1
|
Figueiredo C, Chen-Wacker C, Salman J, Carvalho-Oliveira M, Monthé TS, Höffler K, Rother T, Hacker K, Valdivia E, Pogozhykh O, Hammer S, Sommer W, Yuzefovych Y, Wenzel N, Haverich A, Warnecke G, Blasczyk R. Knockdown of swine leukocyte antigen expression in porcine lung transplants enables graft survival without immunosuppression. Sci Transl Med 2024; 16:eadi9548. [PMID: 39018368 DOI: 10.1126/scitranslmed.adi9548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/21/2023] [Accepted: 06/21/2024] [Indexed: 07/19/2024]
Abstract
Immune rejection remains the major obstacle to long-term survival of allogeneic lung transplants. The expression of major histocompatibility complex molecules and minor histocompatibility antigens triggers allogeneic immune responses that can lead to allograft rejection. Transplant outcomes therefore depend on long-term immunosuppression, which is associated with severe side effects. To address this problem, we investigated the effect of genetically engineered transplants with permanently down-regulated swine leukocyte antigen (SLA) expression to prevent rejection in a porcine allogeneic lung transplantation (LTx) model. Minipig donor lungs with unmodified SLA expression (control group, n = 7) or with modified SLA expression (treatment group, n = 7) were used to evaluate the effects of SLA knockdown on allograft survival and on the nature and strength of immune responses after terminating an initial 4-week period of immunosuppression after LTx. Genetic engineering to down-regulate SLA expression was achieved during ex vivo lung perfusion by lentiviral transduction of short hairpin RNAs targeting mRNAs encoding β2-microglobulin and class II transactivator. Whereas all grafts in the control group were rejected within 3 months, five of seven animals in the treatment group maintained graft survival without immunosuppression during the 2-year monitoring period. Compared with controls, SLA-silenced lung recipients had lower donor-specific antibodies and proinflammatory cytokine concentrations in the serum. Together, these data demonstrate a survival benefit of SLA-down-regulated lung transplants in the absence of immunosuppression.
Collapse
Affiliation(s)
- Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Chen Chen-Wacker
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Marco Carvalho-Oliveira
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | | | - Klaus Höffler
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Karolin Hacker
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Olena Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Wiebke Sommer
- Department of Cardiac Surgery, University of Kiel, 24105 Kiel, Germany
| | - Yuliia Yuzefovych
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Nadine Wenzel
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University of Kiel, 24105 Kiel, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
2
|
Kaes J, Pollenus E, Hooft C, Liu H, Aelbrecht C, Cambier S, Jin X, Van Slambrouck J, Beeckmans H, Kerckhof P, Velde GV, Van Raemdonck D, Yildirim AÖ, Van den Steen PE, Vos R, Ceulemans LJ, Vanaudenaerde BM. The Immunopathology of Pulmonary Rejection after Murine Lung Transplantation. Cells 2024; 13:241. [PMID: 38334633 PMCID: PMC10854916 DOI: 10.3390/cells13030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
To improve outcomes following lung transplantation, it is essential to understand the immunological mechanisms that result in chronic graft failure. The associated clinical syndrome is termed chronic lung allograft dysfunction (CLAD), which is known to be induced by alloimmune-dependent (i.e., rejection) and alloimmune-independent factors (e.g., infections, reflux and environmental factors). We aimed to explore the alloimmune-related mechanism, i.e., pulmonary rejection. In this study, we use a murine orthotopic left lung transplant model using isografts and allografts (C57BL/6 or BALB/c as donors to C57BL/6 recipients), with daily immunosuppression (10 mg/kg cyclosporin A and 1.6 mg/kg methylprednisolone). Serial sacrifice was performed at days 1, 7 and 35 post-transplantation (n = 6 at each time point for each group). Left transplanted lungs were harvested, a single-cell suspension was made and absolute numbers of immune cells were quantified using multicolor flow cytometry. The rejection process followed the principles of a classic immune response, including innate but mainly adaptive immune cells. At day 7 following transplantation, the numbers of interstitial macrophages, monocytes, dendritic cells, NK cells, NKT cells, CD4+ T cells and CD8+ T and B cells were increased in allografts compared with isografts. Only dendritic cells and CD4+ T cells remained elevated at day 35 in allografts. Our study provides insights into the immunological mechanisms of true pulmonary rejection after murine lung transplantation. These results might be important in further research on diagnostic evaluation and treatment for CLAD.
Collapse
Affiliation(s)
- Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (E.P.)
| | - Charlotte Hooft
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Hengshuo Liu
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany (A.Ö.Y.)
| | - Celine Aelbrecht
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany (A.Ö.Y.)
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (E.P.)
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| |
Collapse
|
3
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Adaptive Immunosuppression in Lung Transplant Recipients Applying Complementary Biomarkers: The Zurich Protocol. Medicina (B Aires) 2023; 59:medicina59030488. [PMID: 36984489 PMCID: PMC10054078 DOI: 10.3390/medicina59030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Achieving adequate immunosuppression for lung transplant recipients in the first year after lung transplantation is a key challenge. Prophylaxis of allograft rejection must be balanced with the adverse events associated with immunosuppressive drugs, for example infection, renal failure, and diabetes. A triple immunosuppressive combination is standard, including a steroid, a calcineurin inhibitor, and an antiproliferative compound beginning with the highest levels of immunosuppression and a subsequent tapering of the dose, usually guided by therapeutic drug monitoring and considering clinical results, bronchoscopy sampling results, and additional biomarkers such as serum viral replication or donor-specific antibodies. Balancing the net immunosuppression level required to prevent rejection without overly increasing the risk of infection and other complications during the tapering phase is not well standardized and requires repeated assessments for dose-adjustments. In our adaptive immunosuppression approach, we additionally consider results from the white blood cell counts, in particular lymphocytes and eosinophils, as biomarkers for monitoring the level of immunosuppression and additionally use them as therapeutic targets to fine-tune the immunosuppressive strategy over time. The concept and its rationale are outlined, and areas of future research mentioned.
Collapse
|
5
|
Bos S, Milross L, Filby AJ, Vos R, Fisher AJ. Immune processes in the pathogenesis of chronic lung allograft dysfunction: identifying the missing pieces of the puzzle. Eur Respir Rev 2022; 31:31/165/220060. [PMID: 35896274 DOI: 10.1183/16000617.0060-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lung transplantation is the optimal treatment for selected patients with end-stage chronic lung diseases. However, chronic lung allograft dysfunction remains the leading obstacle to improved long-term outcomes. Traditionally, lung allograft rejection has been considered primarily as a manifestation of cellular immune responses. However, in reality, an array of complex, interacting and multifactorial mechanisms contribute to its emergence. Alloimmune-dependent mechanisms, including T-cell-mediated rejection and antibody-mediated rejection, as well as non-alloimmune injuries, have been implicated. Moreover, a role has emerged for autoimmune responses to lung self-antigens in the development of chronic graft injury. The aim of this review is to summarise the immune processes involved in the pathogenesis of chronic lung allograft dysfunction, with advanced insights into the role of innate immune pathways and crosstalk between innate and adaptive immunity, and to identify gaps in current knowledge.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Vos
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK .,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Jiang J, Li J, Zhang Y, Zhou C, Guo C, Zhou Z, Ming Y. The Protective Effect of the Soluble Egg Antigen of Schistosoma japonicum in A Mouse Skin Transplantation Model. Front Immunol 2022; 13:884006. [PMID: 35911717 PMCID: PMC9332893 DOI: 10.3389/fimmu.2022.884006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Organ transplantation is currently an effective method for treating organ failure. Long-term use of immunosuppressive drugs has huge side effects, which severely restricts the long-term survival of patients. Schistosoma can affect the host’s immune system by synthesizing, secreting, or excreting a variety of immunomodulatory molecules, but its role in transplantation was not well defined. In order to explore whether Schistosoma-related products can suppress rejection and induce long-term survival of the transplant, we used soluble egg antigen (SEA) of Schistosoma japonicum in mouse skin transplantation models. Materials and methods Each mouse was intraperitoneally injected with 100 μg of SEA three times a week for four consecutive weeks before allogenic skin transplant. Skin transplants were performed on day 0 to observe graft survival. Pathological examination of skin grafts was conducted 7 days post transplantation. The skin grafts were subjected to mRNA sequencing. Bioinformatics analysis was conducted and the expression of hub genes was verified by qPCR. Flow cytometry analysis was performed to evaluate the immune status and validate the results from bioinformatic analysis. Results The mean survival time (MST) of mouse skin grafts in the SEA-treated group was 11.67 ± 0.69 days, while that of the control group was 8.00 ± 0.36 days. Pathological analysis showed that Sj SEA treatment led to reduced inflammatory infiltration within skin grafts 7 days after allogenic skin transplantation. Bioinformatics analysis identified 86 DEGs between the Sj SEA treatment group and the control group, including 39 upregulated genes and 47 downregulated genes. Further analysis revealed that Sj SEA mediated regulation on cellular response to interferon-γ, activation of IL-17 signaling and chemokine signaling pathways, as well as cytokine–cytokine receptor interaction. Flow cytometry analysis showed that SEA treatment led to higher percentages of CD4+IL-4+ T cells and CD4+Foxp3+ T cells and decreased CD4+IFN-γ+ T cells in skin transplantation. Conclusion Sj SEA treatment suppressed rejection and prolonged skin graft survival by regulating immune responses. Sj SEA treatment might be a potential new therapeutic strategy to facilitate anti-rejection therapy and even to induce tolerance.
Collapse
Affiliation(s)
- Jie Jiang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junhui Li
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Guo
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqin Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Ming
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yingzi Ming,
| |
Collapse
|
7
|
Abstract
Infection and rejection are the two most common complications after lung transplantation (LT) and are associated with increased morbidity and mortality. We aimed to examine the association between the airway microbiota and infection and rejection in lung transplant recipients (LTRs). Here, we collected 181 sputum samples (event-free, n = 47; infection, n = 103; rejection, n = 31) from 59 LTRs, and performed 16S rRNA gene sequencing to analyze the airway microbiota. A significantly different airway microbiota was observed among event-free, infection and rejection recipients, including microbial diversity and community composition. Nineteen differential taxa were identified by linear discriminant analysis (LDA) effect size (LEfSe), with 6 bacterial genera, Actinomyces, Rothia, Abiotrophia, Neisseria, Prevotella, and Leptotrichia enriched in LTRs with rejection. Random forest analyses indicated that the combination of the 6 genera and procalcitonin (PCT) and T-lymphocyte levels showed area under the curve (AUC) values of 0.898, 0.919 and 0.895 to differentiate between event-free and infection recipients, event-free and rejection recipients, and infection and rejection recipients, respectively. In conclusion, our study compared the airway microbiota between LTRs with infection and acute rejection. The airway microbiota, especially combined with PCT and T-lymphocyte levels, showed satisfactory predictive efficiency in discriminating among clinically stable recipients and those with infection and acute rejection, suggesting that the airway microbiota can be a potential indicator to differentiate between infection and acute rejection after LT. IMPORTANCE Survival after LT is limited compared with other solid organ transplantations mainly due to infection- and rejection-related complications. Differentiating infection from rejection is one of the most important challenges to face after LT. Recently, the airway microbiota has been reported to be associated with either infection or rejection of LTRs. However, fewer studies have investigated the relationship between airway microbiota together with infection and rejection of LTRs. Here, we conducted an airway microbial study of LTRs and analyzed the airway microbiota together with infection, acute rejection, and clinically stable recipients. We found different airway microbiota between infection and acute rejection and identify several genera associated with each outcome and constructed a model that incorporates airway microbiota and clinical parameters to predict outcome. This study highlighted that the airway microbiota was a potential indicator to differentiate between infection and acute rejection after LT.
Collapse
|
8
|
Bos S, Filby AJ, Vos R, Fisher AJ. Effector immune cells in Chronic Lung Allograft Dysfunction: a Systematic Review. Immunology 2022; 166:17-37. [PMID: 35137398 PMCID: PMC9426626 DOI: 10.1111/imm.13458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major barrier to long‐term survival after lung transplantation and improved insight into its underlying immunological mechanisms is critical to better understand the disease and to identify treatment targets. We systematically searched the electronic databases of PubMed and EMBASE for original research publications, published between January 2000 and April 2021, to comprehensively assess current evidence on effector immune cells in lung tissue and bronchoalveolar lavage fluid from lung transplant recipients with CLAD. Literature search revealed 1351 articles, 76 of which met the criteria for inclusion in our analysis. Our results illustrate significant complexity in both innate and adaptive immune cell responses in CLAD, along with presence of numerous immune cell products, including cytokines, chemokines and proteases associated with tissue remodelling. A clear link between neutrophils and eosinophils and CLAD incidence has been seen, in which eosinophils more specifically predisposed to restrictive allograft syndrome. The presence of cytotoxic and T‐helper cells in CLAD pathogenesis is well‐documented, although it is challenging to draw conclusions about their role in tissue processes from predominantly bronchoalveolar lavage data. In restrictive allograft syndrome, a more prominent humoral immune involvement with increased B cells, immunoglobulins and complement deposition is seen. Our evaluation of published studies over the last 20 years summarizes the complex multifactorial immunopathology of CLAD onset and progression. It highlights the phenotype of several key effector immune cells involved in CLAD pathogenesis, as well as the paucity of single cell resolution spatial studies in lung tissue from patients with CLAD.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robin Vos
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept. of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
9
|
De Paz D, Aviña AE, Cardona E, Lee CM, Lin CH, Lin CH, Wei FC, Wang AYL. The Mandible Ameliorates Facial Allograft Rejection and Is Associated with the Development of Regulatory T Cells and Mixed Chimerism. Int J Mol Sci 2021; 22:11104. [PMID: 34681764 PMCID: PMC8537927 DOI: 10.3390/ijms222011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Vascularized composite allografts contain various tissue components and possess relative antigenicity, eliciting different degrees of alloimmune responses. To investigate the strategies for achieving facial allograft tolerance, we established a mouse hemiface transplant model, including the skin, muscle, mandible, mucosa, and vessels. However, the immunomodulatory effects of the mandible on facial allografts remain unclear. To understand the effects of the mandible on facial allograft survival, we compared the diversities of different facial allograft-elicited alloimmunity between a facial osteomyocutaneous allograft (OMC), including skin, muscle, oral mucosa, and vessels, and especially the mandible, and a myocutaneous allograft (MC) including the skin, muscle, oral mucosa, and vessels, but not the mandible. The different facial allografts of a BALB/c donor were transplanted into a heterotopic neck defect on fully major histocompatibility complex-mismatched C57BL/6 mice. The allogeneic OMC (Allo-OMC) group exhibited significant prolongation of facial allograft survival compared to the allogeneic MC group, both in the presence and absence of FK506 immunosuppressive drugs. With the use of FK506 monotherapy (2 mg/kg) for 21 days, the allo-OMC group, including the mandible, showed prolongation of facial allograft survival of up to 65 days, whereas the myocutaneous allograft, without the mandible, only survived for 34 days. The Allo-OMC group also displayed decreased lymphocyte infiltration into the facial allograft. Both groups showed similar percentages of B cells, T cells, natural killer cells, macrophages, and dendritic cells in the blood, spleen, and lymph nodes. However, a decrease in pro-inflammatory T helper 1 cells and an increase in anti-inflammatory regulatory T cells were observed in the blood and lymph nodes of the Allo-OMC group. Significantly increased percentages of donor immune cells were also observed in three lymphoid organs of the Allo-OMC group, suggesting mixed chimerism induction. These results indicated that the mandible has the potential to induce anti-inflammatory effects and mixed chimerism for prolonging facial allograft survival. The immunomodulatory understanding of the mandible could contribute to reducing the use of immunosuppressive regimens in clinical face allotransplantation including the mandible.
Collapse
Affiliation(s)
- Dante De Paz
- Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (D.D.P.); (A.E.A.); (C.-H.L.); (F.-C.W.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
- Department of Head and Neck Surgery, National Police Hospital, Lima 15072, Peru
| | - Ana Elena Aviña
- Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (D.D.P.); (A.E.A.); (C.-H.L.); (F.-C.W.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
| | - Esteban Cardona
- Department of Plastic Surgery, Clínica IPS Universitaria León XIII, University of Antioquia, Medellín 050010, Colombia;
| | - Chin-Ming Lee
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
| | - Chia-Hsien Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
| | - Cheng-Hung Lin
- Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (D.D.P.); (A.E.A.); (C.-H.L.); (F.-C.W.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
| | - Fu-Chan Wei
- Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (D.D.P.); (A.E.A.); (C.-H.L.); (F.-C.W.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
| |
Collapse
|
10
|
Klapper J, Denlinger C, Sade RM. Smoking Relapse After Lung Transplantation: Is a Second Transplant Justified? Ann Thorac Surg 2021; 112:373-378. [PMID: 33905727 DOI: 10.1016/j.athoracsur.2021.03.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Jacob Klapper
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | | | - Robert M Sade
- Department of Surgery and Institute of Human Values in Health Care, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
11
|
Zhang M, Xu M, Wang K, Li L, Zhao J. Effect of Inhibition of the JAK2/STAT3 Signaling Pathway on the Th17/IL-17 Axis in Acute Cellular Rejection After Heart Transplantation in Mice. J Cardiovasc Pharmacol 2021; 77:614-620. [PMID: 33951698 PMCID: PMC8096315 DOI: 10.1097/fjc.0000000000001007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Acute immune rejection is one of the most serious complications of heart transplantation, and its mechanism has always been a hot spot. Th17 cells and cytokine interleukin-17 (IL-17) have been proved to be involved in acute immune rejection, and the signaling pathway mechanism has attracted our interest. It has been confirmed that the Janus kinase 2-signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway is involved in the differentiation of CD4+ T cells, so we focus on whether the JAK2/STAT3 signaling pathway is involved in the occurrence of acute immune rejection by regulating the Th17/IL-17 axis. In this study, we used Bagg's Albino c mice and C57BL/6 mice to construct heterotopic heart transplantation models, which were divided into the acute rejection group and AG490-treated group (n = 5), and donor tissue and serum were collected in 3 experimental days from the recipient mice for H&E staining analysis of paraffin sections and ELISA, Western blot, flow cytometry, and real time-polymerase chain reaction. The results showed that the acute rejection rating of the heart decreased, and the expression of related factors decreased significantly after using the inhibitor AG490, suggesting that the JAK2/STAT3 signaling pathway regulates expression of the Th17/IL-17 axis in cardiac allograft rejection.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ming Xu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Kaijie Wang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Long Li
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Zhou W, Yang J, Saren G, Zhao H, Cao K, Fu S, Pan X, Zhang H, Wang A, Chen X. HDAC6-specific inhibitor suppresses Th17 cell function via the HIF-1α pathway in acute lung allograft rejection in mice. Am J Cancer Res 2020; 10:6790-6805. [PMID: 32550904 PMCID: PMC7295069 DOI: 10.7150/thno.44961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Previous animal experiments and clinical studies indicated the critical role of Th17 cells in lung transplant rejection. Therefore, the downregulation of Th17 cell function in lung transplant recipients is of great interest. Methods: We established an orthotopic mouse lung transplantation model to investigate the role of histone deacetylase 6-specific inhibitor (HDAC6i), Tubastatin A, in the suppression of Th17 cells and attenuation of pathologic lesions in lung allografts. Moreover, mechanism studies were conducted in vitro. Results: Tubastatin A downregulated Th17 cell function in acute lung allograft rejection, prolonged the survival of lung allografts, and attenuated acute rejection by suppressing Th17 cell accumulation. Consistently, exogenous IL-17A supplementation eliminated the protective effect of Tubastatin A. Also, hypoxia-inducible factor-1α (HIF-1α) was overexpressed in a lung transplantation mouse model. HIF-1α deficiency suppressed Th17 cell function and attenuated lung allograft rejection by downregulating retinoic acid-related orphan receptor γt (ROR γt) expression. We showed that HDAC6i downregulated HIF-1α transcriptional activity under Th17-skewing conditions in vitro and promoted HIF-1α protein degradation in lung allografts. HDAC6i did not affect the suppression of HIF-1α-/- naïve CD4+ T cell differentiation into Th17 cell and attenuation of acute lung allograft rejection in HIF-1α-deficient recipient mice. Conclusion: These findings suggest that Tubastatin A downregulates Th17 cell function and suppresses acute lung allograft rejection, at least partially, via the HIF-1α/ RORγt pathway.
Collapse
|
13
|
Mao JX, Guo WY, Guo M, Liu C, Teng F, Ding GS. Acute rejection after liver transplantation is less common, but predicts better prognosis in HBV-related hepatocellular carcinoma patients. Hepatol Int 2020; 14:347-361. [PMID: 32140981 DOI: 10.1007/s12072-020-10022-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND With a novel finding of significantly lower incidence of acute rejection (AR) in patients with hepatocellular carcinoma (HCC) after liver transplantation, compared with those with benign end-stage liver disease (BESLD), in a large national cohort, we analyzed the correlations among the perioperative immuno-inflammation status, postoperative AR, and prognosis in HCC and BESLD patients with same etiology of hepatitis B virus (HBV), who underwent liver transplantation. METHODS Patients who underwent liver transplantation due to HBV-related HCC or BESLD and experienced AR between September 2008 and April 2017 were analyzed retrospectively and followed up until April 2018. HCC patients with AR were matched with those without AR according to tumor stage and immunosuppressant concentration, at a 1:3 ratio. Preoperative immuno-inflammation status and prognosis of patients in both groups were compared. RESULTS The overall incidences of AR in patients with HCC and BESLD were 8.60% and 10.61%, respectively. The postoperative 28-day incidence of AR was significantly lower in HCC compared with BESLD patients (3.23% vs 7.08%, p = 0.031). Compared with BESLD patients, the rejection activity index and perioperative CD4/CD8 ratio were significantly lower (p = 0.047 and p < 0.001, respectively), while platelet/lymphocyte ratio was significantly higher in HCC patients (p = 0.041). Later tumor stage in HCC patients was associated with higher systemic immuno-inflammation index, neutrophil/lymphocyte ratio, monocyte/lymphocyte ratio, platelet/lymphocyte ratio, aspartate aminotransferase/lymphocyte ratio, C-reactive protein/albumin ratio and fibrinogen level, and lower CD4/CD8 ratio before transplantation. In HCC patients with AR, the percentage of regulatory T cells (CD4+/CD25+) and the level of IL-10 significantly decreased (p = 0.0023, < 0.0001, respectively), while Th1/Th2 ratio, levels of IFN-γ and IL-2 markedly increased before transplantation (p = 0.0018, 0.0059, 0.0416, respectively). Preoperative monocyte/lymphocyte ratio was an independent risk factor for overall and recurrence-free survival after liver transplantation in HCC patients (p = 0.025, < 0.001, respectively). The 1-, 3-, and 5-year survival rates were 76%, 71% and 53% in the AR group, and 67%, 37% and 25% in the non-AR group (p = 0.042). CONCLUSION Preoperative tumor-related immunosuppression may persist after liver transplantation in HCC patients, and reduce the incidence of AR. AR after liver transplantation may indicate a better prognosis in HCC patients.
Collapse
Affiliation(s)
- Jia-Xi Mao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Wen-Yuan Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Meng Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China.,National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
| | - Cong Liu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China.
| | - Guo-Shan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China.
| |
Collapse
|
14
|
Low immunogenic endothelial cells endothelialize the Left Ventricular Assist Device. Sci Rep 2019; 9:11318. [PMID: 31383930 PMCID: PMC6683293 DOI: 10.1038/s41598-019-47780-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Low haemocompatibility of left ventricular assist devices (LVAD) surfaces necessitates anticoagulative therapy. Endothelial cell (EC) seeding can support haemocompatibility, however, the availability of autologous ECs is limited. In contrast, allogeneic ECs are readily available in sufficient quantity, but HLA disparities induce harmful immune responses causing EC loss. In this study, we investigated the feasibility of using allogeneic low immunogenic ECs to endothelialize LVAD sintered inflow cannulas (SIC). To reduce the immunogenicity of ECs, we applied an inducible lentiviral vector to deliver short-hairpins RNA to silence HLA class I expression. HLA class I expression on ECs was conditionally silenced by up to 70%. Sufficient and comparable endothelialization rates were achieved with HLA-expressing or HLA-silenced ECs. Cell proliferation was not impaired by cell-to-Sintered Inflow Cannulas (SIC) contact or by silencing HLA expression. The levels of endothelial phenotypic and thrombogenic markers or cytokine secretion profiles remained unaffected. HLA-silenced ECs-coated SIC exhibited reduced thrombogenicity. In contrast to native ECs, HLA-silenced ECs showed lower cell lysis rates when exposed to allogeneic T cells or specific anti-HLA antibodies. Allogeneic HLA-silenced ECs could potentially become a valuable source for LVAD endothelialization to reduce immunogenicity and correspondingly the need for anticoagulative therapy which can entail severe side effects.
Collapse
|