliance, and percent wet weight gain during ex vivo lung perfusion and reperfusion were measured. RESULTS Airway pressure release ventilation during ex vivo lung perfusion significantly improved left lung oxygenation at 2 hours (561.5 ± 83.9 mm Hg vs 341.1 ± 136.1 mm Hg) and 4 hours (569.1 ± 18.3 mm Hg vs 463.5 ± 78.4 mm Hg). Likewise, compliance was significantly higher at 2 hours (26.0 ± 5.2 mL/cm H2O vs 15.0 ± 4.6 mL/cm H2O) and 4 hours (30.6 ± 1.3 mL/cm H2O vs 17.7 ± 5.9 mL/cm H2O) after transplantation. Finally, airway pressure release ventilation significantly reduced lung edema development on ex vivo lung perfusion on the basis of percentage of weight gain (36.9% ± 14.6% vs 73.9% ± 4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. CONCLUSIONS Pressure-directed airway pressure release ventilation strategy during ex vivo lung perfusion improves the rehabilitation of severely injured donation after circulatory death lungs. After transplant, these lungs demonstrate superior lung-specific oxygenation and dynamic compliance compared with lungs ventilated with standard conventional ventilation. This strategy, if implemented into clinical ex vivo lung perfusion protocols, could advance the field of donation after circulatory death lung rehabilitation to expand the lung donor pool.
Collapse
Affiliation(s)
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Dustin T Money
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Mark H Stoler
- Department of Pathology, University of Virginia, Charlottesville, Va
| | - Christine L Lau
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Curtis G Tribble
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Mark E Roeser
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Va.
| |
Collapse
|
18
|
Chen JL, Dai L, Zhang P, Chen W, Cai GS, Qi XW, Hu MZ, Du B, Pang QF. Methylene blue attenuates acute liver injury induced by paraquat in rats. Int Immunopharmacol 2015; 28:808-12. [DOI: 10.1016/j.intimp.2015.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/28/2022]
|