1
|
Moradi S, Mozafari R, Ghadermazi M. Phosphomolybdic acid supported on magnetic poly calix[4]resorcinarene-EDTA-chitosan network as a recyclable catalyst for the synthesis of 5-aroyl-NH-1,3-oxazolidine-2-ones. Sci Rep 2024; 14:12865. [PMID: 38834811 DOI: 10.1038/s41598-024-63493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
In this work, a novel procedure for immobilization of phosphomolybdic acid (PMA) on Magnetic polycalix[4]resorcinarene grafted to chitosan by EDTA (calix-EDTA-Cs) was reported. The heterogeneous nanocomposite (CoFe2O4@calix-EDTA-Cs@PMA) was applied an acid nanocatalyst for the synthesis of 5-aroyl-NH-1,3-oxazolidine-2-ones through the reaction of α-epoxyketones with sodium cyanate (NaOCN) in polyethylene glycol (PEG) as a green solvent under ultrasonic irradiation conditions. Some features of this work include quick reaction time, high reaction yield, easy separation of the catalyst, thermal stability, and eco-friendly.
Collapse
Affiliation(s)
- Setareh Moradi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Roya Mozafari
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Ghadermazi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
2
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
3
|
Filipe L, de Sousa T, Silva D, Santos MM, Ribeiro Carrott M, Poeta P, Branco LC, Gago S. In Vitro Antimicrobial Studies of Mesoporous Silica Nanoparticles Comprising Anionic Ciprofloxacin Ionic Liquids and Organic Salts. Pharmaceutics 2023; 15:1934. [PMID: 37514120 PMCID: PMC10385687 DOI: 10.3390/pharmaceutics15071934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The combination of active pharmaceutical ingredients in the form of ionic liquids or organic salts (API-OSILs) with mesoporous silica nanoparticles (MSNs) as drug carriers can provide a useful tool in enhancing the capabilities of current antibiotics, especially against resistant strains of bacteria. In this publication, the preparation of a set of three nanomaterials based on the modification of a MSN surface with cholinium ([MSN-Chol][Cip]), 1-methylimidazolium ([MSN-1-MiM][Cip]) and 3-picolinium ([MSN-3-Pic][Cip]) ionic liquids coupled with anionic ciprofloxacin have been reported. All ionic liquids and functionalized nanomaterials were prepared through sustainable protocols, using microwave-assisted heating as an alternative to conventional methods. All materials were characterized through FTIR, solution 1H NMR, elemental analysis, XRD and N2 adsorption at 77 K. The prepared materials showed no in vitro cytotoxicity in fibroblasts viability assays. The minimum inhibitory concentration (MIC) for all materials was tested against Gram-negative K. pneumoniae and Gram-positive Enterococcus spp., both with resistant and sensitive strains. All sets of nanomaterials containing the anionic antibiotic outperformed free ciprofloxacin against resistant and sensitive forms of K. pneumoniae, with the prominent case of [MSN-Chol][Cip] suggesting a tenfold decrease in the MIC against sensitive strains. Against resistant K. pneumoniae, a five-fold decrease in the MIC was observed for all sets of nanomaterials compared with neutral ciprofloxacin. Against Enterococcus spp., only [MSN-1-MiM][Cip] was able to demonstrate a slight improvement over the free antibiotic.
Collapse
Affiliation(s)
- Luís Filipe
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Telma de Sousa
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Dário Silva
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Miguel M Santos
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Manuela Ribeiro Carrott
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Patrícia Poeta
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís C Branco
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Sandra Gago
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Bronner H, Brunswig F, Pluta D, Krysiak Y, Bigall N, Plettenburg O, Polarz S. Cooperative Functionalities in Porous Nanoparticles for Seeking Extracellular DNA and Targeting Pathogenic Biofilms via Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 36892202 PMCID: PMC10037239 DOI: 10.1021/acsami.3c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Many pathogenic bacteria are getting more and more resistant against antibiotic treatment and even become up to 1.000× times more resilient in the form of a mature biofilm. Thus, one is currently prospecting for alternative methods for treating microbial infections, and photodynamic therapy is a highly promising approach by creating so-called reactive oxygen species (ROS) produced by a photosensitizer (PS) upon irradiation with light. Unfortunately, the unspecific activity of ROS is also problematic as they are harmful to healthy tissue as well. Notably, one knows that uncontrolled existence of ROS in the body plays a major role in the development of cancer. These arguments create need for advanced theranostic materials which are capable of autonomous targeting and detecting the existence of a biofilm, followed by specific activation to combat the infection. The focus of this contribution is on mesoporous organosilica colloids functionalized by orthogonal and localized click-chemistry methods. The external zone of the particles is modified by a dye of the Hoechst family. The particles readily enter a mature biofilm where adduct formation with extracellular DNA and a resulting change in the fluorescence signal occurs, but they cannot cross cellular membranes such as in healthy tissue. A different dye suitable for photochemical ROS generation, Acridine Orange, is covalently linked to the surfaces of the internal mesopores. The spectral overlap between the emission of Hoechst with the absorption band of Acridine Orange facilitates energy transfer by Förster resonance with up to 88% efficiency. The theranostic properties of the materials including viability studies were investigated in vitro on mature biofilms formed by Pseudomonas fluorescens and prove the high efficacy.
Collapse
Affiliation(s)
- Hannah Bronner
- Institute
of Inorganic Chemistry, Leibniz-University
Hannover, Callinstrasse
9, 30167 Hannover, Germany
| | - Fabian Brunswig
- Centre
of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz-University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
- Institute
of Medicinal Chemistry (IMC), Helmholtz
Centre Munich, Ingolstädter
Landstraße 1, D-85764 Neuherberg, Germany
| | - Denis Pluta
- Institute
of Physical Chemistry, Leibniz-University
Hannover, Callinstraße
3a, 30167 D-Hannover, Germany
- Laboratory
of Nano- and Quantum Engineering, Leibniz
University Hannover, 30167 Hanover, Germany
- Cluster of
Excellence PhoenixD (Photonics, Optics and Engineering-Innovation
Across Disciplines), Leibniz University
Hannover, 30167 Hannover, Germany
| | - Yaşar Krysiak
- Institute
of Inorganic Chemistry, Leibniz-University
Hannover, Callinstrasse
9, 30167 Hannover, Germany
| | - Nadja Bigall
- Institute
of Physical Chemistry, Leibniz-University
Hannover, Callinstraße
3a, 30167 D-Hannover, Germany
- Laboratory
of Nano- and Quantum Engineering, Leibniz
University Hannover, 30167 Hanover, Germany
- Cluster of
Excellence PhoenixD (Photonics, Optics and Engineering-Innovation
Across Disciplines), Leibniz University
Hannover, 30167 Hannover, Germany
| | - Oliver Plettenburg
- Centre
of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz-University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
- Institute
of Medicinal Chemistry (IMC), Helmholtz
Centre Munich, Ingolstädter
Landstraße 1, D-85764 Neuherberg, Germany
| | - Sebastian Polarz
- Institute
of Inorganic Chemistry, Leibniz-University
Hannover, Callinstrasse
9, 30167 Hannover, Germany
- Laboratory
of Nano- and Quantum Engineering, Leibniz
University Hannover, 30167 Hanover, Germany
- Cluster of
Excellence PhoenixD (Photonics, Optics and Engineering-Innovation
Across Disciplines), Leibniz University
Hannover, 30167 Hannover, Germany
| |
Collapse
|
5
|
Li M, Xiao J, Chen L, Ren B, Liu Z, Guo Y, Wang Y. A study of the optimal diffusion distance of ibuprofen through the synthesis of different sizes of mesoporous silica. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. Int J Mol Sci 2023; 24:ijms24032332. [PMID: 36768659 PMCID: PMC9917151 DOI: 10.3390/ijms24032332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Since the pioneering work of Vallet-Regí's group on the design and synthesis of mesoporous silica-based materials with therapeutic applications, during the last 15 years, the potential use of mesoporous silica nanostructured materials as drug delivery vehicles has been extensively explored. The versatility of these materials allows the design of a wide variety of platforms that can incorporate numerous agents of interest (fluorophores, proteins, drugs, etc.) in a single scaffold. However, the use of these systems loaded with metallodrugs as cytotoxic agents against different diseases and with distinct therapeutic targets has been studied to a much lesser extent. This review will focus on the work carried out in this field, highlighting both the pioneering and recent contributions of Spanish groups that have synthesized a wide variety of systems based on titanium, tin, ruthenium, copper and silver complexes supported onto nanostructured silica. In addition, this article will also discuss the importance of the structural features of the systems for evaluating and modulating their therapeutic properties. Finally, the most interesting results obtained in the study of the potential therapeutic application of these metallodrug-functionalized silica-based materials against cancer and bacteria will be described, paying special attention to preclinical trials in vivo.
Collapse
|
7
|
Qian J, Huang A, Zhu H, Ding J, Zhang W, Chen Y. Immobilization of lipase on silica nanoparticles by adsorption followed by glutaraldehyde cross-linking. Bioprocess Biosyst Eng 2023; 46:25-38. [PMID: 36370210 DOI: 10.1007/s00449-022-02810-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
In this study, Candida antarctica lipase B was immobilized on silica (SiO2) nanoparticles by physical adsorption, and then cross-linked with glutaraldehyde (GA) to prepare cross-linked immobilized lipase (CLIL). During the condition of 1.28 mg/mL lipase concentration, 25 ℃ temperature, 2 h adsorption time, 0.01% GA (V/V) 7.5 mL and 2 h cross-linking time, the highest recovery activity of CLIL reached 87.82 ± 0.07% (22.55 ± 0.025 U/mg). Scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) confirmed that lipase was immobilized on the surface of SiO2 nanoparticles. The changes in secondary structures of CLIL indicated that cross-linking changed the secondary structure of lipase protein, which made the structure of CLIL more stable. Compared with the free lipase, the thermal stability and storage stability of CLIL was significantly improved, and the t1/2 at 60 °C was extended. Studies had shown that it was a feasible method to obtain CLIL by cross-linking after adsorbing lipase on SiO2 nanoparticles.
Collapse
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China.
| | - Aomei Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Hanxiao Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Jing Ding
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Yan Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Sedaghat T, Aminian M, Abaee S, Hoveizi E, Tarassoli A, Beheshti A, Morales-Morales D. New organotin(IV) complexes with a bis-acyl-hydrazone ligand: synthesis, crystal structure and immobilization on magnetic mesoporous silica nanoparticles as a strategy in cancer therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Aminian M, Khalaj M. SYNTHESIS, SPECTRAL CHARACTERIZATION, CRYSTAL STRUCTURE AND ANTIBACTERIAL ACTIVITY OF DICHLORO-{2-[(4-FLUOROPHENYL) IMINOMETHYL]PYRIDINE-κ2N,N′}MERCURY(II). J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Peng X, Zheng J, Wang J, Xiang C, Wang R. Synthesis of hollow mesoporous silica spheres functionalized with copper ferrocyanide and its application for Cs + removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53509-53521. [PMID: 35287192 DOI: 10.1007/s11356-022-19659-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this study, the potassium copper ferrocyanide-functionalized hollow mesoporous silica spheres was successfully prepared. SEM, FTIR, XRD, EDS, and XPS techniques were used to characterize the structure of materials before and after functionalization. The synthesized functionalized hollow mesoprous silica was applied to remove cesium from aqueous solution. The applicability of the adsorbent for the removal of cesium ions was assessed and the effective parameters such as solution pH, contacting time, initial Cs+ concentration, and competitive ions effect were evaluated systematically under the batch mode. The experimental results showed that the adsorbent exhibited high Cs+ selectivity even in the highly concentrated coexisting ions solution, which makes them to be used as potential adsorbents for the removal of cesium from nuclear wastewater or contaminated groundwater.
Collapse
Affiliation(s)
- Xiaoying Peng
- School of Civil Engineering, University of South China, Hengyang, 421001, Hunan Province, China
| | - Jiahao Zheng
- School of Civil Engineering, University of South China, Hengyang, 421001, Hunan Province, China
| | - Jinsong Wang
- School of Civil Engineering, University of South China, Hengyang, 421001, Hunan Province, China.
| | - Chao Xiang
- School of Civil Engineering, University of South China, Hengyang, 421001, Hunan Province, China
| | - Rui Wang
- Institute of Human Factor Engineering and Safety Management, Hunan Institute of Technology, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
11
|
Mohammadi ZB, Zhang F, Kharazmi MS, Jafari SM. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit Rev Food Sci Nutr 2022; 63:11351-11369. [PMID: 35758266 DOI: 10.1080/10408398.2022.2092719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid progress in modern technologies and paying more attention to food safety has prompted new green technologies superior than chemical methods in the food industry. In this regard, enzymes can decrease the usage of chemical reactions but they are sensitive to environmental effects (pH and temperature). In addition, enzymes are scarcely possible to be reused. Consequently, their application as natural catalysts is restricted. Using nanotechnology and the possibility of enzyme immobilization on nanomaterials has led to nanobiocatalysts, resulting from the integration of nanotechnology and biotechnology. Nanocarriers have individual features like nanoscale size, excellent surface/volume ratio, and diversity in construction to improve the activity, efficiency, stability, and storage stability of enzymes. Nanobiocatolysts have a wide range of applications in purification, extraction, clarification, production, and packaging of various products in the food industry. Furthermore, the application of nanobiocatalysts to identify specific components of food contaminants such as microorganisms or their metabolites, heavy metals, antibiotics, and residual pesticides has been successful due to the high accuracy of detection. This review investigates the integration of nanotechnology and food enzymes, the nanomaterials used to create nanobiocatalysts and their application, along with the possible risks and legal aspects of nanomaterials in food bioprocesses.
Collapse
Affiliation(s)
- Zahra Beig Mohammadi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
12
|
Marcelo GA, Galhano J, Duarte MP, Capelo-Martínez JL, Lodeiro C, Oliveira E. Validation of a Standard Luminescence Method for the Fast Determination of the Antimicrobial Activity of Nanoparticles in Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2164. [PMID: 35807997 PMCID: PMC9268724 DOI: 10.3390/nano12132164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The use of nanoparticles in multiple industries has raised concerned voices about the assessment of their toxicity/antimicrobial activity and the development of standardized handling protocols. Issues emerge during the antimicrobial assaying of multiple cargo, colorimetric, colloidal nanoformulations, as standard protocols often rely on visual evaluations, or optical density (OD) measurements, leading to high variance inhibitory concentrations (MIC). Thus, a fast, luminescence-based assay for the effective assessment of the antimicrobial activity of nanoparticles is herein reported, using the bioluminescence of an in-house E. coli ATCC® 8739TM construct with the pMV306G13 + Lux plasmid (E. coli Lux). The new strain's sensitivity to ofloxacin as a standard antibiotic was confirmed, and the methodology robustness verified against multiple nanoparticles and colorimetric drugs. The reduction of incubation from 24 to only 8 h, and the sole use of luminescence (LUX490) to accurately determine and distinguish MIC50 and MIC90, are two main advantages of the method. By discarding OD measurements, one can avoid turbidity and color interferences when calculating bacterial growth. This approach is an important tool that contributes to the standardization of methods, reducing samples' background interference and focusing on luminescence as a direct probe for bacterial metabolic activity, growth and, most importantly, the correct assessment of nanomaterials' antimicrobial activity.
Collapse
Affiliation(s)
- Gonçalo A. Marcelo
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
| | - Joana Galhano
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
| | - Maria Paula Duarte
- MEtRICs, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, NOVA University Lisbon, 2829-516 Caparica, Portugal; (G.A.M.); (J.G.); (J.L.C.-M.); (C.L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| |
Collapse
|
13
|
Rashid SS, Mustafa AH, Rahim MHA, Gunes B. Magnetic nickel nanostructure as cellulase immobilization surface for the hydrolysis of lignocellulosic biomass. Int J Biol Macromol 2022; 209:1048-1053. [PMID: 35447264 DOI: 10.1016/j.ijbiomac.2022.04.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/15/2022]
Abstract
In this research, a magnetic reusable nickel nanoparticle (NiNPs) supporting materials were prepared for cellulase enzyme immobilization. The immobilized cellulase showed high activity recovery, large & fast immobilization capacity and improved pH & temperature tolerance. The excellent stability and reusability enabled the immobilized cellulase to retain 84% of its initial activity after ten cycles. At 2 mg/mL enzyme concentration, highest 93% immobilization efficiency was achieved within two hours of immobilization. When the treatment temperature reached 40 °C and pH 5, the immobilized cellulase exhibited highest residual activity. The immobilized cellulase could be separated from the solution by a magnetic force. This study introduced a novel supporting material for cellulase immobilization, and the immobilized cellulase poses a great potential in the hydrolysis of lignocellulosic biomass which can used as an easily applicable and sustainable pre-treatment step for advanced biofuel production.
Collapse
Affiliation(s)
- Shah Samiur Rashid
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuh Raya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| | - Abu Hasnat Mustafa
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuh Raya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Mohd Hasbi Ab Rahim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuh Raya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Burcu Gunes
- School of Biotechnology and DCU Water Institute, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
14
|
Polydopamine-Coated Copper-Substituted Mesoporous Silica Nanoparticles for Dual Cancer Therapy. COATINGS 2022. [DOI: 10.3390/coatings12010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combinational therapy using chemodynamictherapy (CDT) and photothermal therapy (PTT) is known to enhance the therapeutic outcome for cancer treatment. In this study, a biocompatible nano formulation was developed by coating polydopamine (PDA) over doxorubicin (DOX)-loaded copper-substituted mesoporous silica (CuMSN) nanoparticles. PDA coating not only allowed selective photothermal properties with an extended DOX release but also enhanced the water solubility and biocompatibility of the nanocomposites. The nanocomposites displayed a monodispersed shape and pH-dependent release characteristics, with an outstanding photothermal conversion and excellent tumor cell inhibition. The cellular-uptake experiments of CuMSN@DOX@PDA in A549 cells indicated that nanoparticles (NPs) aided in the enhanced DOX uptake in tumor cells compared to free DOX with synergistic anti-cancer effects. Moreover, the cell-viability studies displayed remarkable tumor inhibition in combinational therapy over monotherapy. Thus, the synthesized CuMSN@DOX@PDA NPs can serve as a promising platform for dual cancer therapy.
Collapse
|
15
|
Ahmadi A, Sedaghat T, Azadi R. Pd(II)/Pd(0) Anchored on Magnetic Organic–Inorganic Hybrid Mesoporous Silica Nanoparticles: A Nanocatalyst for Suzuki–Miyaura and Heck–Mizoroki Coupling Reactions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Engineering of a Novel, Magnetic, Bi-Functional, Enzymatic Nanobiocatalyst for the Highly Efficient Synthesis of Enantiopure (R)-3-quinuclidinol. Catalysts 2021. [DOI: 10.3390/catal11091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ni2+-NTA-boosted magnetic porous silica nanoparticles (Ni@MSN) to serve as ideal support for bi-functional enzyme were fabricated for the first time. The versatility of this support was validated by one-step purification and immobilization of bi-functional enzyme MLG consisting of 3-Quinuclidinone reductase and glucose dehydrogenase, which can simultaneously catalyze both carbonyl reduction and cofactor regeneration, to fabricate an artificial bi-functional nanobiocatalyst (namely, MLG-Ni@MSN). The enzyme loading of 71.7 mg/g support and 92.7% immobilization efficiency were obtained. Moreover, the immobilized MLG showed wider pH and temperature tolerance and greater storage stability than free MLG under the same conditions. The nanosystem was employed as biocatalyst to accomplish the 3-quinuclidinone (70 g/L) to (R)-3-quinuclidinol biotransformation in 100% conversion yield with >99% selectivity within 6 h and simultaneous cofactor regeneration. Furthermore, the immobilized MLG retained up to 80.3% (carbonyl reduction) and 78.0% (cofactor regeneration) of the initial activity after being recycled eight times. In addition, the MLG-Ni@MSN system exhibited almost no enzyme leaching during biotransformation and recycling. Therefore, we have reason to believe that the Ni@MSN support gave great promise for constructing a new biocatalytic nanosystem with multifunctional enzymes to achieve some other complex bioconversions.
Collapse
|
17
|
Bilal M, Qamar SA, Ashraf SS, Rodríguez-Couto S, Iqbal HMN. Robust nanocarriers to engineer nanobiocatalysts for bioprocessing applications. Adv Colloid Interface Sci 2021; 293:102438. [PMID: 34023567 DOI: 10.1016/j.cis.2021.102438] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The synergistic integration of bio-catalysis engineering with nanostructured materials, as unique multifunctional carrier matrices, has emerged as a new interface of nanobiocatalysis (NBC). NBC is an emerging innovation that offers significant considerations to expand the designing and fabrication of robust catalysts at the nanoscale with improved catalytic characteristics for multipurpose bioprocessing applications. In addition, nanostructured materials with unique structural, physical, chemical, and functional entities have manifested significant contributions in mimicking the enzyme microenvironment. A fine-tuned enzyme microenvironment with an added-value of NBC offers chemo- regio- and stereo- selectivities and specificities. Furthermore, NBC is growing rapidly and will become a powerful norm in bio-catalysis with much controlled features, such as selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, improved mass transfer efficiency, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we present and discuss advances in NBC and its bioprocessing applications in different fields. Briefly, this review is focused on four parts, i.e., (1) NBC as a drive towards applied nanobiocatalysts (as an introduction with opportunities), (2) promising nanocarriers to develop nanobiocatalysts, (3) applications in the fields of biotransformation, biofuel production, carbohydrate hydrolysis, bio-/nanosensing, detergent formulations, and extraction and purification of value-added compounds, and (4) current challenges, concluding remarks, and future trends.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
18
|
Mamun MM, Sorinolu AJ, Munir M, Vejerano EP. Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance. Front Chem 2021; 9:687660. [PMID: 34055750 PMCID: PMC8155581 DOI: 10.3389/fchem.2021.687660] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
One primary mechanism for bacteria developing resistance is frequent exposure to antibiotics. Nanoantibiotics (nAbts) is one of the strategies being explored to counteract the surge of antibiotic resistant bacteria. nAbts are antibiotic molecules encapsulated with engineered nanoparticles (NPs) or artificially synthesized pure antibiotics with a size range of ≤100 nm in at least one dimension. NPs may restore drug efficacy because of their nanoscale functionalities. As carriers and delivery agents, nAbts can reach target sites inside a bacterium by crossing the cell membrane, interfering with cellular components, and damaging metabolic machinery. Nanoscale systems deliver antibiotics at enormous particle number concentrations. The unique size-, shape-, and composition-related properties of nAbts pose multiple simultaneous assaults on bacteria. Resistance of bacteria toward diverse nanoscale conjugates is considerably slower because NPs generate non-biological adverse effects. NPs physically break down bacteria and interfere with critical molecules used in bacterial processes. Genetic mutations from abiotic assault exerted by nAbts are less probable. This paper discusses how to exploit the fundamental physical and chemical properties of NPs to restore the efficacy of conventional antibiotics. We first described the concept of nAbts and explained their importance. We then summarized the critical physicochemical properties of nAbts that can be utilized in manufacturing and designing various nAbts types. nAbts epitomize a potential Trojan horse strategy to circumvent antibiotic resistance mechanisms. The availability of diverse types and multiple targets of nAbts is increasing due to advances in nanotechnology. Studying nanoscale functions and properties may provide an understanding in preventing future outbreaks caused by antibiotic resistance and in developing successful nAbts.
Collapse
Affiliation(s)
- M. Mustafa Mamun
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Adeola Julian Sorinolu
- Civil and Environmental Engineering, The William States Lee College of Engineering, University of North Carolina, Charlotte, NC, United States
| | - Mariya Munir
- Civil and Environmental Engineering, The William States Lee College of Engineering, University of North Carolina, Charlotte, NC, United States
| | - Eric P. Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
19
|
de Juan Mora B, Filipe L, Forte A, Santos MM, Alves C, Teodoro F, Pedrosa R, Ribeiro Carrott M, Branco LC, Gago S. Boosting Antimicrobial Activity of Ciprofloxacin by Functionalization of Mesoporous Silica Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13020218. [PMID: 33562597 PMCID: PMC7914840 DOI: 10.3390/pharmaceutics13020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are very promising nanomaterials for treating bacterial infections when combined with pharmaceutical drugs. Herein, we report the preparation of two nanomaterials based on the immobilization of ciprofloxacin in mesoporous silica nanoparticles, either as the counter-ion of the choline derivative cation (MSN-[Ch][Cip]) or via anchoring on the surface of amino-group modified MSNs via an amide bond (MSN-Cip). Both nanomaterials were characterized by TEM, FTIR and solution 1H NMR spectroscopies, elemental analysis, XRD and N2 adsorption at 77 K in order to provide the desired structures. No cytotoxicity from the prepared mesoporous nanoparticles on 3T3 murine fibroblasts was observed. The antimicrobial activity of the nanomaterials was determined against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Klebsiella pneumoniae) bacteria and the results were promising against S. aureus. In the case of B. subtilis, both nanomaterials exhibited higher antimicrobial activity than the precursor [Ch][Cip], and in the case of K. pneumoniae they exhibited higher activity than neutral ciprofloxacin.
Collapse
Affiliation(s)
- Blanca de Juan Mora
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Luís Filipe
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Andreia Forte
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Fernando Teodoro
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Manuela Ribeiro Carrott
- Centro de Química de Évora, LAQV-REQUIMTE, Instituto de Investigação e Formação Avançada, Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, 7000-671 Évora, Portugal;
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
- Correspondence: (L.C.B.); (S.G.)
| | - Sandra Gago
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
- Correspondence: (L.C.B.); (S.G.)
| |
Collapse
|
20
|
Badea M, Uivarosi V, Olar R. Improvement in the Pharmacological Profile of Copper Biological Active Complexes by Their Incorporation into Organic or Inorganic Matrix. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25245830. [PMID: 33321882 PMCID: PMC7763451 DOI: 10.3390/molecules25245830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Every year, more Cu(II) complexes are proven to be biologically active species, but very few are developed as drugs or entered in clinical trials. This is due to their poor water solubility and lipophilicity, low stability as well as in vivo inactivation. The possibility to improve their pharmacological and/or oral administration profile by incorporation into inorganic or organic matrix was studied. Most of them are either physically encapsulated or conjugated to the matrix via a moiety able to coordinate Cu(II). As a result, a large variety of species were developed as delivery carriers. The organic carriers include liposomes, synthetic or natural polymers or dendrimers, while the inorganic ones are based on carbon nanotubes, hydrotalcite and silica. Some hybrid organic-inorganic materials based on alginate-carbonate, gold-PEG and magnetic mesoporous silica-Schiff base were also developed for this purpose.
Collapse
Affiliation(s)
- Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania;
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
- Correspondence: (V.U.); (R.O.)
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania;
- Correspondence: (V.U.); (R.O.)
| |
Collapse
|
21
|
Khalaj M. Synthesis and Crystal Structure of Dichlorido{2-[(4-Methoxyphenyl)Iminomethyl]pyridine-k2N,N'}zinc. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s106377452007010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Shaedi N, Naharudin I, Choo CY, Wong TW. Design of oral intestinal-specific alginate-vitexin nanoparticulate system to modulate blood glucose level of diabetic rats. Carbohydr Polym 2020; 254:117312. [PMID: 33357875 DOI: 10.1016/j.carbpol.2020.117312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 01/20/2023]
Abstract
Vitexin of Ficus deltoidea exhibits intestinal α-glucosidase inhibitory and blood glucose lowering effects. This study designs oral intestinal-specific alginate nanoparticulate system of vitexin. Nanospray-dried alginate, alginate/stearic acid and alginate-C18 conjugate nanoparticles were prepared. Stearic acid was adopted to hydrophobize the matrix and minimize premature vitexin release in stomach, whereas C-18 conjugate as immobilized fatty acid to sustain hydrophobic effect and drug release. Nanoparticles were compacted with polyethylene glycol (PEG 3000, 10,000 and 20,000). The physicochemical, drug release, in vivo blood glucose lowering and intestinal vitexin content of nanoparticles and compact were determined. Hydrophobization of alginate nanoparticles promoted premature vitexin release. Compaction of nanoparticles with PEG minimized vitexin release in the stomach, with stearic acid loaded nanoparticles exhibiting a higher vitexin release in the intestine. The introduction of stearic acid reduced vitexin-alginate interaction, conferred alginate-stearic acid mismatch, and dispersive stearic acid-induced particle breakdown with intestinal vitexin release. Use of PEG 10,000 in compaction brought about PEG-nanoparticles interaction that negated initial vitexin release. The PEG dissolution in intestinal phase subsequently enabled particle breakdown and vitexin release. The PEG compacted nanoparticles exhibited oral intestinal-specific vitexin release, with positive blood glucose lowering and enhanced intestinal vitexin content in vivo.
Collapse
Affiliation(s)
- Nafisha Shaedi
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Idanawati Naharudin
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Chee Yan Choo
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, China.
| |
Collapse
|
23
|
Marcelo GA, Duarte MP, Oliveira E. Gold@mesoporous silica nanocarriers for the effective delivery of antibiotics and by-passing of β-lactam resistance. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3023-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Tomina V, Furtat IM, Lebed AP, Kotsyuda SS, Kolev H, Kanuchova M, Behunova DM, Vaclavikova M, Melnyk IV. Diverse Pathway to Obtain Antibacterial and Antifungal Agents Based on Silica Particles Functionalized by Amino and Phenyl Groups with Cu(II) Ion Complexes. ACS OMEGA 2020; 5:15290-15300. [PMID: 32637802 PMCID: PMC7331045 DOI: 10.1021/acsomega.0c01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Production of environmentally friendly multitasking materials is among the urgent challenges of chemistry and ecotechnology. The current research paper describes the synthesis of amino-/silica and amino-/phenyl-/silica particles using a one-pot sol-gel technique. CHNS analysis and titration demonstrated a high content of functional groups, while scanning electron microscopy revealed their spherical form and ∼200 nm in size. X-ray photoelectron spectroscopy data testified that hydrophobic groups reduced the number of water molecules and protonated amino groups on the surface, increasing the portion of free amino groups. The complexation with Cu(II) cations was used to analyze the sorption capacity and reactivity of the aminopropyl groups and to enhance the antimicrobial action of the samples. Antibacterial activities of suspensions of aminosilica particles and their derivative forms containing adsorbed copper(II) ions were assayed against Gram-positive (Staphylococcus aureus ATCC 25923) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). Meanwhile, antifungal activity was tested against fungi (Candida albicans UCM Y-690). According to zeta potential measurements, its value could be depended on the suspension concentration, and it was demonstrated that the positively charged suspension had higher antibacterial efficiency. SiO2/-C6H5/-NH2 + Cu(II) sample's water suspension (1%) showed complete growth inhibition of the bacterial culture on the solid medium. The antimicrobial activity could be due to occurrence of multiple and nonspecific interactions between the particle surfaces and the surface layers of bacteria or fungi.
Collapse
Affiliation(s)
- Veronika
V. Tomina
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
| | - Iryna M. Furtat
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Anastasia P. Lebed
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Sofiya S. Kotsyuda
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Hristo Kolev
- Institute
of Catalysis BAS, Acad.
G. Bonchev str. 11, Sofia 1113, Bulgaria
| | - Maria Kanuchova
- Technical
University of Kosice, Letna str. 9, Kosice 04200, Slovak Republi
| | | | | | - Inna V. Melnyk
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
- Institute
of Geotechnics, SAS, 45, Watsonova, Kosice 04001, Slovak Republic
| |
Collapse
|
25
|
Al‐Hussein MF, Adam MSS. Catalytic evaluation of copper (II)
N
‐salicylidene‐amino acid Schiff base in the various catalytic processes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam F.I. Al‐Hussein
- Department of ChemistryCollege of Science King Faisal University, P.O. Box 380, Al Hofuf, Al Ahsa 31982 Saudi Arabia
| | - Mohamed Shaker S. Adam
- Department of ChemistryCollege of Science King Faisal University, P.O. Box 380, Al Hofuf, Al Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of ScienceSohag University Sohag ‐82534 Egypt
| |
Collapse
|
26
|
Ahmadi A, Sedaghat T, Motamedi H, Azadi R. Anchoring of Cu (II)‐Schiff base complex on magnetic mesoporous silica nanoparticles: catalytic efficacy in one‐pot synthesis of 5‐substituted‐1H‐tetrazoles, antibacterial activity evaluation and immobilization of α‐amylase. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ameneh Ahmadi
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Tahereh Sedaghat
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Hossein Motamedi
- Department of Biology, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
- Biotechnology and Biological Science Research CenterShahid Chamran University of Ahvaz Ahvaz Iran
| | - Roya Azadi
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
27
|
Kargar H, Torabi V, Akbari A, Behjatmanesh-Ardakani R, Sahraei A, Tahir MN. Pd(II) and Ni(II) complexes containing an asymmetric Schiff base ligand: Synthesis, x-ray crystal structure, spectroscopic investigations and computational studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127642] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Khalaj M, Jamali B, Lalegani A, Olyai MRTB, Seftejani FB. Synthesis, Crystal Structure, and Antibacterial Activity of Di-μ-chlorido-bis({2-[(4-methoxyphenyl)-iminomethyl]pyridine-κ2N,N'] Mercury(II). CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s106377451907006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
MnFe2O4 magnetic nanoparticles modified with chitosan polymeric and phosphotungstic acid as a novel and highly effective green nanocatalyst for regio- and stereoselective synthesis of functionalized oxazolidin-2-ones. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110109. [DOI: 10.1016/j.msec.2019.110109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
|
30
|
Díaz-García D, Ardiles PR, Díaz-Sánchez M, Mena-Palomo I, Del Hierro I, Prashar S, Rodríguez-Diéguez A, Páez PL, Gómez-Ruiz S. Copper-functionalized nanostructured silica-based systems: Study of the antimicrobial applications and ROS generation against gram positive and gram negative bacteria. J Inorg Biochem 2019; 203:110912. [PMID: 31743886 DOI: 10.1016/j.jinorgbio.2019.110912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
A series of copper-functionalized SBA-15 (Santa Barbara Amorphous) materials containing the ligands triethoxysilylpropylmaleamic acid (maleamic) or triethoxy-3-(2-imidazolin-1-yl)propylsilane (imidazoline) have been prepared. The nanostructured silica-based systems SBA-maleamic, SBA-imidazoline, SBA-maleamic-Cu and SBA-imidazoline-Cu were characterized by several methods observing that the functionalization took place mainly inside the pores of the mesoporous system. The antimicrobial behaviour of the synthesized materials against Staphylococcus aureus and Escherichia coli was tested observing a very potent activity of the copper-functionalized systems (minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for SBA-maleamic-Cu of ca. 31.25 μg/mL, which correspond with ca. 1.13 μg/mL of Cu). A study of the oxidative stress promoted by the synthesized materials showed that the SBA-maleamic-Cu and the SBA-imidazoline-Cu were able to increase the reactive oxygen species (ROS) production in S. aureus by 427% and 373%, respectively, while this increase was slightly lower in E. coli (387 and 324%, respectively). Furthermore, an electrochemical study was carried out in order to determine if these materials interact with lysine or alanine to validate a potential antimicrobial mechanism based on the inhibition of the synthesis of the peptidoglycan of the bacterial wall. Finally, these studies were also performed to determine the potential interaction of the copper-containing materials with glutathione in order to assess if they are able to perturb the metabolism of this tripeptide.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Perla R Ardiles
- Departamento de Ciencias Farmacéuticas. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Miguel Díaz-Sánchez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Irene Mena-Palomo
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Isabel Del Hierro
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, C/Severo Ochoa s/n, Universidad de Granada, 18071 Granada, Spain
| | - Paulina L Páez
- Departamento de Ciencias Farmacéuticas. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain.
| |
Collapse
|
31
|
Fahmi MRG, Fajar AT, Roslan N, Yuliati L, Fadlan A, Santoso M, Lintang HO. Fluorescence study of 5-nitroisatin Schiff base immobilized on SBA-15 for sensing Fe3+. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractN’-(5-nitro-2-oxoindolin-3-ylidene) thiophene-2-carbohydrazide (NH) was successfully synthesized as a ligand, then grafted onto the surface of mesoporous silica SBA-15via an aminopropyl bridge. The successful grafting of ligand NH onto the hybrid nanomaterial (SBA-15/APTES-NH) was confirmed by infrared spectroscopy. On excitation at 276 and 370 nm, the ligand NH and the hybrid nanomaterial SBA-15/APTES-NH showed a strong and narrow emission peak centered at 533 nm. By dispersing SBA-15/APTES-NH in an aqueous solution containing metal ions, the resulting solid materials showed a higher binding of NH sensing site to Fe3+ ions as compared to the others with a quench of the emission intensity up to 84%. This result showed that the hybrid nanomaterial is a potential chemosensor that requires development for the detection of metal ions.
Collapse
Affiliation(s)
- Muhammad Riza Ghulam Fahmi
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, East Java, Indonesia
| | - Adroit T.N. Fajar
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
| | - Nurliana Roslan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru, Johor, Malaysia
| | - Leny Yuliati
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
| | - Arif Fadlan
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, East Java, Indonesia
| | - Mardi Santoso
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, East Java, Indonesia
| | - Hendrik O. Lintang
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
- Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang, 65151, East Java, Indonesia
| |
Collapse
|
32
|
Magnetic Mesoporous Silica Nanocomposite Functionalized with Palladium Schiff Base Complex: Synthesis, Characterization, Catalytic Efficacy in the Suzuki–Miyaura Reaction and α-Amylase Immobilization. Catal Letters 2019. [DOI: 10.1007/s10562-019-02913-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner RJ, Martínez-Máñez R. Mesoporous Silica-Based Materials with Bactericidal Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900669. [PMID: 31033214 DOI: 10.1002/smll.201900669] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Indexed: 05/27/2023]
Abstract
Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial infections. At first, the emergency of bacterial and biofilm resistance toward conventional antimicrobials is described and then how nanoparticles exert their toxic effects upon pathogenic cells is discussed. Next, the main aspects of MSMs (e.g., physicochemical properties, multifunctionality, and biosafety) which one should consider in the design of MSM-based DDSs against bacterial infections are introduced. Finally, a comprehensive analysis of all the papers published dealing with the use of MSMs for delivery of antibacterial chemicals (antimicrobial agents functionalized/adsorbed on mesoporous silica (MS), MS-loaded with antimicrobial agents, gated MS-loaded with antimicrobial agents, MS with metal-based nanoparticles, and MS-loaded with metal ions) is provided.
Collapse
Affiliation(s)
- Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Elena Piacenza
- Faculty of Science, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
- Unidad Mixta de Investigacion en Nanomedicina y Sensores, Universitat Politecnica de Valencia, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Raymond J Turner
- Faculty of Science, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
- Unidad Mixta de Investigacion en Nanomedicina y Sensores, Universitat Politecnica de Valencia, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| |
Collapse
|
34
|
Díaz-García D, Ardiles PR, Prashar S, Rodríguez-Diéguez A, Páez PL, Gómez-Ruiz S. Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics 2019; 11:E30. [PMID: 30646534 PMCID: PMC6359009 DOI: 10.3390/pharmaceutics11010030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are an interesting class of nanomaterials with potential applications in different therapeutic areas and that have been extensively used as drug carriers in different fields of medicine. The present work is focused on the synthesis of MSNs containing a maleamato ligand (MSN-maleamic) and the subsequent coordination of copper(II) ions (MSN-maleamic-Cu) for the exploration of their potential application as antibacterial agents. The Cu-containing nanomaterials have been characterized by different techniques and the preliminary antibacterial effect of the supported maleamato-copper(II) complexes has been tested against two types of bacteria (Gram positive and Gram negative) in different assays to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biological results showed a moderate antibacterial activity against Escherichia coli which motivated a more detailed study of the antibacterial mechanism of action of the synthesized maleamate-containing nanosystems and whose findings showed oxidative stress generation in bacterial cells. All the prepared nanomaterials were also tested as catalysts in the "solvent free" selective oxidation of benzyl alcohol, to observe if there is a potential correlation between the catalytic oxidation capacity of the materials and the observed oxidative stress in bacteria. This may help in the future, for a more accurate rational design of antibacterial nanosystems, based on their observed catalytic oxidation activity.
Collapse
Affiliation(s)
- Diana Díaz-García
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain.
| | - Perla R Ardiles
- Departamento de Ciencias Farmacéuticas. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Sanjiv Prashar
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain.
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Universidad de Granada, Facultad de Ciencias, Campus de Fuentenueva, Avda. Fuentenueva s/n, E-18071 Granada, Spain.
| | - Paulina L Páez
- Departamento de Ciencias Farmacéuticas. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain.
| |
Collapse
|
35
|
Martínez-Carmona M, Gun'ko YK, Vallet-Regí M. Mesoporous Silica Materials as Drug Delivery: "The Nightmare" of Bacterial Infection. Pharmaceutics 2018; 10:E279. [PMID: 30558308 PMCID: PMC6320763 DOI: 10.3390/pharmaceutics10040279] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica materials (MSM) have a great surface area and a high pore volume, meaning that they consequently have a large loading capacity, and have been demonstrated to be unique candidates for the treatment of different pathologies, including bacterial infection. In this text, we review the multiple ways of action in which MSM can be used to fight bacterial infection, including early detection, drug release, targeting bacteria or biofilm, antifouling surfaces, and adjuvant capacity. This review focus mainly on those that act as a drug delivery system, and therefore that have an essential characteristic, which is their great loading capacity. Since MSM have advantages in all stages of combatting bacterial infection; its prevention, detection and finally in its treatment, we can venture to talk about them as the "nightmare of bacteria".
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland.
| | - Yurii K Gun'ko
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland.
| | - María Vallet-Regí
- Department Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
36
|
Dayan S, Özdemir N, Özpozan NK. Enhanced Performance of Organic/Inorganic Hybrid Nanomaterials bearing Impregnated [PdL
2
] Complexes as Counter‐Electrode Catalyst for Dye‐Sensitized Solar Cells. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Serkan Dayan
- Department of Chemistry, Faculty of ScienceErciyes University 38039 Kayseri Turkey
| | - Namık Özdemir
- Department of Mathematics and Science Education, Faculty of EducationOndokuz Mayıs University 55139 Samsun Turkey
| | | |
Collapse
|
37
|
Muthusami R, Moorthy M, Irena K, Govindaraj A, Manickam C, Rangappan R. Designing a biomimetic catalyst for phenoxazinone synthase activity using a mesoporous Schiff base copper complex with a novel double-helix morphology. NEW J CHEM 2018. [DOI: 10.1039/c8nj03638a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mesoporous copper complex was synthesized with a novel double helix morphology and successfully utilized as a biomimetic catalyst for phenoxazinone synthase activity.
Collapse
Affiliation(s)
| | | | - Kostova Irena
- Department of Chemistry
- Faculty of Pharmacy
- Medical University
- Sofia 1000
- Bulgaria
| | | | | | | |
Collapse
|