1
|
Cantador-Fernandez D, Esquivel D, Jiménez JR, Fernández-Rodríguez JM. Use of Periodic Mesoporous Organosilica-Benzene Adsorbent for CO 2 Capture to Reduce the Greenhouse Effect. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2669. [PMID: 38893933 PMCID: PMC11173865 DOI: 10.3390/ma17112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
The CO2 adsorption of a phenylene-bridged ordered mesoporous organosilica (PMO-benzene) was analyzed. The maximum capture capacity was 638.2 mg·g-1 (0 °C and 34 atm). Approximately 0.43 g would be enough to reduce the amount of atmospheric CO2 in 1 m3 to pre-industrial levels. The CO2 adsorption data were analyzed using several isotherm models, including Langmuir, Freundlich, Sips, Toth, Dubinin-Radushkevich, and Temkin models. This study confirmed the capability of this material for use in reversible CO2 capture with a minimal loss of capacity (around 1%) after 10 capture cycles. Various techniques were employed to characterize this material. The findings from this study can help mitigate the greenhouse effect caused by CO2.
Collapse
Affiliation(s)
- David Cantador-Fernandez
- Departamento de Química Inorgánica e Ingeniería Química, Campus de Rabanales, Edificio Marie Curie, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Dolores Esquivel
- Departamento de Química Orgánica, Universidad de Córdoba, 14001 Córdoba, Spain;
- Instituto para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, 14071 Córdoba, Spain
| | - José Ramón Jiménez
- Departamento de Ingeniería Rural, Escuela Politécnica Superior de Belmez, Universidad de Córdoba, Ed. Leonardo Da Vinci, Campus de Rabanales, Ctra. N-IV, km-396, 14001 Córdoba, Spain
| | - José María Fernández-Rodríguez
- Departamento de Química Inorgánica e Ingeniería Química, Campus de Rabanales, Edificio Marie Curie, Universidad de Córdoba, 14071 Córdoba, Spain;
- Instituto para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
2
|
Safapoor S, Dekamin MG, Akbari A, Naimi-Jamal MR. Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Sci Rep 2022; 12:10723. [PMID: 35750767 PMCID: PMC9232489 DOI: 10.1038/s41598-022-13011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
ZnO nanoparticles embedded in a magnetic isocyanurate-based periodic mesoporous organosilica (Fe3O4@PMO-ICS-ZnO) were prepared through a modified environmentally-benign procedure for the first time and properly characterized by appropriate spectroscopic and analytical methods or techniques used for mesoporous materials. The new thermally stable Fe3O4@PMO-ICS-ZnO nanomaterial with proper active sites and surface area as well as uniform particle size was investigated for the synthesis of medicinally important tetrazole derivatives through cascade condensation and concerted 1,3-cycloaddition reactions as a representative of the Click Chemistry concept. The desired 5-substituted-1H-tetrazole derivatives were smoothly prepared in high to quantitative yields and good purity in EtOH under reflux conditions. Low catalyst loading, short reaction time and the use of green solvents such as EtOH and water instead of carcinogenic DMF as well as easy separation and recyclability of the catalyst for at least five consecutive runs without significant loss of its activity are notable advantages of this new protocol compared to other recent introduced procedures.
Collapse
Affiliation(s)
- Sajedeh Safapoor
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
3
|
Li YZ, Wang GD, Lu YK, Hou L, Wang YY, Zhu Z. A Multi-Functional In(III)-Organic Framework for Acetylene Separation, Carbon Dioxide Utilization, and Antibiotic Detection in Water. Inorg Chem 2020; 59:15302-15311. [DOI: 10.1021/acs.inorgchem.0c02291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yu-Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
4
|
Akbari A, Dekamin MG, Yaghoubi A, Naimi-Jamal MR. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO 3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci Rep 2020; 10:10646. [PMID: 32606381 PMCID: PMC7327082 DOI: 10.1038/s41598-020-67592-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, preparation and characterization of a new magnetic propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) is described. The iron oxide@PMO-ICS-PrSO3H nanomaterials were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and field emission scanning electron microscopy as well as thermogravimetric analysis, N2 adsorption-desorption isotherms and vibrating sample magnetometer techniques. Indeed, the new obtained materials are the first example of the magnetic thermally stable isocyanurate-based mesoporous organosilica solid acid. Furthermore, the catalytic activity of the Iron oxide@PMO-ICS-PrSO3H nanomaterials, as a novel and highly efficient recoverable nanoreactor, was investigated for the sustainable heteroannulation synthesis of imidazopyrimidine derivatives through the Traube-Schwarz multicomponent reaction of 2-aminobenzoimidazole, C‒H acids and diverse aromatic aldehydes. The advantages of this green protocol are low catalyst loading, high to quantitative yields, short reaction times and the catalyst recyclability for at least four consecutive runs.
Collapse
Affiliation(s)
- Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Amene Yaghoubi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
5
|
Functionalized Periodic Mesoporous Organosilicas: Tunable Hydrophobic Solid Acids for Biomass Conversion. Molecules 2019; 24:molecules24020239. [PMID: 30634651 PMCID: PMC6359465 DOI: 10.3390/molecules24020239] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
The catalytic deoxygenation of bio-based feedstocks to fuels and chemicals presents new challenges to the catalytic scientist, with many transformations either performed in or liberating water as a byproduct during reaction. The design of catalysts with tunable hydrophobicity to aid product and reactant adsorption or desorption, respectively, is vital for processes including (trans)esterification and condensation reactions employed in sustainable biodiesel production and bio-oil upgrading processes. Increasing surface hydrophobicity of catalyst materials offers a means to displace water from the catalyst active site, and minimizes potential deactivation or hydrolysis side reactions. Hybrid organic⁻inorganic porous solids offer exciting opportunities to tune surface polarity and hydrophobicity, as well as critical parameters in controlling adsorption, reactant activation, and product selectivity in liquid and vapor phase catalysis. Here, we review advances in the synthesis and application of sulfonic-acid-functionalized periodic mesoporous organosilicas (PMO) as tunable hydrophobic solid acid catalysts in reactions relevant to biorefining and biofuel production.
Collapse
|
6
|
Ye Y, Chen S, Chen L, Huang J, Ma Z, Li Z, Yao Z, Zhang J, Zhang Z, Xiang S. Additive-Induced Supramolecular Isomerism and Enhancement of Robustness in Co(II)-Based MOFs for Efficiently Trapping Acetylene from Acetylene-Containing Mixtures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30912-30918. [PMID: 30124288 DOI: 10.1021/acsami.8b11999] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although supramolecular isomerism in metal-organic frameworks (MOFs) would offer a favorable platform for in-depth exploring their structure-property relationship, the design and synthesis of the isomers are still rather a challenging aspect of crystal engineering. Here, a pair of supramolecular isomers of Co(II)-based MOFs (FJU-88 and FJU-89) can be directionally fabricated by rational tuning the additives. In spite of the fact that the isomers have the similar Co3 secondary building units and organic linkers, they adopt distinct networks with acs and snw topologies, respectively, which derive from the conformational flexibility of the organic ligands. It is noteworthy that the porous structure of FJU-88 would be collapsed after removal of the solvent from the pores. But FJU-89a shows permanent porosity accompanied with unusual hierarchical micro- and mesopores and superior gas selective adsorption performance. In addition, FJU-89a can efficiently trap C2H2 from C2H2/CO2 and C2H2/CH4 mixture gases through fixed-bed dynamic breakthrough experiments.
Collapse
Affiliation(s)
- Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Shimin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Jitao Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
- College of Chemistry and Materials Science , Ningde Normal University , Ningde 352100 , P. R. China
| | - Zhenlin Ma
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Ziyin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Jindan Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P. R. China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , 32 Shangsan Road , Fuzhou 350007 , P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , P. R. China
| |
Collapse
|
7
|
Lourenço MAO, Ferreira P, Gomes JRB. Flue gas adsorption on periodic mesoporous phenylene-silica: a DFT approach. Phys Chem Chem Phys 2018; 20:16686-16694. [PMID: 29877547 DOI: 10.1039/c8cp02589d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Periodic mesoporous organosilicas (PMOs) were suggested as potential adsorbents for CO2/CH4 separation because of their large affinities towards CO2 and low interaction with CH4. Herewith, we present a comprehensive computational study on the binding properties of flue gas species with the pore walls of periodic mesoporous phenylene-silica (Ph-PMO) for understanding the possible impact of other gaseous species in the CO2/CH4 separation. The calculations considered three exchange-correlation functionals (PBE, PBE-D2 and M06-2X) based on the density functional theory and the walls of the periodic mesoporous phenylene-silica were modelled within the cluster model approach. The components of the flue gas considered were the diatomic CO, H2, N2, O2 and NO molecules, the triatomic CO2, H2O, H2S and SO2 species, the tetratomic SO3 and NH3 gases and the pentatomic CH4 molecule. The calculated data demonstrate that the presence of H2O, SO2, NH3, H2S and SO3 is a significant threat to CO2 capture by Ph-PMO and suggest that the Ph-PMO material would present high selectivity for CO2 over CH4, CO, H2 or N2 adsorption. The adsorption behaviour of flue gas components in Ph-PMO can be directly related to the experimental proton affinities, basicities or even the polarizabilities of the gaseous molecules.
Collapse
Affiliation(s)
- Mirtha A O Lourenço
- CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | |
Collapse
|