1
|
Lu Q, Liu Z, He W, Chu X. Retracted article: Protective effects of ulinastatin on rats with acute lung injury induced by lipopolysaccharide. Bioengineered 2024; 15:1987083. [PMID: 34637694 PMCID: PMC10813561 DOI: 10.1080/21655979.2021.1987083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022] Open
Abstract
Qitong Lu, Zhiyong Liu, Wei He and Xin Chu. Protective effects of ulinastatin on rats with acute lung injury induced by lipopolysaccharide. Bioengineered. 2021 Oct. doi: 10.1080/21655979.2021.1987083.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines. The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Qitong Lu
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, P. R. China
| | - Zhiyong Liu
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, P. R. China
| | - Wei He
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, P. R. China
| | - Xin Chu
- Department of Cardiothoracic Surgery, Zhongda Hospital, Southeast University, Nanjing, P. R. China
| |
Collapse
|
2
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
3
|
Bao K, Wang M, Liu L, Zhang D, Jin C, Zhang J, Shi L. Jinhong decoction protects sepsis-associated acute lung injury by reducing intestinal bacterial translocation and improving gut microbial homeostasis. Front Pharmacol 2023; 14:1079482. [PMID: 37081964 PMCID: PMC10110981 DOI: 10.3389/fphar.2023.1079482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Currently no specific treatments are available for sepsis and the associated syndromes including acute lung injury (ALI). Jinhong Decoction (JHD) is a traditional Chinese prescription, and it has been applied clinically as an efficient and safe treatment for sepsis, but the underlying mechanism remains unknown. The aim of the study was to explore the potential mechanisms of JHD ameliorating sepsis and concurrent ALI.Methods: The cecum ligation puncture (CLP)- induced murine sepsis model was established for determining the efficacy of JHD protecting CLP and ALI. The role of gut microbiota involved in the efficacy of JHD was evaluated by 16S rRNA sequencing and fecal microbiota transplantation (FMT). Translocation of intestinal Escherichia coli (E. coli) to lungs after CLP was verified by qPCR and in vivo-imaging. Intestinal permeability was analyzed by detecting FITC-dextran leakness. Junction proteins were evaluated by Western blotting and immunofluorescence.Results: JHD treatment remarkably increased survival rate of septic mice and alleviated sepsis-associated lung inflammation and injury. FMT suggested that the protective role for JHD was mediated through the regulation of gut microbiota. We further revealed that JHD administration partially restored the diversity and configuration of microbiome that was distorted by CLP operation. Of interest, the intestinal bacteria, E. coli particularly, was found to translocate into the lungs upon CLP via disrupting the intestinal mucosal barrier, leading to the inflammatory response and tissue damage in lungs. JHD impeded the migration and hence lung accumulation of intestinal E. coli, and thereby prevented severe ALI associated with sepsis. This effect is causatively related with the ability of JHD to restore intestinal barrier by up-regulating tight junctions.Conclusion: Our study unveils a mechanism whereby the migration of gut bacteria leads to sepsis-associated ALI, and we demonstrate the potential of JHD as an effective strategy to block this bacterial migration for treating sepsis and the associated immunopathology in the distal organs.
Collapse
Affiliation(s)
- Kaifan Bao
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meiling Wang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Liu
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongya Zhang
- Department of Medical Microbiology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Junfeng Zhang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liyun Shi
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- *Correspondence: Liyun Shi,
| |
Collapse
|
4
|
Li L, Wu Y, Wang J, Yan H, Lu J, Wang Y, Zhang B, Zhang J, Yang J, Wang X, Zhang M, Li Y, Miao L, Zhang H. Potential Treatment of COVID-19 with Traditional Chinese Medicine: What Herbs Can Help Win the Battle with SARS-CoV-2? ENGINEERING (BEIJING, CHINA) 2022; 19:139-152. [PMID: 34729244 PMCID: PMC8552808 DOI: 10.1016/j.eng.2021.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
Traditional Chinese medicine (TCM) has been successfully applied worldwide in the treatment of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the pharmacological mechanisms underlying this success remain unclear. Hence, the aim of this review is to combine pharmacological assays based on the theory of TCM in order to elucidate the potential signaling pathways, targets, active compounds, and formulas of herbs that are involved in the TCM treatment of COVID-19, which exhibits combatting viral infections, immune regulation, and amelioration of lung injury and fibrosis. Extensive reports on target screening are elucidated using virtual prediction via docking analysis or network pharmacology based on existing data. The results of these reports indicate that an intricate regulatory mechanism is involved in the pathogenesis of COVID-19. Therefore, more pharmacological research on the natural herbs used in TCM should be conducted in order to determine the association between TCM and COVID-19 and account for the observed therapeutic effects of TCM against COVID-19.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiabao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huimin Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Pharmacological Effects of Marine-Derived Enterococcus faecium EA9 against Acute Lung Injury and Inflammation in Cecal Ligated and Punctured Septic Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5801700. [PMID: 34912891 PMCID: PMC8668278 DOI: 10.1155/2021/5801700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Microorganisms obtained from the marine environment may represent a potential therapeutic value for multiple diseases. This study explored the possible protective role of marine-derived potential probiotic Enterococcus faecium EA9 (E. faecium) against pulmonary inflammation and oxidative stress using the cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Animals were pretreated with E. faecium for 10 days before either sham or CLP surgeries. Animals were sacrificed 72 hours following the surgical intervention. The histological architecture of lung tissues was evaluated as indicated by the lung injury score. In addition, the extend of pulmonary edema was determined as wet/dry weight ratio. The inflammatory cytokines were estimated in lung tissues, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) using the enzyme-linked-immunosorbent-assay (ELISA) technique. Moreover, markers for lipid peroxidation such as thiobarbituric acid reaction substances (TBARs), and endogenous antioxidants, including reduced glutathione (GSH) were determined in lung tissues. Finally, the enzymatic activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were assayed in the lungs. Pretreatment with E. faecium markedly attenuated CLP-induced lung injury and pulmonary edema. Markers for inflammation, including TNF-α, IL-6, and IL-1β were augmented in the lung tissues of CLP animals, while E. faecium ameliorated their augmented levels. E. faecium pretreatment also restored the elevated TBARS levels and the prohibited CAT, SOD, and GPx enzymatic activities in CLP animals. GSH levels were corrected by E. faecium in CLP animals. The inflammatory and lipid peroxidation mediators were positively correlated, while antioxidant enzymatic activities were negatively correlated with CLP-induced lung injury and pulmonary edema. Collectively, marine-derived Enterococcus faecium EA9 might be considered as a prospective therapeutic tool for the management of pulmonary dysfunction associated with sepsis.
Collapse
|
6
|
Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci 2021; 22:11078. [PMID: 34681737 PMCID: PMC8540716 DOI: 10.3390/ijms222011078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; the pathophysiology of sepsis is complex. The incidence of sepsis is steadily increasing, with worldwide mortality ranging between 30% and 50%. Current treatment approaches mainly rely on the timely and appropriate administration of antimicrobials and supportive therapies, but the search for pharmacotherapies modulating the host response has been unsuccessful. Chinese herbal medicines, i.e., Chinese patent medicines, Chinese herbal prescriptions, and single Chinese herbs, play an important role in the treatment of sepsis through multicomponent, multipathway, and multitargeting abilities and have been officially recommended for the management of COVID-19. Chinese herbal medicines have therapeutic actions promising for the treatment of sepsis; basic scientific research on these medicines is increasing. However, the material bases of most Chinese herbal medicines and their underlying mechanisms of action have not yet been fully elucidated. This review summarizes the current studies of Chinese herbal medicines used for the treatment of sepsis in terms of clinical efficacy and safety, pharmacological activity, phytochemistry, bioactive constituents, mechanisms of action, and pharmacokinetics, to provide an important foundation for clarifying the pathogenesis of sepsis and developing novel antisepsis drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
| | | |
Collapse
|
7
|
Martorell M, Castro N, Victoriano M, Capó X, Tejada S, Vitalini S, Pezzani R, Sureda A. An Update of Anthraquinone Derivatives Emodin, Diacerein, and Catenarin in Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3313419. [PMID: 34589130 PMCID: PMC8476274 DOI: 10.1155/2021/3313419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is part of metabolic diseases and is characterized by high blood sugar levels over a prolonged period as result of an insulin-deficient production or an inappropriate response to insulin by our cells. This chronic disease was the direct cause of 1.6 million deaths in 2016 as reported by the World Health Organization. Emodin is a natural product and active ingredient of various Chinese herbs with the chemical formula 1,3,8-trihydroxy-6-methylanthraquinone. Diacerein is another naturally occurring anthraquinone (1,8-diacetoxy-3-carboxyanthraquinone) commonly used as commercial drug to treat osteoarthritis. These two anthraquinone derivatives have been shown to exert antidiabetic activities. Emodin seems to enhance the glucose tolerance and insulin sensibility via activation of PPARγ and modulation of metabolic-related genes. Diacerein seems to decrease inflammatory cytokines and increase insulin secretion enhancing insulin sensibility and therefore improving glucose control. Other naturally occurring anthraquinone derivatives, such as catenarin (1,4,6,8-tetrahydroxy-3-methylanthraquinone), have been shown to have antidiabetic activities although few studies have been performed. The synthesis of new emodin derivatives is increasing, but these new molecules have not been tested for diabetes treatment. In the current work, available literature on anthraquinone derivatives' effects in diabetes disease is reviewed. Moreover, we discuss the chemistry, food sources, bioavailability, and toxicity of the naturally occurring anthraquinone with antidiabetic effects.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Natalia Castro
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University Research Institute of Health Sciences (IUNICS), University of Balearic Islands, Palma E-07122, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2 20133, Milan, Italy
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma de Mallorca 07122, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid E-28029, Spain
- Research Institute of the Balearic Islands, Palma de Mallorca E-07120, Spain
| |
Collapse
|
8
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
9
|
Svitina H, Hamman JH, Gouws C. Molecular mechanisms and associated cell signalling pathways underlying the anticancer properties of phytochemical compounds from Aloe species (Review). Exp Ther Med 2021; 22:852. [PMID: 34178125 PMCID: PMC8220653 DOI: 10.3892/etm.2021.10284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Naturally occurring components from various species of Aloe have been used as traditional folk medicine since the ancient times. Over the last few decades, the therapeutic effects of extracts and phytochemical compounds obtained from Aloe vera have been proven in preclinical and clinical studies. Recently, compounds from other Aloe species apart from Aloe vera have been investigated for the treatment of different diseases, with a particular focus on cancer. In the present review, the effects of phytochemical compounds obtained from different Aloe species are discussed, with a specific focus on the effects on cell signalling in cancer and normal cells, and their selectivity and efficacy. This information will be useful for the application of Aloe-derived compounds as therapeutic agents, either alone or in combination with other standard drugs for cancer treatment.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of NASU, Kyiv 03143, Ukraine
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa
| |
Collapse
|
10
|
Swentek L, Chung D, Ichii H. Antioxidant Therapy in Pancreatitis. Antioxidants (Basel) 2021; 10:657. [PMID: 33922756 PMCID: PMC8144986 DOI: 10.3390/antiox10050657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatitis is pathologic inflammation of the pancreas characterized by acinar cell destruction and oxidative stress. Repeated pancreatic insults can result in the development of chronic pancreatitis, characterized by irreversible fibrosis of the pancreas and many secondary sequelae, ultimately leading to the loss of this important organ. We review acute pancreatitis, chronic pancreatitis, and pancreatitis-related complications. We take a close look at the pathophysiology with a focus on oxidative stress and how it contributes to the complications of the disease. We also take a deep dive into the evolution and current status of advanced therapies for management including dietary modification, antioxidant supplementation, and nuclear factor erythroid-2-related factor 2-Kelch-like ECH-associated protein 1(Nrf2-keap1) pathway activation. In addition, we discuss the surgeries aimed at managing pain and preventing further endocrine dysfunction, such as total pancreatectomy with islet auto-transplantation.
Collapse
Affiliation(s)
| | | | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (D.C.)
| |
Collapse
|
11
|
Mu S, Zhang J, Du S, Zhu M, Wei W, Xiang J, Wang J, Han Y, Zhao Y, Zheng H, Tong C, Song Z. Gut microbiota modulation and anti-inflammatory properties of Xuanbai Chengqi decoction in septic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113534. [PMID: 33137434 DOI: 10.1016/j.jep.2020.113534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanbai Chengqi decoction (XBCQ), a traditional Chinese medicine formulation, was reported to have a protective role in a variety of pulmonary infection diseases. However, its mechanism remains uncertain. In the current study, we investigated the potential mechanism of XBCQ, its therapeutic effects on organ injuries induced by sepsis and gut microbiota modulation. MATERIAL AND METHODS 80 Male Sprague Dawley rats were performed cecal ligation and puncture (CLP) for sepsis model and 60 of them were treated with different doses of XBCQ (3.78, 7.56, 15.12 g/Kg, 20 rats per group) twice per day. After the most valid dose was determined, another 40 rats were divided randomly into four groups: sham group, sham + XBCQ group, sepsis group, sepsis + XBCQ group. The sepsis + XBCQ group was treated with XBCQ by intragastric administration and then twice per day. Feces of the rats were collected and the gut microbiota constituents were analyzed by 16S rDNA sequencing. Histological changes were observed by H&E staining. Occludin content in the colon was determined by immunohistochemical analysis. The concentrations of cytokines were determined by enzyme-linked immunosorbent assay (ELISA) kits. RESULTS The survival rate of septic rats was increased significantly at the dose of 7.56 g/Kg from 50% to 80% at 72 h. The gut microbiota richness and composition were disturbed in septic rats. XBCQ altered the gut microbiota, involving alpha diversity changes, significantly reducing the relative abundance of Bacteroidaceae and ClostridiumXI and increasing that of Firmicutes and Actinobacteria. Furthermore, the relative abundances of Lactobacillus, Butyricicoccus and Bifidobacterium were increased by XBCQ. Moreover, the gut barrier dysfunction was improved by XBCQ through restoring the impaired tight conjunction protein Occludin. The concentration of diamine oxidase was decreased, while the D-lactate level was elevated. Meanwhile, the level of myeloperoxidase (MPO) in the lung tissue of the XBCQ-treated group was reduced. Lung injury was also alleviated by decreased levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 10 (IL-10) in bronchoalveolar lavage fluids (BALFs). The relative abundance of potential microbial biomarkers in four groups significantly correlated with the concentration of inflammatory factors in BALFs. CONCLUSIONS Our results suggested that XBCQ had a protective role against sepsis by modulating the gut microbiota, restoring the intestinal epithelial barrier and decreasing inflammatory responses.
Collapse
Affiliation(s)
- Sucheng Mu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Jin Zhang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Shilin Du
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Ming Zhu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Wei Wei
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Jianli Wang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Yi Han
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Yingjun Zhao
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Huajun Zheng
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, 2140 Xietu Road, Shanghai, 200032, PR China.
| | - Chaoyang Tong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China.
| | - Zhenju Song
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China.
| |
Collapse
|
12
|
Darzi S, Paul K, Leitan S, Werkmeister JA, Mukherjee S. Immunobiology and Application of Aloe Vera-Based Scaffolds in Tissue Engineering. Int J Mol Sci 2021; 22:1708. [PMID: 33567756 PMCID: PMC7915752 DOI: 10.3390/ijms22041708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aloe vera (AV), a succulent plant belonging to the Liliaceae family, has been widely used for biomedical and pharmaceutical application. Its popularity stems from several of its bioactive components that have anti-oxidant, anti-microbial, anti-inflammatory and even immunomodulatory effects. Given such unique multi-modal biological impact, AV has been considered as a biomaterial for regenerative medicine and tissue engineering applications, where tissue repair and neo-angiogenesis are vital. This review outlines the growing scientific evidence that demonstrates the advantage of AV as tissue engineering scaffolds. We particularly highlight the recent advances in the application of AV-based scaffolds. From a tissue engineering perspective, it is pivotal that the implanted scaffolds strike an appropriate foreign body response to be well-accepted in the body without complications. Herein, we highlight the key cellular processes that regulate the foreign body response to implanted scaffolds and underline the immunomodulatory effects incurred by AV on the innate and adaptive system. Given that AV has several beneficial components, we discuss the importance of delving deeper into uncovering its action mechanism and thereby improving material design strategies for better tissue engineering constructs for biomedical applications.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shanilka Leitan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
13
|
Xu C, Luo Y, Ntim M, Quan W, Li Z, Xu Q, Jiang L, Zhang J, Shang D, Li L, Zhang G, Chen H. Effect of emodin on long non-coding RNA-mRNA networks in rats with severe acute pancreatitis-induced acute lung injury. J Cell Mol Med 2021; 25:1851-1866. [PMID: 33438315 PMCID: PMC7882958 DOI: 10.1111/jcmm.15525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to disease pathogenesis and drug treatment effects. Both emodin and dexamethasone (DEX) have been used for treating severe acute pancreatitis-associated acute lung injury (SAP-ALI). However, lncRNA regulation networks related to SAP-ALI pathogenesis and drug treatment are unreported. In this study, lncRNAs and mRNAs in the lung tissue of SAP-ALI and control rats, with or without drug treatment (emodin or DEX), were assessed by RNA sequencing. Results showed both emodin and DEX were therapeutic for SAP-ALI and that mRNA and lncRNA levels differed between untreated and treated SAP-ALI rats. Gene expression profile relationships for emodin-treated and control rats were higher than DEX-treated and -untreated animals. By comparison of control and SAP-ALI animals, more up-regulated than down-regulated mRNAs and lncRNAs were observed with emodin treatment. For DEX treatment, more down-regulated than up-regulated mRNAs and lncRNAs were observed. Functional analysis demonstrated both up-regulated mRNA and co-expressed genes with up-regulated lncRNAs were enriched in inflammatory and immune response pathways. Further, emodin-associated lncRNAs and mRNAs co-expressed modules were different from those associated with DEX. Quantitative polymerase chain reaction demonstrates selected lncRNA and mRNA co-expressed modules were different in the lung tissue of emodin- and DEX-treated rats. Also, emodin had different effects compared with DEX on co-expression network of lncRNAs Rn60_7_1164.1 and AABR07062477.2 for the blue lncRNA module and Nrp1 for the green mRNA module. In conclusion, this study provides evidence that emodin may be a suitable alternative or complementary medicine for treating SAP-ALI.
Collapse
Affiliation(s)
- Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Michael Ntim
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Weili Quan
- Center for Genome Analysis, ABLife Inc, Wuhan, China
| | - Zhaoxia Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qiushi Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Liu Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jingwen Zhang
- Endoscopy Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Zhang L, Zhang H, Wang L, Fan Y, Zhang C, Li X, Han D, Ji C. Protective Effects of Emodin on Lung Injuries in Rat Models of Liver Fibrosis. Open Life Sci 2019; 14:611-618. [PMID: 33817199 PMCID: PMC7874798 DOI: 10.1515/biol-2019-0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
Objective The aim of this study is to investigate the protective effects of emodin (EMD) on the lung injuries in the rat models of liver fibrosis. Methods Liver fibrosis was established in rats and the effect of intervention using EMD treatment was determined. Liver and lung weight coefficients were measured and lung content of TNF-α (tumor necrosis factor α), MDA (malondialdehyde), NO (nitric oxide), and ONOO- (peroxynitrite) were determined. Finally, histopathological changes were evaluated. Results Compared with the normal control group, the lung weight coefficient was significantly increased in the fibrosis model group. Moreover, pulmonary edema and inflammatory responses were observed. Levels of TNF-α, MDA, NO, and ONOO- in the lung homogenate were significantly increased in the fibrosis model group. After EMD treatment, the lung weight coefficients were significantly reduced. Moreover, pathological changes in the lung tissue were dramatically alleviated. Levels of TNF-α, MDA, NO, and ONOO- were significantly decreased. Conclusion EMD exhibits protective effects against lung injuries in a rat model of liver fibrosis.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Pathophysiology, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi, Shanxi 046000, China
| | - Huiying Zhang
- Department of Pathophysiology, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi, Shanxi 046000, China
| | - Limin Wang
- Function Laboratory, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Yimin Fan
- Function Laboratory, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Cuiying Zhang
- Department of Pathophysiology, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi, Shanxi 046000, China
| | - Xujiong Li
- Department of Pathophysiology, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi, Shanxi 046000, China
| | - Dewu Han
- Institute of Liver Diseases, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Cheng Ji
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Loa Angeles, CA 90089, USA
| |
Collapse
|
15
|
Dong Y, Zhang L, Jiang Y, Dai J, Tang L, Liu G. Emodin reactivated autophagy and alleviated inflammatory lung injury in mice with lethal endotoxemia. Exp Anim 2019; 68:559-568. [PMID: 31292306 PMCID: PMC6842802 DOI: 10.1538/expanim.19-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An uncontrolled inflammation induced critical health problems with serious morbidity and
death, which namely acute lung injury (ALI). Recently researchs have found the
anti-inflammatory effects of emodin. Here, we investigated the potential effects of emodin
on a mouse model with a lethal dose of the potential mechanisms and lipopolysaccharide
(LPS)-induced inflammatory lung injury in mice. The pulmonary histological abnormalities,
the Evans blue’s leakage, the myeloperoxidase (MPO) activity, the grades of TNF-α, IL-6,
nitric oxide (NO), lactic acid (LA) in lung tissues were determined 18 h post exposure of
LPS. Based on the expression of LC3-II with BECN1 was determined using Western blotting.
Besides, the LPS-exposed mice for survival rate was monitored. The results indicated that
intervention with emodin was important for mitigating LPS-induced pulmonary histological
change and LPS-induced leakage of Evans blue, which were associated with suppressed
elevation of MPO activity and inhibited up-regulation of TNF-α, IL-6, NO with LA in lung
tissues. Moreover, intervention with emodin enhanced the survival rate of LPS-exposed
mice. Finally, therapy with emodin increased the LC3 and BECN1 in lungs of LPS-exposed
mice. Treatment with 3-MA (the autophagy inhibitor) reversed the beneficial effects of
emodin. In conclusion, emodin might provide pharmacological benefits in LPS-induced
inflammatory lung injury, and the mechanisms might be related to the restoration of
autophagy.
Collapse
Affiliation(s)
- Yan Dong
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, China
| | - Yu Jiang
- Department of Respiratory, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan District, Chongqing 402160, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| |
Collapse
|
16
|
Abstract
OBJECTIVES The aim of this study was to investigate the effects of emodin on attenuating autophagy response in acute pancreatitis (AP) models. METHODS Acute pancreatitis was induced in Wistar rats by injecting 3% sodium taurocholate into the biliopancreatic duct. Emodin (40 mg/kg per day) was then given intragastrically, administrated 2 hours after AP induction. Rats were killed 24 hours after AP induction. The pancreatic injury was assessed using biochemical and histological approaches. Autophagosomes in pancreatic acinar cells were observed by electron microscopy. The expression levels of microtubule-associated protein 1 light chain 3 (LC3) B/A, beclin-1, and p62/SQSTM1 (p62) were detected by Western blotting, quantitative real-time polymerase chain reaction, and immunohistochemistry in pancreatic tissues. RESULTS Compared with non-emodin-treated rats, the pathological injuries of the pancreas of emodin-treated rats were significantly alleviated, and autophagy vacuole formation was reduced within pancreatic acinar cells. Administration of emodin led to a reduction in the autophagy-associated protein level of LC3 (B/A) and p62 but not beclin-1. The transcript levels of LC3B, beclin-1, and p62 were decreased in the emodin-treated rats compared with non-emodin-treated rats. CONCLUSIONS Our data demonstrate that emodin plays a critical role in ameliorating AP, possibly by down-regulating autophagic protein levels.
Collapse
|
17
|
Wan Y, Sun SS, Fu HY, Xu YK, Liu Q, Yin JT, Wan B. Adjuvant rhubarb alleviates organs dysfunction and inhibits inflammation in heat stroke. Exp Ther Med 2018; 16:1493-1498. [PMID: 30116399 DOI: 10.3892/etm.2018.6327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the effects of adjuvant rhubarb on the recovery of patients with heat stroke. A total of 85 patients with heat stroke were randomly assigned to two treatment groups: One group receiving conventional treatment for heat stroke (conventional group) and one group receiving rhubarb supplement in addition to conventional treatment (rhubarb group). Liver and kidney function parameters, Acute Physiology and Chronic Health Evaluation (APACHE) II scores, plasma interleukin-6 (IL-6), procalcitonin (PCT), C-reactive protein (CRP) levels and venous white blood cell count (WBC) were analyzed. The length of stay in the intensive care units (ICUs) and hospital were recorded. Kaplan-Meier curves were drawn to determine the 30-day survival of the patients. The results indicated that rhubarb supplementation significantly reduced the WBC, as well as CRP, PCT and IL-6 levels at treatment days 3-5. Furthermore, rhubarb intake was observed to limit heat stroke-induced damage to liver and kidney function by decreasing the abnormally high levels of plasma aspartate aminotransferase, alanine aminotransferase and creatinine. Finally, patients in the rhubarb group had shorter ICU and hospital stays as well as a lower APACHE II score than those in the conventional group. However, no significant difference in the 30-day mortality rate was observed between the two groups. In conclusion, rhubarb intake provided a significant benefit for patients with heat stroke by inhibiting systemic inflammation and mitigating liver and kidney injury.
Collapse
Affiliation(s)
- Ying Wan
- Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shuang-Shuang Sun
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Hai-Yan Fu
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yin-Kun Xu
- Intensive Care Unit, Zhenjiang No. 2 People's Hospital, Zhenjiang, Jiangsu 212000, P.R. China
| | - Qing Liu
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiang-Tao Yin
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bing Wan
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Respiratory Medicine, The Affiliated Jiangning Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
18
|
Luo S, Deng X, Liu Q, Pan Z, Zhao Z, Zhou L, Luo X. Emodin ameliorates ulcerative colitis by the flagellin-TLR5 dependent pathway in mice. Int Immunopharmacol 2018; 59:269-275. [DOI: 10.1016/j.intimp.2018.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 11/30/2022]
|
19
|
Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 2018; 9:17937-17950. [PMID: 29707159 PMCID: PMC5915167 DOI: 10.18632/oncotarget.24788] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages are critical mediators of the innate immune response against foreign pathogens, including bacteria, physical stress, and injury. Therefore, these cells play a key role in the "inflammatory pathway" which in turn can lead to an array of diseases and disorders such as autoimmune neuropathies and myocarditis, inflammatory bowel disease, atherosclerosis, sepsis, arthritis, diabetes, and angiogenesis. Recently, more studies have focused on the macrophages inflammatory diseases since the discovery of the two subtypes of macrophages, which are differentiated on the basis of their phenotype and distinct gene expression pattern. Of these, M1 macrophages are pro-inflammatory and responsible for inflammatory signaling, while M2 are anti-inflammatory macrophages that participate in the resolution of the inflammatory process, M2 macrophages produce anti-inflammatory cytokines, thereby contributing to tissue healing. Many studies have shown the role of these two subtypes in the inflammatory pathway, and their emergence appears to decide the fate of inflammatory signaling and disease progression. As a next step in directing the pro-inflammatory response toward the anti-inflammatory type after an insult by a foreign pathogen (e. g., bacterial lipopolysaccharide), investigators have identified many natural compounds that have the potential to modulate M1 to M2 macrophages. In this review, we provide a focused discussion of advances in the identification of natural therapeutic molecules with anti-inflammatory properties that modulate the phenotype of macrophages from M1 to M2.
Collapse
Affiliation(s)
- Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology (IIT) Indore, MP, India
| | - Sutripta Sarkar
- PostGraduate Department of Food & Nutrition, BRSN College (affiliated to WBSU), Kolkata, WB, India
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Joong-gu Daegu, South Korea
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, UP, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Rajkumar Savai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen 35392, Germany.,Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the DZL, Bad Nauheim, Germany
| |
Collapse
|
20
|
Dai JP, Wang QW, Su Y, Gu LM, Zhao Y, Chen XX, Chen C, Li WZ, Wang GF, Li KS. Emodin Inhibition of Influenza A Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB Pathways. Molecules 2017; 22:molecules22101754. [PMID: 29057806 PMCID: PMC6151665 DOI: 10.3390/molecules22101754] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023] Open
Abstract
Lasting activations of toll-like receptors (TLRs), MAPK and NF-κB pathways can support influenza A virus (IAV) infection and promote pneumonia. In this study, we have investigated the effect and mechanism of action of emodin on IAV infection using qRT-PCR, western blotting, ELISA, Nrf2 luciferase reporter, siRNA and plaque inhibition assays. The results showed that emodin could significantly inhibit IAV (ST169, H1N1) replication, reduce IAV-induced expressions of TLR2/3/4/7, MyD88 and TRAF6, decrease IAV-induced phosphorylations of p38/JNK MAPK and nuclear translocation of NF-κB p65. Emodin also activated the Nrf2 pathway, decreased ROS levels, increased GSH levelss and GSH/GSSG ratio, and upregulated the activities of SOD, GR, CAT and GSH-Px after IAV infection. Suppression of Nrf2 via siRNA markedly blocked the inhibitory effects of emodin on IAV-induced activations of TLR4, p38/JNK, and NF-κB pathways and on IAV-induced production of IL-1β, IL-6 and expression of IAV M2 protein. Emodin also dramatically increased the survival rate of mice, reduced lung edema, pulmonary viral titer and inflammatory cytokines, and improved lung histopathological changes. In conclusion, emodin can inhibit IAV replication and influenza viral pneumonia, at least in part, by activating Nrf2 signaling and inhibiting IAV-induced activations of the TLR4, p38/JNK MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Qian-Wen Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Li-Ming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Ying Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Xiao-Xua Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Cheng Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
21
|
Chen H, Huang RS, Yu XX, Ye Q, Pan LL, Shao GJ, Pan J. Emodin protects against oxidative stress and apoptosis in HK-2 renal tubular epithelial cells after hypoxia/reoxygenation. Exp Ther Med 2017; 14:447-452. [PMID: 28672952 DOI: 10.3892/etm.2017.4473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to determine the effects of emodin, a natural compound with antioxidant properties, on oxidative stress and apoptosis induced by hypoxia/reoxygenation (H/R) in HK-2 human renal tubular cells. In HK-2 cells subjected to H/R, it was observed that pre-treatment with emodin lead to an increase in cellular viability and a reduction in the rate of apoptosis and the B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 ratio. H/R alone caused a significant increase in the levels of reactive oxygen species and malondialdehyde (P<0.05) and a significant decrease in the activities of superoxide dismutase, catalase and glutathione peroxidase (P<0.05), relative to normoxic cells. In turn, parameters of oxidative stress were improved by emodin pre-treatment. In addition, emodin pre-treatment significantly inhibited the phosphorylation of extracellular signal-regulated protein kinase and c-Jun N-terminal kinase mitogen-activated protein kinases (MAPKs) induced by H/R (P<0.05). These data suggest that emodin may prevent H/R-induced apoptosis in human renal tubular cells through the regulation of cellular oxidative stress, MAPK activation and restoration of the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
- Hui Chen
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Ri-Sheng Huang
- Department of Thoracic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Xian-Xian Yu
- Department of Nephrology, Yueqing People's Hospital, Wenzhou, Zhejiang 325600, P.R. China
| | - Qiong Ye
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu-Lu Pan
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Guo-Jian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Jing Pan
- Department of Cadre Health Care, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
22
|
Xiang H, Zhang Q, Qi B, Tao X, Xia S, Song H, Qu J, Shang D. Chinese Herbal Medicines Attenuate Acute Pancreatitis: Pharmacological Activities and Mechanisms. Front Pharmacol 2017; 8:216. [PMID: 28487653 PMCID: PMC5403892 DOI: 10.3389/fphar.2017.00216] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a commonly occurring gastrointestinal disorder. An increase in the annual incidence of AP has been observed, and it causes acute hospitalization and high mortality. The diagnosis and treatment guidelines for AP recommend conservative medical treatments focused on reducing pancreatic secretion and secondary injury, as a primary therapeutic approach. Unfortunately, the existing treatment options have limited impact on the incidence and severity of AP due to the complex and multifaceted pathological process of this disease. In recent decades, Chinese herbal medicines (CHMs) have been used as efficient therapeutic agents to attenuate AP in Asian countries. Despite early cell culture, animal models, and clinical trials, CHMs are capable of interacting with numerous molecular targets participating in the pathogenesis of AP; however, comprehensive, up-to-date communication in this field is not yet available. This review focuses on the pharmacological activities of CHMs against AP in vitro and in vivo and the underlying mechanisms. A computational prediction of few selected and promising plant-derived molecules (emodin, baicalin, resveratrol, curcumin, ligustrazine, and honokiol) to target numerous proteins or networks involved in AP was initially established based on a network pharmacology simulation. Moreover, we also summarized some potential toxic natural products for pancreas in order to more safe and reasonable medication. These breakthrough findings may have important implications for innovative drug research and the future development of treatments for AP.
Collapse
Affiliation(s)
- Hong Xiang
- College (Institute) of Integrative Medicine, Dalian Medical UniversityDalian, China
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical UniversityDalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Dong Shang
- College (Institute) of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
23
|
Li H, Yang T, Zhou H, Du J, Zhu B, Sun Z. Emodin Combined with Nanosilver Inhibited Sepsis by Anti-inflammatory Protection. Front Pharmacol 2017; 7:536. [PMID: 28119611 PMCID: PMC5222825 DOI: 10.3389/fphar.2016.00536] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Emodin is the main active component of rhubarb, which has demonstrated many beneficial effects against inflammation. Nanosilver is an effective antimicrobial agent. The present study was designed to observe the effects of Emodin combined with silver nanoparticles (E/S) on sepsis protection and related mechanism. Methods: E/S was prepared by loading different concentrations of Emodin on nanosilver and cytotoxicity of E/S were determined by suphorhodamine B assays. Anti-microbial activities of E/S were assayed by direct interaction with various common pathogens and anti-adhesive activites of E/S on leukocytes with endothelial cells were assayed by biochemical analysis. Next, inflammatory cell enumeration, inflammatory mediators in bronchoalveolar lavage fluid (BALF) and endothelial cell function were analyzed on a clinically relevant model of sepsis induced by cecal ligation and puncture (CLP) after E/S administration. The effects of E/S on NF-κB and p38 were also examined by western blot. Results: E/S exhibited little cytotoxicity action on endothelial cells and significant inhibitory activities against all tested common microorganisms and adherence between leukocyte and endothelial cells. E/S induced anti-sepsis protection mainly mediated by inhibition of inflammatory cells infiltration, down-regulation of TNF-alpha, IL-8 and lactic dehydrogenase (LDH), and inhibition of NF-κB and p38 pathways in mice 24 h post-CLP. Conclusion: Our data suggest that E/S has strong anti-sepsis effects, which was related with anti-inflammatory protection and thereby promote survival following sepsis challenge.
Collapse
Affiliation(s)
- Hong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Tian Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Hong Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Juan Du
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Bo Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| | - Zhongmin Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an, China
| |
Collapse
|
24
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|