1
|
Sekita A, Unterweger H, Berg S, Ohlmeyer S, Bäuerle T, Zheng KH, Coolen BF, Nederveen AJ, Cabella C, Rossi S, Stroes ESG, Alexiou C, Lyer S, Cicha I. Accumulation of Iron Oxide-Based Contrast Agents in Rabbit Atherosclerotic Plaques in Relation to Plaque Age and Vulnerability Features. Int J Nanomedicine 2024; 19:1645-1666. [PMID: 38406599 PMCID: PMC10893894 DOI: 10.2147/ijn.s430693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/14/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.
Collapse
Affiliation(s)
- Alexander Sekita
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Harald Unterweger
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sonja Berg
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Ohlmeyer
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen (PIPE), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Cabella
- Bracco Imaging SpA, Centro Ricerche Bracco, Colleretto Giacosa, Turin, Italy
| | - Silvia Rossi
- Bracco Imaging SpA, Centro Ricerche Bracco, Colleretto Giacosa, Turin, Italy
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Iwona Cicha
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Whittington B, Dweck MR, van Beek EJR, Newby D, Williams MC. PET-MRI of Coronary Artery Disease. J Magn Reson Imaging 2023; 57:1301-1311. [PMID: 36524452 DOI: 10.1002/jmri.28554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Simultaneous positron emission tomography and magnetic resonance imaging (PET-MRI) combines the anatomical detail and tissue characterization of MRI with the functional information from PET. Within the coronary arteries, this hybrid technique can be used to identify biological activity combined with anatomically high-risk plaque features to better understand the processes underlying coronary atherosclerosis. Furthermore, the downstream effects of coronary artery disease on the myocardium can be characterized by providing information on myocardial perfusion, viability, and function. This review will describe the current capabilities of PET-MRI in coronary artery disease and discuss the limitations and future directions of this emerging technique. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Beth Whittington
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | | | - David Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Manners N, Priya V, Mehata AK, Rawat M, Mohan S, Makeen HA, Albratty M, Albarrati A, Meraya AM, Muthu MS. Theranostic Nanomedicines for the Treatment of Cardiovascular and Related Diseases: Current Strategies and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040441. [PMID: 35455438 PMCID: PMC9029632 DOI: 10.3390/ph15040441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular and related diseases (CVRDs) are among the most prevalent chronic diseases in the 21st century, with a high mortality rate. This review summarizes the various nanomedicines for diagnostic and therapeutic applications in CVRDs, including nanomedicine for angina pectoris, myocarditis, myocardial infarction, pericardial disorder, thrombosis, atherosclerosis, hyperlipidemia, hypertension, pulmonary arterial hypertension and stroke. Theranostic nanomedicines can prolong systemic circulation, escape from the host defense system, and deliver theranostic agents to the targeted site for imaging and therapy at a cellular and molecular level. Presently, discrete non-invasive and non-surgical theranostic methodologies are such an advancement modality capable of targeted diagnosis and therapy and have better efficacy with fewer side effects than conventional medicine. Additionally, we have presented the recent updates on nanomedicine in clinical trials, targeted nanomedicine and its translational challenges for CVRDs. Theranostic nanomedicine acts as a bridge towards CVRDs amelioration and its management.
Collapse
Affiliation(s)
- Natasha Manners
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Manoj Rawat
- Novartis Healthcare Private Limited, Hyderabad 500078, India;
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia;
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
- Correspondence: ; Tel.: +91-923-519-5928; Fax: +91-542-236-8428
| |
Collapse
|
4
|
Moonen RPM, Coolen BF, Sluimer JC, Daemen MJAP, Strijkers GJ. Iron Oxide Nanoparticle Uptake in Mouse Brachiocephalic Artery Atherosclerotic Plaque Quantified by T 2-Mapping MRI. Pharmaceutics 2021; 13:pharmaceutics13020279. [PMID: 33669667 PMCID: PMC7922981 DOI: 10.3390/pharmaceutics13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
The purpose of our study was to monitor the iron oxide contrast agent uptake in mouse brachiocephalic artery (BCA) atherosclerotic plaques in vivo by quantitative T2-mapping magnetic resonance imaging (MRI). Female ApoE−/− mice (n = 32) on a 15-week Western-type diet developed advanced plaques in the BCA and were injected with ultra-small superparamagnetic iron oxides (USPIOs). Quantitative in vivo MRI at 9.4 T was performed with a Malcolm-Levitt (MLEV) prepared T2-mapping sequence to monitor the nanoparticle uptake in the atherosclerotic plaque. Ex vivo histology and particle electron paramagnetic resonance (pEPR) were used for validation. Longitudinal high-resolution in vivo T2-value maps were acquired with consistent quality. Average T2 values in the plaque decreased from a baseline value of 34.5 ± 0.6 ms to 24.0 ± 0.4 ms one day after injection and partially recovered to an average T2 of 27 ± 0.5 ms after two days. T2 values were inversely related to iron levels in the plaque as determined by ex vivo particle electron paramagnetic resonance (pEPR). We concluded that MRI T2 mapping facilitates a robust quantitative readout for USPIO uptake in atherosclerotic plaques in arteries near the mouse heart.
Collapse
Affiliation(s)
- Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Judith C. Sluimer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
- Department of Pathology, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Mat J. A. P. Daemen
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands;
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-20-566-52-02
| |
Collapse
|
5
|
Lu Y, Huang J, Neverova NV, Nguyen KL. USPIOs as targeted contrast agents in cardiovascular magnetic resonance imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2021; 14:2. [PMID: 33824694 PMCID: PMC8021129 DOI: 10.1007/s12410-021-09552-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW We aim to discuss the diagnostic use of ultra-small superparamagnetic iron oxide (USPIOs) including ferumoxytol in targeted cardiovascular magnetic resonance imaging (MRI). RECENT FINDINGS Ferumoxytol is the only USPIO clinically available in the U.S. and is a negatively charged USPIO that has potential use for tracking and characterization of macrophage-infiltrated cardiovascular structures. As an iron supplement that is approved for treatment of iron deficiency anemia, the iron core of ferumoxytol is incorporated into the body once it is phagocytosed by macrophages. In organs or tissues with high inflammatory cellular infiltration, such as atherosclerotic plaques and myocardial infarction, localization of iron-laden macrophages can be visualized on delayed MRI. The iron core of ferumoxytol alters the magnetic susceptibility and results in shortening of T2* and T2 relaxation rates. Areas with high concentration appear hypointense (negative contrast) on T2 and T2* MRI. Recently, in vitro findings support the potential specificity of ferumoxytol interactions with macrophage subtypes, which has implications for therapeutic interventions. With increasing concerns about gadolinium retention in the brain and other tissues, the value of ferumoxytol-enhanced MR for targeted clinical imaging is aided by its positive safety profile in patients with impaired renal function. SUMMARY This paper discusses pharmacokinetic properties of USPIOs with a focus on ferumoxytol, and summarizes relevant in vitro, animal, and human studies investigating the diagnostic use of USPIOs in targeted contrast-enhanced imaging. We also discuss future directions for USPIOs as targeted imaging agents and associated challenges.
Collapse
Affiliation(s)
- Yi Lu
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Jenny Huang
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| | - Natalia V. Neverova
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Physics and Biology in Medicine Graduate Program,
University of California, Los Angeles
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| |
Collapse
|
6
|
Cicha I, Chauvierre C, Texier I, Cabella C, Metselaar JM, Szebeni J, Dézsi L, Alexiou C, Rouzet F, Storm G, Stroes E, Bruce D, MacRitchie N, Maffia P, Letourneur D. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc Res 2019; 114:1714-1727. [PMID: 30165574 DOI: 10.1093/cvr/cvy219] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVD) account for nearly half of all deaths in Europe and almost 30% of global deaths. Despite the improved clinical management, cardiovascular mortality is predicted to rise in the next decades due to the increasing impact of aging, obesity, and diabetes. The goal of emerging cardiovascular nanomedicine is to reduce the burden of CVD using nanoscale medical products and devices. However, the development of novel multicomponent nano-sized products poses multiple technical, ethical, and regulatory challenges, which often obstruct their road to successful approval and use in clinical practice. This review discusses the rational design of nanoparticles, including safety considerations and regulatory issues, and highlights the steps needed to achieve efficient clinical translation of promising nanomedicinal products for cardiovascular applications.
Collapse
Affiliation(s)
- Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - Cédric Chauvierre
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| | | | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging Spa, Colleretto Giacosa, Italy
| | - Josbert M Metselaar
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Dézsi
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - François Rouzet
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France.,Department of Nuclear Medicine, X. Bichat Hospital, Paris, France
| | - Gert Storm
- Department of Pharmaceutics, University of Utrecht, Utrecht, The Netherlands.,Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | - Neil MacRitchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Didier Letourneur
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| |
Collapse
|
7
|
Magnetic Accumulation of SPIONs under Arterial Flow Conditions: Effect of Serum and Red Blood Cells. Molecules 2019; 24:molecules24142588. [PMID: 31315293 PMCID: PMC6681042 DOI: 10.3390/molecules24142588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 11/17/2022] Open
Abstract
Magnetic drug targeting utilizes an external magnetic field to target superparamagnetic iron oxide nanoparticles (SPIONs) and their cargo to the diseased vasculature regions. In the arteries, the flow conditions affect the behavior of magnetic particles and the efficacy of their accumulation. In order to estimate the magnetic capture of SPIONs in more physiological-like settings, we previously established an ex vivo model based on human umbilical cord arteries. The artery model was employed in our present studies in order to analyze the effects of the blood components on the efficacy of magnetic targeting, utilizing 2 types of SPIONs with different physicochemical characteristics. In the presence of freshly isolated human plasma or whole blood, a strong increase in iron content measured by AES was observed for both particle types along the artery wall, in parallel with clotting activation due to endogenous thrombin generation in plasma. Subsequent studies therefore utilized SPION suspensions in serum and washed red blood cells (RBCs) at hematocrit 50%. Interestingly, in contrast to cell culture medium suspensions, magnetic accumulation of circulating SPION-3 under the external magnet was achieved in the presence of RBCs. Taken together, our data shows that the presence of blood components affects, but does not prevent, the magnetic accumulation of circulating SPIONs.
Collapse
|
8
|
Abstract
Background The quality of carotid wall MRI can benefit substantially from a dedicated RF coil that is tailored towards the human neck geometry and optimized for image signal-to-noise ratio (SNR), parallel imaging performance and RF penetration depth and coverage. In last decades, several of such dedicated carotid coils were introduced. However, a comparison of the more successful designs is still lacking. Objective To perform a head-to-head comparison over four dedicated MR carotid surface coils with 4, 6, 8 and 30 coil elements, respectively. Material and methods Ten volunteers were scanned on a 3T scanner. For each subject, multiple black-blood carotid vessel wall images were measured using the four coils with different parallel imaging settings. The performance of the coils was evaluated and compared in terms of image coverage, penetration depth and noise correlations between elements. Vessel wall of a common carotid section was delineated manually. Subsequently, images were assessed based on vessel wall morphology and image quality parameters. The morphological parameters consisted of the vessel wall area, thickness, and normalized wall index (wall area/total vessel area). Image quality parameters consisted of vessel wall SNR, wall-lumen contrast-to-noise ratio (CNR), the vessel g-factor, and CNRindex ((wall–lumen signal) / (wall+lumen signal)). Repeated measures analysis of variance (rmANOVA) was applied for each parameter for the averaged 10 slices for all volunteers to assess effect of coil and SENSE factor. If the rmANOVA was significant, post-hoc comparisons were conducted. Results No significant coil effect were found for vessel wall morphological parameters. SENSE acceleration affected some morphological parameters for 6- and 8-channel coils, but had no effect on the 30-channel coil. The 30-channel coil achieved high acceleration factors (10x) with significantly lower vessel g-factor values (ps ≤ 0.01), but lower vessel wall SNR and CNR values (ps ≤ 0.01). Conclusion All four coils were capable of high-quality carotid MRI. The 30-channel coil is recommended when rapid image acquisition acceleration is required for 3D measurements, whereas 6- and 8-channel coils demonstrated the highest SNR performance.
Collapse
|
9
|
Matuszak J, Dörfler P, Lyer S, Unterweger H, Juenet M, Chauvierre C, Alaarg A, Franke D, Almer G, Texier I, Metselaar JM, Prassl R, Alexiou C, Mangge H, Letourneur D, Cicha I. Comparative analysis of nanosystems’ effects on human endothelial and monocytic cell functions. Nanotoxicology 2018; 12:957-974. [DOI: 10.1080/17435390.2018.1502375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jasmin Matuszak
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Philipp Dörfler
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Stefan Lyer
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Harald Unterweger
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Maya Juenet
- INSERM, U1148, LVTS, Paris Diderot University, X Bichat Hospital, Paris, France
| | - Cédric Chauvierre
- INSERM, U1148, LVTS, Paris Diderot University, X Bichat Hospital, Paris, France
| | - Amr Alaarg
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Isabelle Texier
- Grenoble Alpes Université, CEA-LETI MINATEC Campus, Grenoble, France
| | - Josbert M. Metselaar
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Experimental Molecular Imaging, RWTH University Clinic Aachen, Aachen, Germany
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Didier Letourneur
- INSERM, U1148, LVTS, Paris Diderot University, X Bichat Hospital, Paris, France
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
10
|
Abstract
Purpose of Review Ischemic heart disease is caused by atherosclerosis, the build-up of plaque in the coronary arteries, which can lead to the development of heart attacks and heart muscle damage. Despite the advent of medical and surgical therapy to prevent and treat atherosclerosis and its adverse clinical effects, ischemic heart disease remains a leading cause of morbidity and mortality. Recent studies have suggested that the immune system may play a greater role in the development of plaque rupture and adverse left ventricular remodeling after myocardial infarction. Understanding the molecular processes by which inflammation contributes to the pathophysiology of ischemic heart disease is, therefore, worthwhile. This review focuses on new molecular imaging techniques to visualize immune cells to study their contribution to ischemic heart disease. Recent Findings A common technique applied to imaging inflammation in ischemic heart disease is targeting the up-regulation and trafficking of immune cells, which may contribute to the adverse consequences associated with atherosclerosis. In the past five years, advances in cell labeling for imaging with PET and MRI, including radioisotopes and nanoparticles, have confirmed that inflammatory cells can be visualized in vivo and in greater abundance in unstable cardiovascular disease and in areas of ischemic damage. The major criticisms of these studies to date include their small sample size, lack of histological correlation, limited association with long-term outcomes, and bias toward macrophage imaging. Summary While much progress has been made in imaging inflammation in ischemic heart disease over the past five years, additional studies in larger cohorts with histological validation and outcome correlation are needed. Nevertheless, imaging inflammation using PET or MRI has the potential to become an important adjunct tool to improve the diagnosis, risk stratification, and therapeutic monitoring of patients with ischemic heart disease.
Collapse
|
11
|
Unterweger H, Janko C, Schwarz M, Dézsi L, Urbanics R, Matuszak J, Őrfi E, Fülöp T, Bäuerle T, Szebeni J, Journé C, Boccaccini AR, Alexiou C, Lyer S, Cicha I. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. Int J Nanomedicine 2017; 12:5223-5238. [PMID: 28769560 PMCID: PMC5533574 DOI: 10.2147/ijn.s138108] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI) of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs) have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex) and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA) upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial–monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size <30 nm was achieved, without affecting their hemo- and biocompatibility. Our findings suggest that due to their excellent biocompatibility, safety upon intravenous administration and size-tunability, SPIONdex particles may represent a suitable candidate for a new-generation MRI contrast agent.
Collapse
Affiliation(s)
- Harald Unterweger
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg
| | - Christina Janko
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg
| | - Marc Schwarz
- Preclinical Imaging Platform Erlangen (PIPE), Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - László Dézsi
- Nanomedicine Research and Education Center, Semmelweis University
| | | | - Jasmin Matuszak
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg
| | - Erik Őrfi
- Nanomedicine Research and Education Center, Semmelweis University
| | - Tamás Fülöp
- Nanomedicine Research and Education Center, Semmelweis University
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen (PIPE), Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - János Szebeni
- Nanomedicine Research and Education Center, Semmelweis University.,SeroScience Ltd., Budapest, Hungary
| | - Clément Journé
- Inserm U1148, Fédération de Recherche en Imagerie Multimodalités (FRIM), X Bichat Hospital, Paris Diderot University, Paris, France
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg
| | - Stefan Lyer
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg
| | - Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg
| |
Collapse
|
12
|
Bietenbeck M, Florian A, Faber C, Sechtem U, Yilmaz A. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now? Int J Nanomedicine 2016; 11:3191-203. [PMID: 27486321 PMCID: PMC4957681 DOI: 10.2147/ijn.s110542] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Magnetic resonance imaging (MRI) allows for an accurate assessment of both functional and structural cardiac parameters, and thereby appropriate diagnosis and validation of cardiovascular diseases. The diagnostic yield of cardiovascular MRI examinations is often increased by the use of contrast agents that are almost exclusively based on gadolinium compounds. Another clinically approved contrast medium is composed of superparamagnetic iron oxide nanoparticles (IONs). These particles may expand the field of contrast-enhanced cardiovascular MRI as recently shown in clinical studies focusing on acute myocardial infarction (AMI) and atherosclerosis. Furthermore, IONs open up new research opportunities such as remote magnetic drug targeting (MDT). The approach of MDT relies on the coupling of bioactive molecules and magnetic nanoparticles to form an injectable complex. This complex, in turn, can be attracted to and retained at a desired target inside the body with the help of applied magnetic fields. In comparison to common systemic drug applications, MDT techniques promise both higher concentrations at the target site and lower concentrations elsewhere in the body. Moreover, concurrent or subsequent MRI can be used for noninvasive monitoring of drug distribution and successful delivery to the desired organ in vivo. This review does not only illustrate the basic conceptual and biophysical principles of IONs, but also focuses on new research activities and achievements in the cardiovascular field, mainly in the management of AMI. Based on the presentation of successful MDT applications in preclinical models of AMI, novel approaches and the translational potential of MDT are discussed.
Collapse
Affiliation(s)
| | | | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster
| | - Udo Sechtem
- Division of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | | |
Collapse
|
13
|
Cicha I. Strategies to enhance nanoparticle-endothelial interactions under flow. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/jcb-15020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Matuszak J, Baumgartner J, Zaloga J, Juenet M, da Silva AE, Franke D, Almer G, Texier I, Faivre D, Metselaar JM, Navarro FP, Chauvierre C, Prassl R, Dézsi L, Urbanics R, Alexiou C, Mangge H, Szebeni J, Letourneur D, Cicha I. Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing. Nanomedicine (Lond) 2016; 11:597-616. [DOI: 10.2217/nnm.15.216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: We report the physicochemical analysis of nanosystems intended for cardiovascular applications and their toxicological characterization in static and dynamic cell culture conditions. Methods: Size, polydispersity and ζ-potential were determined in 10 nanoparticle systems including liposomes, lipid nanoparticles, polymeric and iron oxide nanoparticles. Nanoparticle effects on primary human endothelial cell viability were monitored using real-time cell analysis and live-cell microscopy in static conditions, and in a flow model of arterial bifurcations. Results & conclusions: The majority of tested nanosystems were well tolerated by endothelial cells up to the concentration of 100 μg/ml in static, and up to 400 μg/ml in dynamic conditions. Pilot experiments in a pig model showed that intravenous administration of liposomal nanoparticles did not evoke the hypersensitivity reaction. These findings are of importance for future clinical use of nanosystems intended for intravascular applications.
Collapse
Affiliation(s)
- Jasmin Matuszak
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Science Park Golm, Potsdam, Germany
| | - Jan Zaloga
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Maya Juenet
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Acarília Eduardo da Silva
- Department of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands
| | | | - Gunter Almer
- Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Isabelle Texier
- CEA-LETI MINATEC/DTBS, Université Grenoble Alpes, Grenoble, France
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Science Park Golm, Potsdam, Germany
| | - Josbert M Metselaar
- Department of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands
- Department of Experimental Molecular Imaging, University Clinic & Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | | | - Cédric Chauvierre
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - László Dézsi
- Nanomedicine Research & Education Center, Semmelweis University, Budapest, Hungary
| | | | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| | - Harald Mangge
- Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - János Szebeni
- Nanomedicine Research & Education Center, Semmelweis University, Budapest, Hungary
- SeroScience Ltd., Budapest, Hungary
| | - Didier Letourneur
- Inserm U1148, LVTS, Paris Diderot University, Paris 13 University, Sorbonne Paris Cité, X. Bichat Hospital, Paris, France
| | - Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology and Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, 91054 Erlangen, Germany
| |
Collapse
|
15
|
The Role of MR Enterography in Assessing Crohn's Disease Activity and Treatment Response. Gastroenterol Res Pract 2015; 2016:8168695. [PMID: 26819611 PMCID: PMC4706951 DOI: 10.1155/2016/8168695] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/23/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
MR enterography (MRE) has become the primary imaging modality in the assessment of Crohn's disease (CD) in both children and adults at many institutions in the United States and worldwide, primarily due to its noninvasiveness, superior soft tissue contrast, and lack of ionizing radiation. MRE technique includes distention of the small bowel with oral contrast media with the acquisition of T2-weighted, balanced steady-state free precession, and multiphase T1-weighted fat suppressed gadolinium contrast-enhanced sequences. With the introduction of molecule-targeted biologic agents into the clinical setting for CD and their potential to reverse the inflammatory process, MRE is increasingly utilized to evaluate disease activity and response to therapy as an imaging complement to clinical indices or optical endoscopy. New and emerging MRE techniques, such as diffusion-weighted imaging (DWI), magnetization transfer, ultrasmall superparamagnetic iron oxide- (USPIO-) enhanced MRI, and PET-MR, offer the potential for an expanded role of MRI in detecting occult disease activity, evaluating early treatment response/resistance, and differentiating inflammatory from fibrotic strictures. Familiarity with MR enterography is essential for radiologists and gastroenterologists as the technique evolves and is further incorporated into the clinical management of CD.
Collapse
|
16
|
Matuszak J, Dörfler P, Zaloga J, Unterweger H, Lyer S, Dietel B, Alexiou C, Cicha I. Shell matters: Magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function. Clin Hemorheol Microcirc 2015; 61:259-77. [DOI: 10.3233/ch-151998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jasmin Matuszak
- Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, Erlangen, Germany
| | - Philipp Dörfler
- Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, Erlangen, Germany
| | - Jan Zaloga
- Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, Erlangen, Germany
| | - Harald Unterweger
- Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, Erlangen, Germany
| | - Stefan Lyer
- Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, Erlangen, Germany
| | - Barbara Dietel
- Laboratory of Molecular Cardiology, Department of Cardiology and Angiology, University Hospital Erlangen, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, Erlangen, Germany
| | - Iwona Cicha
- Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, Erlangen, Germany
| |
Collapse
|
17
|
Nanoparticles in endothelial theranostics. Pharmacol Rep 2015; 67:751-5. [DOI: 10.1016/j.pharep.2015.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/27/2022]
|
18
|
Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol 2015; 204:W302-13. [PMID: 25714316 DOI: 10.2214/ajr.14.12733] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE. In this article, we summarize the progress to date on the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for MRI of inflammatory processes. CONCLUSION. Phagocytosis by macrophages of injected SPIONs results in a prolonged shortening of both T2 and T2* leading to hypointensity of macrophage-infiltrated tissues in contrast-enhanced MR images. SPIONs as contrast agents are therefore useful for the in vivo MRI detection of macrophage infiltration, and there is substantial research and clinical interest in the use of SPION-based contrast agents for MRI of infection and inflammation. This technique has been used to identify active infection in patients with septic arthritis and osteomyelitis; importantly, the MRI signal intensity of the tissue has been found to return to its unenhanced value on successful treatment of the infection. In SPION contrast-enhanced MRI of vascular inflammation, animal studies have shown decreased macrophage uptake in atherosclerotic plaques after treatment with statin drugs. Human studies have shown that both coronary and carotid plaques that take up SPIONs are more prone to rupture and that abdominal aneurysms with increased SPION uptake are more likely to grow. Studies of patients with multiple sclerosis suggest that MRI using SPIONs may have increased sensitivity over gadolinium for plaque detection. Finally, SPIONs have enabled the tracking and imaging of transplanted stem cells in a recipient host.
Collapse
|
19
|
Nanoparticle enhanced MRI scanning to detect cellular inflammation in experimental chronic renal allograft rejection. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2015; 2015:507909. [PMID: 25954516 PMCID: PMC4411452 DOI: 10.1155/2015/507909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/06/2023]
Abstract
Objectives. We investigated whether ultrasmall paramagnetic particles of iron oxide- (USPIO-) enhanced magnetic resonance imaging (MRI) can detect experimental chronic allograft damage in a murine renal allograft model. Materials and Methods. Two cohorts of mice underwent renal transplantation with either a syngeneic isograft or allograft kidney. MRI scanning was performed prior to and 48 hours after USPIO infusion using T2∗-weighted protocols. R2∗ values were calculated to indicate the degree of USPIO uptake. Native kidneys and skeletal muscle were imaged as reference tissues and renal explants analysed by histology and electron microscopy. Results. R2∗ values in the allograft group were higher compared to the isograft group when indexed to native kidney (median 1.24 (interquartile range: 1.12 to 1.36) versus 0.96 (0.92 to 1.04), P < 0.01). R2∗ values were also higher in the allograft transplant when indexed to skeletal muscle (6.24 (5.63 to 13.51)) compared to native kidney (2.91 (1.11 to 6.46) P < 0.05). Increased R2∗ signal in kidney allograft was associated with macrophage and iron staining on histology. USPIO were identified within tissue resident macrophages on electron microscopy. Conclusion. USPIO-enhanced MRI identifies macrophage.
Collapse
|
20
|
Moonen RPM, van der Tol P, Hectors SJCG, Starmans LWE, Nicolay K, Strijkers GJ. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles. Magn Reson Med 2014; 74:1740-9. [PMID: 25470118 DOI: 10.1002/mrm.25544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. METHODS In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements (B0 = 1.41T) of agar (2%) with concentration ranges of three different iron oxide nanoparticles (IONs) (Sinerem, Resovist, and ION-Micelle) and microparticles of iron oxide (MPIO). T1ρ dispersion was measured for a range of spin-lock amplitudes (γB1 = 6.5-91 kHz). Under relevant in vivo conditions (B0 = 9.4T; γB1 = 100-1500 Hz), T1ρ and T2 mapping of the liver was performed in seven mice pre- and 24 h postinjection of Sinerem. RESULTS Addition of iron oxide nanoparticles decreased T1ρ as well as the native T1ρ dispersion of agar, leading to increased contrast at high spin-lock amplitudes. Changes of T1ρ were highly linear with iron concentration and much larger than T2 changes. MPIO did not show this effect. In vivo, a decrease of T1ρ was observed with no clear influence on T1ρ dispersion. CONCLUSION By suppression of T1ρ dispersion, iron oxide nanoparticles cause enhanced T1ρ contrast compared to T2 . The underlying mechanism appears to be loss of lock. Spin-lock MR is therefore a promising technique for sensitive detection of iron oxide contrast agents.
Collapse
Affiliation(s)
- Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pieternel van der Tol
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefanie J C G Hectors
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lucas W E Starmans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Sadat U, Usman A, Howarth SP, Tang TY, Alam F, Graves MJ, Gillard JH. Carotid Artery Stiffness in Patients with Symptomatic Carotid Artery Disease with Contralateral Asymptomatic Carotid Artery Disease and in Patients with Bilateral Asymptomatic Carotid Artery Disease: A Cine Phase-contrast Carotid MR Study. J Stroke Cerebrovasc Dis 2014; 23:743-8. [DOI: 10.1016/j.jstrokecerebrovasdis.2013.06.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/27/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022] Open
|
22
|
Cicha I, Garlichs CD, Alexiou C. Cardiovascular therapy through nanotechnology – how far are we still from bedside? EUROPEAN JOURNAL OF NANOMEDICINE 2014. [DOI: 10.1515/ejnm-2014-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractRecent years brought about a widespread interest in the potential applications of nanotechnology for the diagnostics and the therapy of human diseases. With its promise of disease-targeted, patient-tailored treatment and reduced side effects, nanomedicine brings hope for millions of patients suffering of non-communicable diseases such as cancer or cardiovascular disorders. However, the emergence of the complex, multicomponent products based on new technologies poses multiple challenges to successful approval in clinical practice. Regulatory and development considerations, including properties of the components, reproducible manufacturing and appropriate characterization methods, as well as nanodrugs’ safety and efficacy are critical for rapid marketing of the new products. This review discusses the recent advances in cardiovascular applications of nanotechnologies and highlights the challenges that must be overcome in order to fill the gap existing between the promising bench trials and the successful bedside applications.
Collapse
|