1
|
Robinson TP, Hamidi T, Counts B, Guttridge DC, Ostrowski MC, Zimmers TA, Koniaris LG. The impact of inflammation and acute phase activation in cancer cachexia. Front Immunol 2023; 14:1207746. [PMID: 38022578 PMCID: PMC10644737 DOI: 10.3389/fimmu.2023.1207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.
Collapse
Affiliation(s)
- Tyler P. Robinson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tewfik Hamidi
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Brittany Counts
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Denis C. Guttridge
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Michael C. Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Leonidas G. Koniaris
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| |
Collapse
|
2
|
Moore-Lotridge SN, Hajdu KS, Hou BQ, Gibson BHY, Schoenecker JG. Maintaining the balance: the critical role of plasmin activity in orthopedic surgery injury response. J Thromb Haemost 2023; 21:2653-2665. [PMID: 37558131 PMCID: PMC10926148 DOI: 10.1016/j.jtha.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The musculoskeletal system plays vital roles in the body, facilitating movement, protecting vital structures, and regulating hematopoiesis and mineral metabolism. Injuries to this system are common and can cause chronic pain, loss of range of motion, and disability. The acute phase response (APR) is a complex process necessary for surviving and repairing injured musculoskeletal tissue. To conceptualize the APR, it is useful to divide it into 2 distinct phases, survival and repair. During the survival-APR, a "damage matrix" primarily composed of fibrin, via thrombin activity, is produced to contain the zone of injury. Once containment is achieved, the APR transitions to the repair phase, where reparative inflammatory cells use plasmin to systematically remove the damage matrix and replace it with new permanent matrices produced by differentiated mesenchymal stem cells. The timing of thrombin and plasmin activation during their respective APR phases is crucial for appropriate regulation of the damage matrix. This review focuses on evidence indicating that inappropriate exuberant activation of plasmin during the survival-APR can result in an overactive APR, leading to an "immunocoagulopathy" that may cause "immunothrombosis" and death. Conversely, preclinical data suggest that too little plasmin activity during the repair-APR may contribute to failed tissue repair, such as a fracture nonunion, and chronic inflammatory degenerative diseases like osteoporosis. Future clinical studies are required to affirm these findings. Therefore, the temporal-spatial functions of plasmin in response to musculoskeletal injury and its pharmacologic manipulation are intriguing new targets for improving orthopedic care.
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Katherine S Hajdu
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Brian Q Hou
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Breanne H Y Gibson
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Unar A, Bertolino L, Patauner F, Gallo R, Durante-Mangoni E. Pathophysiology of Disseminated Intravascular Coagulation in Sepsis: A Clinically Focused Overview. Cells 2023; 12:2120. [PMID: 37681852 PMCID: PMC10486945 DOI: 10.3390/cells12172120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023] Open
Abstract
Sepsis is a major global health problem that results from a dysregulated and uncontrolled host response to infection, causing organ failure. Despite effective anti-infective therapy and supportive treatments, the mortality rate of sepsis remains high. Approximately 30-80% of patients with sepsis may develop disseminated intravascular coagulation (DIC), which can double the mortality rate. There is currently no definitive treatment approach for sepsis, with etiologic treatment being the cornerstone of therapy for sepsis-associated DIC. Early detection, diagnosis, and treatment are critical factors that impact the prognosis of sepsis-related DIC. Over the past several decades, researchers have made continuous efforts to better understand the mechanisms of DIC in sepsis, as well as improve its quantitative diagnosis and treatment. This article aims to provide a comprehensive overview of the current understanding of sepsis-related DIC, focusing on common causes and diagnoses, with the goal of guiding healthcare providers in the care of patients with sepsis.
Collapse
Affiliation(s)
- Ahsanullah Unar
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Lorenzo Bertolino
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Fabian Patauner
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Raffaella Gallo
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, 80138 Naples, Italy; (A.U.); (L.B.); (F.P.); (R.G.)
- Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
4
|
Moore HB. Fibrinolysis Shutdown and Hypofibrinolysis Are Not Synonymous Terms: The Clinical Significance of Differentiating Low Fibrinolytic States. Semin Thromb Hemost 2023; 49:433-443. [PMID: 36318960 PMCID: PMC10366941 DOI: 10.1055/s-0042-1758057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Low fibrinolytic activity has been associated with pathologic thrombosis and multiple-organ failure. Low fibrinolytic activity has two commonly associated terms, hypofibrinolysis and fibrinolysis shutdown. Hypofibrinolysis is a chronic state of lack of ability to generate an appropriate fibrinolytic response when anticipated. Fibrinolysis shutdown is the shutdown of fibrinolysis after systemic activation of the fibrinolytic system. There has been interchanging of these terms to describe critically ill patients in multiple settings. This is problematic in understanding the pathophysiology of disease processes related to these conditions. There is also a lack of research on the cellular mediators of these processes. The purpose of this article is to review the on and off mechanisms of fibrinolysis in the context of low fibrinolytic states to define the importance in differentiating hypofibrinolysis from fibrinolysis shutdown. In many clinical scenarios, the etiology of a low fibrinolytic state cannot be determined due to ambiguity if a preceding fibrinolytic activation event occurred. In this scenario, the term "low fibrinolytic activity" or "fibrinolysis resistance" is a more appropriate descriptor, rather than using assumptive of hypofibrinolysis and fibrinolysis shutdown, particularly in the acute setting of infection, injury, and surgery.
Collapse
Affiliation(s)
- Hunter B. Moore
- Division of Transplant Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado Semin Thromb Hemost
| |
Collapse
|
5
|
Morrow GB, Mutch NJ. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1). Semin Thromb Hemost 2023; 49:305-313. [PMID: 36522166 DOI: 10.1055/s-0042-1758791] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasminogen activator inhibitor 1 (PAI-1), a SERPIN inhibitor, is primarily known for its regulation of fibrinolysis. However, it is now known that this inhibitor functions and contributes to many (patho)physiological processes including inflammation, wound healing, cell adhesion, and tumor progression.This review discusses the past, present, and future roles of PAI-1, with a particular focus on the discovery of this inhibitor in the 1970s and subsequent characterization in health and disease. Throughout the past few decades diverse functions of this serpin have unraveled and it is now considered an important player in many disease processes. PAI-1 is expressed by numerous cell types, including megakaryocytes and platelets, adipocytes, endothelial cells, hepatocytes, and smooth muscle cells. In the circulation PAI-1 exists in two pools, within plasma itself and in platelet α-granules. Platelet PAI-1 is secreted following activation with retention of the inhibitor on the activated platelet membrane. Furthermore, these anucleate cells contain PAI-1 messenger ribonucleic acid to allow de novo synthesis.Outside of the traditional role of PAI-1 in fibrinolysis, this serpin has also been identified to play important roles in metabolic syndrome, obesity, diabetes, and most recently, acute respiratory distress syndrome, including coronavirus disease 2019 disease. This review highlights the complexity of PAI-1 and the requirement to ascertain a better understanding on how this complex serpin functions in (patho)physiological processes.
Collapse
Affiliation(s)
- Gael B Morrow
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola J Mutch
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
6
|
Martins SR, Toledo SLDO, da Silva AJ, Mendes FS, de Oliveira MM, Ferreira LGR, Dusse LMS, Carvalho MDG, Rios DRA, Alpoim PN, Pinheiro MDB. Endothelial dysfunction biomarkers in sickle cell disease: is there a role for ADMA and PAI-1? Ann Hematol 2021; 101:273-280. [PMID: 34665295 DOI: 10.1007/s00277-021-04695-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/10/2021] [Indexed: 01/26/2023]
Abstract
Within the spectrum of sickle cell disease (SCD) are sickle cell anemia (SCA), presence of hemoglobin SS (HbSS), hemoglobin SC disease (HbSC), and sickle cell β-thalassemia (Sβ-thal). Asymmetric dimethylarginine (ADMA) competitively inhibits the binding of arginine to NOS, reducing NO production. In patients with HbSS, increased levels of ADMA have been reported, as well as changes in many hemostatic biomarkers, including the plasminogen activator inhibitor type 1 (PAI-1). We hypothesized that high levels of ADMA and PAI-1 may be associated with more severe SCD. Thus, ADMA and PAI-1 levels were determined in 78 individuals including 38 adult patients with SCD and 40 control subjects. Higher levels of ADMA were shown in HbSS and Sβ-thal patients compared to controls. Concerning PAI-1, all patients showed high levels of PAI-1 compared to controls. As a role of NO in the pathogenesis of SCD has already been established, we concluded that high levels of ADMA should compromise, at least in part, NO synthesis, resulting in endothelial dysfunction. Elevated plasma levels of PAI-1 in all patients may indicate not only endothelial dysfunction but also a hypofibrinolytic state favoring thrombotic complications. Finally, high levels of ADMA and PAI-1 may be associated with more severe SCD.
Collapse
Affiliation(s)
- Suellen Rodrigues Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil
| | - Sílvia Letícia de Oliveira Toledo
- Federal University of São João del-Rei (UFSJ), Campus Centro-Oeste Dona Lindu, Sebastião Gonçalves Coelho Street, 400, Building: D, Room: 308.1, ChanadourDivinópolis, MG, 35501-296, Brazil
| | - Aislander Junio da Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil
| | - Fernanda Santos Mendes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil
| | - Marina Mendes de Oliveira
- Federal University of São João del-Rei (UFSJ), Campus Centro-Oeste Dona Lindu, Sebastião Gonçalves Coelho Street, 400, Building: D, Room: 308.1, ChanadourDivinópolis, MG, 35501-296, Brazil.,Fundação Centro de Hematologia E Hemoterapia Do Estado de Minas Gerais, (Hemominas), Divinópolis, MG, Brazil
| | - Leticia Gonçalves Resende Ferreira
- Federal University of São João del-Rei (UFSJ), Campus Centro-Oeste Dona Lindu, Sebastião Gonçalves Coelho Street, 400, Building: D, Room: 308.1, ChanadourDivinópolis, MG, 35501-296, Brazil
| | - Luci Maria Sant'Ana Dusse
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil
| | - Maria das Graças Carvalho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil.,Federal University of São João del-Rei (UFSJ), Campus Centro-Oeste Dona Lindu, Sebastião Gonçalves Coelho Street, 400, Building: D, Room: 308.1, ChanadourDivinópolis, MG, 35501-296, Brazil
| | - Danyelle Romana Alves Rios
- Federal University of São João del-Rei (UFSJ), Campus Centro-Oeste Dona Lindu, Sebastião Gonçalves Coelho Street, 400, Building: D, Room: 308.1, ChanadourDivinópolis, MG, 35501-296, Brazil
| | - Patrícia Nessralla Alpoim
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270901, Brazil.
| | - Melina de Barros Pinheiro
- Federal University of São João del-Rei (UFSJ), Campus Centro-Oeste Dona Lindu, Sebastião Gonçalves Coelho Street, 400, Building: D, Room: 308.1, ChanadourDivinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
7
|
Hayakawa M, Tsuchida T, Honma Y, Mizugaki A, Ooyasu T, Yoshida T, Saito T, Katabami K, Wada T, Maekawa K. Fibrinolytic system activation immediately following trauma was quickly and intensely suppressed in a rat model of severe blunt trauma. Sci Rep 2021; 11:20283. [PMID: 34645889 PMCID: PMC8514435 DOI: 10.1038/s41598-021-99426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
In severe trauma, excessive fibrinolytic activation is associated with an increase in the transfusion volume and mortality rate. However, in the first several hours after a blunt trauma, changes in fibrinolytic activation, suppression, and activation–suppression balance have not yet been elucidated, which the present study aimed to clarify. Anesthetized 9-week-old male Wistar S/T rats experienced severe blunt trauma while being placed inside the Noble–Collip drum. Rats were randomly divided into four groups of seven. The no-trauma group was not exposed to any trauma; the remaining groups were analysed 0, 60, and 180 min after trauma. Immediately following trauma, total tissue-plasminogen activator (tPA) levels significantly increased in the plasma, and the balance of active tPA and active plasminogen activator inhibitor-1 (PAI-1) significantly tipped toward fibrinolytic activation. After trauma, both tPA and PAI-1 levels increased gradually in various organs and active and total PAI-1 levels increased exponentially in the plasma. Total plasma tPA levels 60 min after trauma returned quickly to levels comparable to those in the no-trauma group. In conclusion, fibrinolytic activation was observed only immediately following trauma. Therefore, immediately after trauma, the fibrinolytic system was activated; however, its activation was quickly and intensely suppressed.
Collapse
Affiliation(s)
- Mineji Hayakawa
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan.
| | - Takumi Tsuchida
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Yoshinori Honma
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Asumi Mizugaki
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Takayoshi Ooyasu
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Tomonao Yoshida
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Tomoyo Saito
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Kenichi Katabami
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Takeshi Wada
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| | - Kunihiko Maekawa
- Department of Emergency Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan
| |
Collapse
|
8
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Sabouni R, Archer DF, Jacot T. Drospirenone Effects on the Plasminogen Activator System in Immortalized Human Endometrial Endothelial Cells. Reprod Sci 2021; 28:1974-1980. [PMID: 33559058 DOI: 10.1007/s43032-020-00433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/13/2020] [Indexed: 12/09/2022]
Abstract
Drospirenone (DRSP) is a fourth-generation progestin that interacts with the progesterone receptor (PR) and androgen receptor (AR) in addition to uniquely interacting to the mineralocorticoid receptor (MR). The known effects of DRSP via the mineralocorticoid receptor (MR) are limited. This study seeks to determine if DRSP alters plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) in human immortalized endometrial endothelial cells (HEEC) and if such changes in the plasminogen activator system (PAS) are mediated through the MR or AR. The in vitro cell culture experiments utilizing an immortalized human endometrial endothelial cell line evaluated two concentrations of DRSP on PAI-1 and tPA levels in the culture media using specific enzyme-linked immunoassays (ELISA). Experiments adding DRSP with an androgen receptor blocker, flutamide, or a mineralocorticoid receptor agonist, aldosterone, were performed to elucidate which receptor(s) mediated the PAS effects. DRSP 10 μM significantly decreased both HEEC levels of PAI-1 and tPA to 0.75 ± 0.04 and 0.82 ± 0.05 of control, respectively. These direct effects were blunted by flutamide, an AR antagonist. PAI-1 and tPA were not changed by the MR agonist, aldosterone. DRSP significantly decreased both PAI-1 and tPA in the HEECs via the androgen receptor.
Collapse
Affiliation(s)
- Reem Sabouni
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA.
| | - David F Archer
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| | - Terry Jacot
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
10
|
Tavares V, Pinto R, Assis J, Pereira D, Medeiros R. Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: Linkage to ovarian tumour behaviour. Biochim Biophys Acta Rev Cancer 2020; 1873:188331. [DOI: 10.1016/j.bbcan.2019.188331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
|