1
|
Kgosana MR, Sandasi M, Ncube E, Vermaak I, Gouws C, Viljoen AM. Exploring the wound healing potential of Lobostemon fruticosus using in vitro and in vivo bioassays. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118632. [PMID: 39069028 DOI: 10.1016/j.jep.2024.118632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lobostemon fruticosus (L.) H.Buek is a perennial and woody shrub of the Boraginaceae family, found in the Cape region of South Africa. The leaves and twigs are used to treat dermatological conditions such as wounds, burns, ringworm, erysipelas and eczema. Anti-inflammatory, antibacterial, antiviral and anti-proliferative activities of L. fruticosus have been reported. However, there is a void in research which reports on the wound healing properties of this plant. AIM OF THE STUDY Aligned with the traditional use of L. fruticosus, our study aimed to use in vitro and in vivo bioassays to confirm the wound healing potential of the plant. MATERIALS AND METHODS An aqueous methanol extract (80% v/v) of L. fruticosus was prepared using a sample collected from the Western Cape Province of South Africa and chromatographically profiled by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay was performed to determine the non-toxic concentrations of the extract for subsequent use in the in vitro scratch assay. Both the human keratinocyte (HaCaT) and fibroblast (BJ-5ta) cell lines were employed in the in vitro scratch assay. The in vivo caudal fin amputation assay was used to assess the wound healing potential of L. fruticosus, by monitoring fin regeneration in zebrafish larvae treated with the plant extract at various concentrations. RESULTS Six major compounds were tentatively identified in the L. fruticosus extract namely; globoidnan A, globoidnan B, rutin, rabdosiin, sagerinic acid and rosmarinic acid. The potentially toxic pyrrolizidine alkaloids were also identified and quantitatively confirmed to be present at a low concentration of 119.58 ppm (m/m). Treatment of HaCaT and BJ-5ta cells with the plant extract in the scratch assay resulted in an increase in cell migration, which translates to accelerated wound closure. After 24 hr treatment with 100 μg/mL of extract, wound closure was recorded to be 91.1 ± 5.7% and 94.1 ± 1.3% for the HaCaT and BJ-5ta cells, respectively, while the untreated (medium) controls showed 72.3 ± 3.3% and 73.0 ± 4.3% for the two cell lines, respectively. Complete wound closure was observed between 24 and 36 hr, while the untreated control group did not achieve 100% wound closure by the end of the observation period (48 hr). In vivo, the crude extract at 100 μg/mL accelerated zebrafish caudal fin regeneration achieving 100.5 ± 3.8% regeneration compared to 68.3 ± 6.6% in the untreated control at two days post amputation. CONCLUSIONS The study affirms the wound healing properties, as well as low toxicity of L. fruticosus using both in vitro and in vivo assays, which supports the traditional medicinal use. Other in vitro assays that target different mechanisms involved in wound healing should be investigated to support the current findings.
Collapse
Affiliation(s)
- Mashilo R Kgosana
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Maxleene Sandasi
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Efficient Ncube
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Ilze Vermaak
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
2
|
Garcia MF, Tiwari KK, Gendreau JL, Burgess PL, Taupin P, Martin ED. Mesenchymal Stem Cells and Regenerative Therapy with Bilateral Gracilis Flaps for Perineal Reconstruction of a Wound Infection in the Setting of Anal Squamous Cell Carcinoma. Adv Skin Wound Care 2023; 36:1-7. [PMID: 37471451 DOI: 10.1097/asw.0000000000000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
ABSTRACT Many patients are affected by HIV/AIDS, and these conditions are highly prevalent worldwide. Patients with HIV/AIDS can experience debilitating wound infections that often require flap reconstruction and become challenging for surgeons to treat. In the past 5 years, mesenchymal stem cells have been tested and used as regenerative therapy to promote the growth of tissues throughout the body because of their ability to successfully promote cellular mitogenesis. To the authors' knowledge, the use of mesenchymal stem cell grafting following necrosis of a myocutaneous gracilis flap (as part of perineal wound reconstruction) has never been reported in the literature.In addition, the use of mesenchymal stem cells and regenerative medicine combined in the setting of squamous cell carcinoma of the anus with prior radiation (along with comorbid AIDS) has not been previously documented.In this report, the authors outline the case of a 60-year-old patient who had a recipient bed (perineum) complication from prior radiation therapy. Complicating the clinical picture, the patient also developed a Pseudomonal organ space infection of the pelvis leading to the failure of a vertical rectus abdominis myocutaneous flap and myocutaneous gracilis flaps. As a result, the patient underwent serial operative debridements for source control, with the application of mesenchymal stem cells, fetal bovine dermis, porcine urinary bladder xenograft, and other regenerative medicine products, achieving a highly successful clinical outcome. A procedural description for future use and replication of this method is provided.
Collapse
Affiliation(s)
- Matthew F Garcia
- At Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, USA, Matthew F. Garcia, MD, is Transitional Year Resident; Kirti K. Tiwari, MS, is Chief, Research Operations; Julian L. Gendreau, MD, is Transitional Year Resident; and Pamela L. Burgess, MD, is Chief, General Surgery. Philippe Taupin, PhD, is Senior Manager, Medical Affairs, Integra LifeSciences, Princeton, New Jersey. Also at Dwight D. Eisenhower Army Medical Center, Eric D. Martin, DO, is Chief, Cardiovascular Surgery. Dr Taupin is an employee of Integra LifeSciences Corporation. The authors have disclosed no other financial relationships related to this article. Submitted March 5, 2022; accepted in revised form September 9, 2022
| | | | | | | | | | | |
Collapse
|
3
|
Bates JHT, Herrmann J, Casey DT, Suki B. An agent-based model of tissue maintenance and self-repair. Am J Physiol Cell Physiol 2023; 324:C941-C950. [PMID: 36878841 PMCID: PMC10089306 DOI: 10.1152/ajpcell.00531.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
We hypothesized that a system that possesses the capacity for ongoing maintenance of its tissues will necessarily also have the capacity to self-heal following a perturbation. We used an agent-based model of tissue maintenance to investigate this idea, and in particular to determine the extent to which the current state of the tissue must influence cell behavior in order for tissue maintenance and self-healing to be stable. We show that a mean level of tissue density is robustly maintained when catabolic agents digest tissue at a rate proportional to local tissue density, but that the spatial heterogeneity of the tissue at homeostasis increases with the rate at which tissue is digested. The rate of self-healing is also increased by increasing either the amount of tissue removed or deposited at each time step by catabolic or anabolic agents, respectively, and by increasing the density of both agent types on the tissue. We also found that tissue maintenance and self-healing are stable with an alternate rule in which cells move preferentially to tissue regions of low density. The most basic form of self-healing can thus be achieved with cells that follow very simple rules of behavior, provided these rules are based in some way on the current state of the local tissue. Straightforward mechanisms can accelerate the rate of self-healing, as might be beneficial to the organism.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Dylan T Casey
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
- Complex Systems Center, University of Vermont, Burlington, Vermont, United States
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Coenye T, Spittaels KJ, Achermann Y. The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm 2022; 4:100063. [PMID: 34950868 PMCID: PMC8671523 DOI: 10.1016/j.bioflm.2021.100063] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cutibacterium acnes (previously known as Propionibacterium acnes) is frequently found on lipid-rich parts of the human skin. While C. acnes is most known for its role in the development and progression of the skin disease acne, it is also involved in many other types of infections, often involving implanted medical devices. C. acnes readily forms biofilms in vitro and there is growing evidence that biofilm formation by this Gram-positive, facultative anaerobic micro-organism plays an important role in vivo and is also involved in treatment failure. In this brief review we present an overview on what is known about C. acnes biofilms (including their role in pathogenesis and reduced susceptibility to antibiotics), discuss model systems that can be used to study these biofilms in vitro and in vivo and give an overview of interspecies interactions occurring in polymicrobial communities containing C. acnes.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Karl-Jan Spittaels
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Yvonne Achermann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Jiang GJ, You XG, Fan TJ. Ultraviolet B irradiation induces senescence of human corneal endothelial cells in vitro by DNA damage response and oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112568. [PMID: 36137302 DOI: 10.1016/j.jphotobiol.2022.112568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The human corneal endothelial cells (HCEnCs) play a vital role in the maintenance of corneal transparency and visual acuity. In our daily life, HCEnCs are inevitably exposed to ultraviolet B (UVB) radiation leading to decreases of visual acuity and corneal transparency resulting in visual loss eventually. Therefore, understanding the UVB-induced cytotoxicity in HCEnCs is of importance for making efficient strategies to protect our vision from UVB-damage. However, in-depth knowledge about UVB-induced cytotoxicity in HCEnCs is missing. Herein, we pulse-irradiated the HCEnCs in vitro with 150 mJ/cm2 UVB (the environmental dose) at each subculture for 4 passages to explore the insights into UVB-induced phototoxicity. The results showed that the UVB-treated HCEnCs exhibit typical senescent characteristics, including significantly enlarged relative cell area, increased senescence-associated β-galactosidase positive staining, and upregulated p16INK4A and senescence associated secretory phenotypes (SASPs) such as CCL-27, IL-1α/6/8/10, TGF-β1 and TNF-α, as well as decreased cell proliferation and Lamin B1 expression, and translocation of Lamin B1. Furthermore, we explored the causative mechanisms of senescence and found that 150 mJ/cm2 UVB pulse-irradiation impairs DNA to activate DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with downregulated DNA repair enzyme PARP1, leading to cell cycle arrest resulting in DDR-mediated senescence. Meanwhile, UVB pulse-irradiation also elicits a consistent increase of ROS production to aggravate DNA damage and impose oxidative stress on energy metabolism leading to metabolic disturbance resulting in metabolic disturbance-mediated senescence. Altogether, the repeated pulse-irradiation of 150 mJ/cm2 UVB induces HCEnC senescence via both DDR pathway and energy metabolism disturbance.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China
| | - Xin-Guo You
- School of bioscience and technology, Weifang medical university, Weifang, Shandong province 261053, China
| | - Ting-Jun Fan
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China.
| |
Collapse
|
6
|
Harman RM, Theoret CL, Van de Walle GR. The Horse as a Model for the Study of Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:381-399. [PMID: 34042536 DOI: 10.1089/wound.2018.0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significance: Cutaneous wounds are a major problem in both human and equine medicine. The economic cost of treating skin wounds and related complications in humans and horses is high, and in both species, particular types of chronic wounds do not respond well to current therapies, leading to suffering and morbidity. Recent Advances: Conventional methods for the treatment of cutaneous wounds are generic and have not changed significantly in decades. However, as more is learned about the mechanisms involved in normal skin wound healing, and how failure of these processes leads to chronic nonhealing wounds, novel therapies targeting the specific pathologies of hard-to-heal wounds are being developed and evaluated. Critical Issues: Physiologically relevant animal models are needed to (1) study the mechanisms involved in normal and impaired skin wound healing and (2) test newly developed therapies. Future Directions: Similarities in normal wound healing in humans and horses, and the natural development of distinct types of hard-to-heal chronic wounds in both species, make the horse a physiologically relevant model for the study of mechanisms involved in wound repair. Horses are also well-suited models to test novel therapies. In addition, studies in horses have the potential to benefit veterinary, as well as human medicine.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
7
|
Golabek A, Kaczmarek M, Dondajewska E, Sakrajda K, Mackiewicz A, Dams-Kozlowska H. Application of a three-dimensional (3D) breast cancer model to study macrophage polarization. Exp Ther Med 2021; 21:482. [PMID: 33790991 PMCID: PMC8005691 DOI: 10.3892/etm.2021.9913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Knowledge of the tumor microenvironment is crucial for developing an effective strategy to treat cancer. Recently, anticancer therapies targeting macrophages have been intensively investigated. Increased understanding of the importance of the tumor microenvironment has led to the development of three-dimensional (3D) in vitro tumor models. However, established techniques for studying tumor-associated macrophages in vitro are limited. We have previously characterized a 3D breast cancer model consisting of breast cancer cells and fibroblasts cocultured on a silk scaffold. In the present study, the influence of this model on macrophage polarization was investigated. The expression of macrophage markers was studied using reverse transcription-quantitative PCR and flow cytometry. The activity of nitric oxide synthase and arginase in macrophages was also measured. The presented model appeared to induce the polarization of macrophages towards an M2 phenotype. In this 3D tumor model, the in vivo behavior of macrophages could be reproduced. This model may be beneficial for the study of tumor biology and for screening drugs.
Collapse
Affiliation(s)
- Agata Golabek
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Ewelina Dondajewska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Kosma Sakrajda
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
8
|
Suki B, Herrmann J, Bates JHT. An Analytic Model of Tissue Self-Healing and Its Network Implementation: Application to Fibrosis and Aging. Front Physiol 2020; 11:583024. [PMID: 33250776 PMCID: PMC7673435 DOI: 10.3389/fphys.2020.583024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Here we present a model capable of self-healing and explore its ability to resolve pathological alterations in biological tissue. We derive a simple analytic model consisting of an agent representing a cell that exhibits anabolic or catabolic activity, and which interacts with its tissue substrate according to tissue stiffness. When perturbed, this system returns toward a stable fixed point, a process corresponding to self-healing. We implemented this agent-substrate mechanism numerically on a hexagonal elastic network representing biological tissue. Agents, representing fibroblasts, were placed on the network and allowed to migrate around while they remodeled the network elements according to their activity which was determined by the stiffnesses of network elements that each agent encountered during its random walk. Initial injury to the network was simulated by increasing the stiffness of a single central network element above baseline. This system also exhibits a fixed point represented by the uniform baseline state. During the approach to the fixed point, interactions between the agents and the network create a transient spatially extended halo of stiffer network elements around the site of initial injury, which aids in overall injury repair. Non-equilibrium constraints generated by persistent injury prohibit the network to return to baseline and results in progressive stiffening, mimicking the development of fibrosis. Additionally, reducing anabolic or catabolic rates delay self-healing, reminiscent of aging. Our model thus embodies what may be the simplest set of attributes required of a spatiotemporal self-healing system, and so may help understand altered self-healing in chronic fibrotic diseases and aging.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jason H T Bates
- Department of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
9
|
Jiang GJ, Li Y, You XG, Fan TJ. Establish an In Vitro Cell Model to Explore the Impacts of UVA on Human Corneal Endothelial Wound Healing. Curr Eye Res 2020; 45:1065-1073. [PMID: 32090638 DOI: 10.1080/02713683.2020.1718166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To provide scientific data for clinical practice in making strategies for accelerating corneal endothelial wound healing, we investigated the impact of UVA on the corneal endothelial wound healing process and the underlying mechanism using an in vitro cell model. MATERIALS AND METHODS An in vitro cell model for corneal endothelial wound healing was established by scratching the in vitro cultured human corneal endothelial cell (HCEnC) confluent layer. Then, we investigated the impacts of UVA irradiation and Ascorbic acid-2-phosphate (Asc-2p) on the wound healing process of the in vitro HCEnC model by examining wound-healing index, F-actin+ rate, Ki-67+ rate, and ROS production. RESULTS After scratching, the Ki-67+ and F-actin+ HCEnCs occupied the scratching gap. Furthermore, the F-actin+ rates were significantly higher than Ki-67+ rates in the wound closure area. After irradiated with UVA, the wound-healing indexes, Ki-67+ rates and F-actin+ rates of the wound-healing model significantly reduced, whereas the ROS production significantly increased in a dose-dependent manner. Pretreatment with Asc-2p significantly reduced the ROS production as well as increased the wound-healing indexes, Ki-67+rates and F-actin+ rates of the UVA irradiated wound-healing model. CONCLUSION The migration of HCEnC plays a major role in the wound healing process of the established cell model, which is like the wound healing process in vivo. UVA decreases the wound closure of the in vitro HCEnC model dose-dependently, while antioxidant Asc-2p can attenuate the damage to UVA to HCEnCs probably via reducing ROS to improve their migration.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China , Qingdao, Shandong Province, China
| | - Ying Li
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China , Qingdao, Shandong Province, China
| | - Xin-Guo You
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China , Qingdao, Shandong Province, China
| | - Ting-Jun Fan
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China , Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Nikoloudaki G, Brooks S, Peidl AP, Tinney D, Hamilton DW. JNK Signaling as a Key Modulator of Soft Connective Tissue Physiology, Pathology, and Healing. Int J Mol Sci 2020; 21:E1015. [PMID: 32033060 PMCID: PMC7037145 DOI: 10.3390/ijms21031015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
In healthy individuals, the healing of soft tissues such as skin after pathological insult or post injury follows a relatively predictable and defined series of cell and molecular processes to restore tissue architecture and function(s). Healing progresses through the phases of hemostasis, inflammation, proliferation, remodeling, and concomitant with re-epithelialization restores barrier function. Soft tissue healing is achieved through the spatiotemporal interplay of multiple different cell types including neutrophils, monocytes/macrophages, fibroblasts, endothelial cells/pericytes, and keratinocytes. Expressed in most cell types, c-Jun N-terminal kinases (JNK) are signaling molecules associated with the regulation of several cellular processes involved in soft tissue wound healing and in response to cellular stress. A member of the mitogen-activated protein kinase family (MAPK), JNKs have been implicated in the regulation of inflammatory cell phenotype, as well as fibroblast, stem/progenitor cell, and epithelial cell biology. In this review, we discuss our understanding of JNKs in the regulation of cell behaviors related to tissue injury, pathology, and wound healing of soft tissues. Using models as diverse as Drosophila, mice, rats, as well as human tissues, research is now defining important, but sometimes conflicting roles for JNKs in the regulation of multiple molecular processes in multiple different cell types central to wound healing processes. In this review, we focus specifically on the role of JNKs in the regulation of cell behavior in the healing of skin, cornea, tendon, gingiva, and dental pulp tissues. We conclude that while parallels can be drawn between some JNK activities and the control of cell behavior in healing, the roles of JNK can also be very specific modes of action depending on the tissue and the phase of healing.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
| | - Sarah Brooks
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
| | - Alexander P. Peidl
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
| | - Dylan Tinney
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
| | - Douglas W. Hamilton
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
- Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada
| |
Collapse
|
11
|
You XG, Fan TJ, Jiang GJ. Phenylephrine induces necroptosis and apoptosis in corneal epithelial cells dose- and time-dependently. Toxicology 2019; 428:152305. [PMID: 31605733 DOI: 10.1016/j.tox.2019.152305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 11/19/2022]
Abstract
In the present study, the toxicity of phenylephrine, a selective α1-adrenergic receptor agonist, in corneal epithelial cells and its underlying mechanisms were investigated using an in vitro model of human corneal epithelial cells (HCEPCs) and an in vivo model of New Zealand white rabbit corneas. The HCEPCs treated with phenylephrine at concentrations from 10% to 0.078125% displayed abnormal morphology, decline of cell viability and elevation of plasma membrane permeability time- and dose-dependently. Moreover, 10%-1.25% phenylephrine induce necrosis characteristics of marginalization and uneven distribution of chromatin through up-regulation of RIPK1, RIPK3 and MLKL along with inactivation of caspase-8 and caspase-2, whereas 0.625% phenylephrine induced condensed chromatin, S phase arrest, phosphatidylserine externalization, DNA fragmentation and apoptotic body formation in the HCECs through activation of caspase-2, -8, -9 and -3 as well as down-regulation of Bcl-2, up-regulation of Bad, ΔΨm disruption and release of cytochrome c and AIF into cytosol. At last, 10% phenylephrine induced destruction of the corneal epithelia and apoptosis of corneal epithelial cells in rabbit corneas. In conclusion, 10% to 1.25% phenylephrine cause necroptosis via RIPK1-RIPK3-MLKL axis and 0.625% phenylephrine induce apoptosis via a mitochondrion-dependent and death receptor-mediated signal pathway in HCEPCs.
Collapse
Affiliation(s)
- Xin-Guo You
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province 266003, PR China
| | - Ting-Jun Fan
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province 266003, PR China
| | - Guo-Jian Jiang
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
12
|
Ogorevc J, Poklukar K, Dovč P. Establishment and characterization of proliferating primary cultures of equine epidermal keratinocytes. Anim Biotechnol 2019; 32:282-291. [PMID: 31736400 DOI: 10.1080/10495398.2019.1687091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Skin-derived tissue cultures are a useful model to study molecular mechanisms of skin renewal and pathogenesis of dermal diseases. Horses often suffer from skin diseases, skin trauma and problems with proper wound healing, which could be improved by in vitro grown keratinocyte grafts. Herein we describe establishment and characterization of equine skin-derived primary cell cultures, using enzymatic and explant methods. The established cell lines of primary equine keratinocytes (peK) maintained high proliferative capacity for over five passages and expressed different epithelial/keratinocyte-specific markers. Characterization of the primary culture was performed in parallel with localization studies of the markers in the skin histological sections, using commercially available antibodies. Relative expression of typical differentiation stage-specific markers was determined in the established cell lines, using RT-qPCR. Basal (proliferating) keratinocytes were the predominant cell type in the established cell lines, but low expression of post-mitotic keratinocyte markers was also detected. Differences in marker expression were observed neither between the peK originating from two different animals nor between the peK established with two different methods (enzymatically or by explanting). The described methods in combination with the suggested characterization and differentiation markers are suitable for establishment of proliferating peK and evaluation of their differentiation status.
Collapse
Affiliation(s)
- Jernej Ogorevc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Klavdija Poklukar
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia.,Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Peter Dovč
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
13
|
Soitu C, Feuerborn A, Deroy C, Castrejón-Pita AA, Cook PR, Walsh EJ. Raising fluid walls around living cells. SCIENCE ADVANCES 2019; 5:eaav8002. [PMID: 31183401 PMCID: PMC6551168 DOI: 10.1126/sciadv.aav8002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/29/2019] [Indexed: 05/04/2023]
Abstract
An effective transformation of the cell culture dishes that biologists use every day into microfluidic devices would open many avenues for miniaturizing cell-based workflows. In this article, we report a simple method for creating microfluidic arrangements around cells already growing on the surface of standard petri dishes, using the interface between immiscible fluids as a "building material." Conventional dishes are repurposed into sophisticated microfluidic devices by reshaping, on demand, the fluid structures around living cells. Moreover, these microfluidic arrangements can be further reconfigured during experiments, which is impossible with most existing microfluidic platforms. The method is demonstrated using workflows involving cell cloning, the selection of a particular clone from among others in a dish, drug treatments, and wound healing. The versatility of the approach and its biologically friendly aspects may hasten uptake by biologists of microfluidics, so the technology finally fulfills its potential.
Collapse
Affiliation(s)
- Cristian Soitu
- Oxford Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK
| | - Alexander Feuerborn
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Iota Sciences Ltd., Begbroke Science Park, Begbroke, Oxfordshire OX5 1PF, UK
| | - Cyril Deroy
- Oxford Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK
| | | | - Peter R. Cook
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Edmond J. Walsh
- Oxford Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK
- Iota Sciences Ltd., Begbroke Science Park, Begbroke, Oxfordshire OX5 1PF, UK
- Corresponding author.
| |
Collapse
|
14
|
Huh MI, Yi SJ, Lee KP, Kim HK, An SH, Kim DB, Ryu RH, Kim JS, Lim JO. Full Thickness Skin Expansion ex vivo in a Newly Developed Reactor and Evaluation of Auto-Grafting Efficiency of the Expanded Skin Using Yucatan Pig Model. Tissue Eng Regen Med 2018; 15:629-638. [PMID: 30603584 PMCID: PMC6171704 DOI: 10.1007/s13770-018-0154-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Skin grafts are required in numerous clinical procedures, such as reconstruction after skin removal and correction of contracture or scarring after severe skin loss caused by burns, accidents, and trauma. The current standard for skin defect replacement procedures is the use of autologous skin grafts. However, donor-site tissue availability remains a major obstacle for the successful replacement of skin defects and often limits this option. The aim of this study is to effectively expand full thickness skin to clinically useful size using an automated skin reactor and evaluate auto grafting efficiency of the expanded skin using Yucatan female pigs. METHODS We developed an automated bioreactor system with the functions of real-time monitoring and remote-control, optimization of grip, and induction of skin porosity for effective tissue expansion. We evaluated the morphological, ultra-structural, and mechanical properties of the expanded skin before and after expansion using histology, immunohistochemistry, and tensile testing. We further carried out in vivo grafting study using Yucatan pigs to investigate the feasibility of this method in clinical application. RESULTS The results showed an average expansion rate of 180%. The histological findings indicated that external expansion stimulated cellular activity in the isolated skin and resulted in successful grafting to the transplanted site. Specifically, hyperplasia did not appear at the auto-grafted site, and grafted skin appeared similar to normal skin. Furthermore, mechanical stimuli resulted in an increase in COL1A2 expression in a suitable environment. CONCLUSIONS These findings provided insight on the potential of this expansion system in promoting dermal extracellular matrix synthesis in vitro. Conclusively, this newly developed smart skin bioreactor enabled effective skin expansion ex vivo and successful grafting in vivo in a pig model.
Collapse
Affiliation(s)
- Man-Il Huh
- Biomedical Research Institute, Joint Institute for Regenerative Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Republic of Korea
- School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944 Republic of Korea
| | - Soo-Jin Yi
- Biomedical Research Institute, Joint Institute for Regenerative Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Republic of Korea
- School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944 Republic of Korea
| | - Kyung-Pil Lee
- Biomedical Research Institute, Joint Institute for Regenerative Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Republic of Korea
- School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944 Republic of Korea
| | - Hong Kyun Kim
- Biomedical Research Institute, Joint Institute for Regenerative Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Republic of Korea
- School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944 Republic of Korea
| | - Sang-Hyun An
- Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro (360-4 Dongnae-dong), Dong-gu, Daegu, 41061 Republic of Korea
| | - Dan-Bi Kim
- Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro (360-4 Dongnae-dong), Dong-gu, Daegu, 41061 Republic of Korea
| | - Rae-Hyung Ryu
- Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro (360-4 Dongnae-dong), Dong-gu, Daegu, 41061 Republic of Korea
| | - Jun-Sik Kim
- Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro (360-4 Dongnae-dong), Dong-gu, Daegu, 41061 Republic of Korea
| | - Jeong Ok Lim
- Biomedical Research Institute, Joint Institute for Regenerative Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Republic of Korea
| |
Collapse
|
15
|
Plasma assisted surface treatments of biomaterials. Biophys Chem 2017; 229:151-164. [DOI: 10.1016/j.bpc.2017.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023]
|