1
|
Ryan D, Ikramuddin S, Alexander S, Buckley C, Feng W. Three Pillars of Recovery After Aneurysmal Subarachnoid Hemorrhage: A Narrative Review. Transl Stroke Res 2024:10.1007/s12975-024-01249-6. [PMID: 38602660 DOI: 10.1007/s12975-024-01249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating neurologic disease with high mortality and disability. There have been global improvements in survival, which has contributed to the prevalence of patients living with long-term sequelae related to this disease. The focus of active research has traditionally centered on acute treatment to reduce mortality, but now there is a great need to study the course of short- and long-term recovery in these patients. In this narrative review, we aim to describe the core pillars in the preservation of cerebral function, prevention of complications, the recent literature studying neuroplasticity, and future directions for research to enhance recovery outcomes following aSAH.
Collapse
Affiliation(s)
- Dylan Ryan
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27704, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sheila Alexander
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27704, USA.
| |
Collapse
|
2
|
Batista S, Bocanegra-Becerra JE, Claassen B, Rubião F, Rabelo NN, Figueiredo EG, Oberman DZ. Biomarkers in aneurysmal subarachnoid hemorrhage: A short review. World Neurosurg X 2023; 19:100205. [PMID: 37206060 PMCID: PMC10189293 DOI: 10.1016/j.wnsx.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Poor outcomes of aneurysmal subarachnoid hemorrhage (aSAH) can be the result of the initial catastrophic event or the many acute or delayed neurological complications. Recent evidence suggests that some molecules play a critical role in both events, through some unknown pathways involved. Understanding the role of these molecules in these events could allow to improve diagnostic accuracy, guide management, and prevent long-term disability in aSAH. Here we present the studies on aSAH biomarkers present in current medical literature, highlighting their roles and main results.
Collapse
Affiliation(s)
- Sávio Batista
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bernardo Claassen
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Rubião
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Dan Zimelewicz Oberman
- Department of Neurosurgery, Hospital de Força Aérea do Galeão, Rio de Janeiro, Brazil
- Corresponding author. Neurosurgery Department Hospital Força Aérea do Galeão, Estrada do Galeão, 4101 - Galeão, Rio de Janeiro - RJ, 21941-353, Brazil.
| |
Collapse
|
3
|
Carrola A, Romão CC, Vieira HLA. Carboxyhemoglobin (COHb): Unavoidable Bystander or Protective Player? Antioxidants (Basel) 2023; 12:1198. [PMID: 37371928 DOI: 10.3390/antiox12061198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Carbon monoxide (CO) is a cytoprotective endogenous gas that is ubiquitously produced by the stress response enzyme heme-oxygenase. Being a gas, CO rapidly diffuses through tissues and binds to hemoglobin (Hb) increasing carboxyhemoglobin (COHb) levels. COHb can be formed in erythrocytes or in plasma from cell-free Hb. Herein, it is discussed as to whether endogenous COHb is an innocuous and inevitable metabolic waste product or not, and it is hypothesized that COHb has a biological role. In the present review, literature data are presented to support this hypothesis based on two main premises: (i) there is no direct correlation between COHb levels and CO toxicity, and (ii) COHb seems to have a direct cytoprotective and antioxidant role in erythrocytes and in hemorrhagic models in vivo. Moreover, CO is also an antioxidant by generating COHb, which protects against the pro-oxidant damaging effects of cell-free Hb. Up to now, COHb has been considered as a sink for both exogenous and endogenous CO generated during CO intoxication or heme metabolism, respectively. Hallmarking COHb as an important molecule with a biological (and eventually beneficial) role is a turning point in CO biology research, namely in CO intoxication and CO cytoprotection.
Collapse
Affiliation(s)
- André Carrola
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Tjerkstra M, Labib H, Coert BA, Spijker R, Coutinho JM, Vandertop WP, Verbaan D. Laboratory biomarkers of delayed cerebral ischemia following subarachnoid hemorrhage: A systematic review. J Circ Biomark 2023; 12:17-25. [PMID: 37056917 PMCID: PMC10087563 DOI: 10.33393/jcb.2023.2502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Delayed cerebral ischemia (DCI) substantially contributes to disability and death in subarachnoid hemorrhage (SAH) patients; however, its pathophysiology is incompletely understood and diagnostic and therapeutic strategies are lacking. Biomarkers may help to elucidate the pathophysiology, optimize early diagnosis, or provide treatment targets. We systematically searched PubMed and Embase on October 13, 2021, for studies that evaluated at least one laboratory biomarker in patients with DCI, using the most up-to-date definition of DCI as proposed by a panel of experts in 2010. Quality of studies was assessed using the Newcastle-Ottawa Scale or Cochrane Collaboration’s risk of bias assessment tool. Biomarkers of clinical and radiological DCI were analyzed separately. Results were meta-analyzed if possible, otherwise narratively reviewed. Biomarkers were classified as significant, inconclusive, or nonsignificant. We defined validated biomarkers as those with significant results in meta-analyses, or in at least two studies using similar methodologies within the same time interval after SAH. The search yielded 209 articles with 724 different biomarkers; 166 studies evaluated 646 biomarkers of clinical DCI, of which 141 were significant and 7 were validated biomarkers (haptoglobulin 2-1 and 2-2, ADAMTS13, vWF, NLR, P-selectin, F2-isoprostane); 78 studies evaluated 165 biomarkers of radiological DCI, of which 63 were significant and 1 was a validated biomarker (LPR). Hence, this review provides a selection of seven biomarkers of clinical DCI and one biomarker of radiological DCI as most promising biomarkers of DCI. Future research should focus on determining the exact predictive, diagnostic, and therapeutic potentials of these biomarkers.
Collapse
|
5
|
Han SW, Kim BJ, Kim TY, Lim SH, Youn DH, Hong EP, Rhim JK, Park JJ, Lee JJ, Cho YJ, Gaastra B, Galea I, Jeon JP. Association of Haptoglobin Phenotype With Neurological and Cognitive Outcomes in Patients With Subarachnoid Hemorrhage. Front Aging Neurosci 2022; 14:819628. [PMID: 35386117 PMCID: PMC8978790 DOI: 10.3389/fnagi.2022.819628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo assess the association of haptoglobin (Hp) phenotype with neurological and cognitive outcomes in a large cohort of patients with subarachnoid hemorrhage (SAH).MethodsThis prospective multicenter study enrolled patients with aneurysmal SAH between May 2015 and September 2020. The Hp phenotype was confirmed via Western blots. The relative intensities of α1 in individuals carrying Hp2-1 were compared with those of albumin. Multivariable logistic and Cox proportional-hazard regression analyses were used to identify the risk factors for 6-month and long-term outcomes, respectively.ResultsA total of 336 patients including the phenotypes Hp1-1 (n = 31, 9.2%), Hp2-1 (n = 126, 37.5%), and Hp2-2 (n = 179, 53.3%) were analyzed. The Hp phenotype was closely associated with 6-month outcome (p = 0.001) and cognitive function (p = 0.013), and long-term outcome (p = 0.002) and cognitive function (p < 0.001). Compared with Hp1-1 as the reference value, Hp2-2 significantly increased the risk of 6-month poor outcome (OR: 7.868, 95% CI: 1.764–35.093) and cognitive impairment (OR: 8.056, 95% CI: 1.020–63.616), and long-term poor outcome (HR: 5.802, 95% CI: 1.795–18.754) and cognitive impairment (HR: 7.434, 95% CI: 2.264–24.409). Long-term cognitive impairment based on the Hp phenotype was significantly higher in patients under 65 years of age (p < 0.001) and female gender (p < 0.001). A lower relative α1/albumin intensity (OR: 0.010, 95% CI: 0.000–0.522) was associated with poor outcome at 6 months but not cognitive impairment in patients with SAH expressing Hp2-1.ConclusionHp2-2 increased the risk of poor neurological outcomes and cognitive impairment compared with Hp1-1. For Hp2-1, higher relative α1 intensities were related to 6-month favorable outcomes.
Collapse
Affiliation(s)
- Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seung Hyuk Lim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University School of Medicine, Jeju, South Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, South Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Yong Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Ben Gaastra
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, United Kingdom
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
- *Correspondence: Jin Pyeong Jeon,
| |
Collapse
|
6
|
Solodovnikova Y, Ivaniuk A, Marusich T, Son A. Meta-analysis of associations of genetic polymorphisms with cerebral vasospasm and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Acta Neurol Belg 2021; 122:1547-1556. [PMID: 34725794 DOI: 10.1007/s13760-021-01829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are among the most hazardous complications of aneurysmal subarachnoid hemorrhage (aSAH). Genetic factors are thought to play a significant role in the development of both complications. AIM To perform a comprehensive meta-analysis of studies that study the association between different genetic polymorphisms and development of DCI and/or CV. METHODS We searched MEDLINE and Science Direct databases on May 29, 2021, using iterations of the keywords "subarachnoid hemorrhage", "vasospasm", "delayed cerebral ischemia", and "gene". After duplicates were removed, the two reviewers screened the titles of the articles and abstracts independently. A random-effect model was used to calculate the relative risk with 95% CI; a fixed-effect model was additionally explored. RESULTS We pooled data from 16 articles that reported an association between eNOS, apolipoprotein E4 (ApoE4), haptoglobin (Hp), or ryanodine-1 (RYR-1) and CV, DCI, or both. Presence of Hp 2-2 was associated both with CV (RR 2.10, 95% CI 1.33-3.31, p = 0.0014) and DCI (RR 1.57, 95%CI 1.06-2.34, p = 0.026). ApoE4 allele had a borderline association with CV (RR 1.48, 95%CI 0.99-2.21, p = 0.054). CONCLUSION Our meta-analysis supports the association between the presence of the Hp2-2 allele and the occurrence of CV and DCI after aSAH. Further studies investigating this association are needed to reinforce this finding.
Collapse
Affiliation(s)
- Yuliia Solodovnikova
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| | - Alina Ivaniuk
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine.
| | - Tetiana Marusich
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| | - Anatoliy Son
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| |
Collapse
|
7
|
Ateia AM, Elbassiouny A, El-Nabi SH, Fahmy NA, Ibrahim MH, El-Garawani I, Geba KM, Khalaf M. Predictive value of haptoglobin genotype as a risk of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg 2020; 199:106296. [PMID: 33069930 DOI: 10.1016/j.clineuro.2020.106296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aims to investigate the genetic predisposition of haptoglobin (Hp) genotype as a predictor for cerebral vasospasm (CV) after acute subarachnoid hemorrhage (aSAH) in the Egyptian population. This permits CV risk factors stratification of patients with aSAH. Hence, it will guide the treatment plan and intensive monitoring for those patients. PATIENTS AND METHODS The study was carried out at El Matareya Teaching Hospital, Cairo, Egypt. We studied 50 patients with aSAH who were prospectively recruited and followed up by transcranial Doppler (TCD) examination for 14 days following aneurysmal rupture to early detect hemodynamic changes associated with CV and also the occurrence of delayed cerebral ischemia (DCI) as a secondary outcome. In this study, we attempted to analyze Hp genotyping as a potential predictor of CV and DCI during the acute phase of aneurysmal SAH. RESULTS As a part of result analyses, among studied patients, 34 patients (68 %) developed CV and 19 patients (38 %) developed DCI. Only history of hypertension [RR = 1.6 (OR = 4)], diabetes mellitus [RR = 1.5 (OR = 3.4)] and smoking [RR = 1.5 (OR = 3.6)] had a significant independent relationship (P < 0.05) with short term risk to develop CV following aSAH. While, Age, sex, hyperlipidemia, cardiovascular disease and peripheral vascular disease, intracranial aneurysm site and size did not achieve significant association for developing CV. Regarding the poor Fisher scale and poor Hunt and Hess score both showed significant association with CV (P < 0.05). Genotyping of Hp protein among our study cohort revealed that the relative distribution of the three haptoglobin genotypes (Hp1-1, HP2-I & HP2-2) among Egyptian patients of aSAH was 14 %, 40 % and 46 %, respectively; (gene proportion being 0.34 for Hp1 and 0.66 for Hp2). Furthermore; Hp 2 allele was associated with radiographic vasospasm detected by TCD among the studied patients (2-2 & 2-1 Vs 1-1: RR = 5.4, OR = 19.8, P < 0.001). In the regression model; Hp genotype expressing Hp-2 allele is predictive for higher risk of development of CV after aSAH. Moreover, searching for the relationship between CV & Hp genotype and the risk for development of DCI; both variables failed to achieve a significant relationship for DCI (P > 0.05). CONCLUSION The Hp genotype may determine the susceptibility to cerebral vasospasm after acute aSAH. This has the potential for use in risk stratification by allowing for the identification of those patients requiring intensive monitoring due to their inherent genetic risk for developing CV allowing for the promising selective application of aggressive treatments to those patients.
Collapse
Affiliation(s)
| | - Ahmed Elbassiouny
- Department of Intervention Neurology, Faculty of Medicine, Ain Shams University, Egypt.
| | - Sobhy Hassab El-Nabi
- Department of Zoology, Molecular Biology and Genetics Unit, Faculty of Science, Menoufia University, Egypt.
| | - Nagia Aly Fahmy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Egypt.
| | | | - Islam El-Garawani
- Department of Zoology, Molecular Biology and Genetics Unit, Faculty of Science, Menoufia University, Egypt.
| | - Khaled Mohammed Geba
- Department of Zoology, Molecular Biology and Genetics Unit, Faculty of Science, Menoufia University, Egypt.
| | - Magdy Khalaf
- Department of Neurology, El Matareya Educational Hospital, Egypt.
| |
Collapse
|
8
|
Morton MJ, Hostettler IC, Kazmi N, Alg VS, Bonner S, Brown MM, Durnford A, Gaastra B, Garland P, Grieve J, Kitchen N, Walsh D, Zolnourian A, Houlden H, Gaunt TR, Bulters DO, Werring DJ, Galea I. Haptoglobin genotype and outcome after aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2020; 91:305-313. [PMID: 31937585 PMCID: PMC7116595 DOI: 10.1136/jnnp-2019-321697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE After aneurysmal subarachnoid haemorrhage (aSAH), extracellular haemoglobin (Hb) in the subarachnoid space is bound by haptoglobin, neutralising Hb toxicity and helping its clearance. Two exons in the HP gene (encoding haptoglobin) exhibit copy number variation (CNV), giving rise to HP1 and HP2 alleles, which influence haptoglobin expression level and possibly haptoglobin function. We hypothesised that the HP CNV associates with long-term outcome beyond the first year after aSAH. METHODS The HP CNV was typed using quantitative PCR in 1299 aSAH survivors in the Genetics and Observational Subarachnoid Haemorrhage (GOSH) Study, a retrospective multicentre cohort study with a median follow-up of 18 months. To investigate mediation of the HP CNV effect by haptoglobin expression level, as opposed to functional differences, we used rs2000999, a single nucleotide polymorphism associated with haptoglobin expression independent of the HP CNV. Outcome was assessed using modified Rankin and Glasgow Outcome Scores. SAH volume was dichotomised on the Fisher grade. Haemoglobin-haptoglobin complexes were measured in cerebrospinal fluid (CSF) of 44 patients with aSAH and related to the HP CNV. RESULTS The HP2 allele associated with a favourable long-term outcome after high-volume but not low-volume aSAH (multivariable logistic regression). However rs2000999 did not predict outcome. The HP2 allele associated with lower CSF haemoglobin-haptoglobin complex levels. The CSF Hb concentration after high-volume and low-volume aSAH was, respectively, higher and lower than the Hb-binding capacity of CSF haptoglobin. CONCLUSION The HP2 allele carries a favourable long-term prognosis after high-volume aSAH. Haptoglobin and the Hb clearance pathway are therapeutic targets after aSAH.
Collapse
Affiliation(s)
- Matthew J Morton
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Isabel C Hostettler
- Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nabila Kazmi
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Varinder S Alg
- Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephen Bonner
- Department of Anaesthesia, James Cook University Hospital, Middlesbrough, UK
| | - Martin M Brown
- Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew Durnford
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Benjamin Gaastra
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Patrick Garland
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Joan Grieve
- Department of Neurosurgery, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Neil Kitchen
- Department of Neurosurgery, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Daniel Walsh
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Ardalan Zolnourian
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Henry Houlden
- Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Diederik O Bulters
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | | |
Collapse
|
9
|
Kerchberger VE, Bastarache JA, Shaver CM, Nagata H, McNeil JB, Landstreet SR, Putz ND, Yu WK, Jesse J, Wickersham NE, Sidorova TN, Janz DR, Parikh CR, Siew ED, Ware LB. Haptoglobin-2 variant increases susceptibility to acute respiratory distress syndrome during sepsis. JCI Insight 2019; 4:131206. [PMID: 31573976 DOI: 10.1172/jci.insight.131206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 01/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory lung disorder that frequently complicates critical illness and commonly occurs in sepsis. Although numerous clinical and environmental risk factors exist, not all patients with risk factors develop ARDS, raising the possibility of genetic underpinnings for ARDS susceptibility. We have previously reported that circulating cell-free hemoglobin (CFH) is elevated during sepsis, and higher levels predict worse outcomes. Excess CFH is rapidly scavenged by haptoglobin (Hp). A common HP genetic variant, HP2, is unique to humans and is common in many populations worldwide. HP2 haptoglobin has reduced ability to inhibit CFH-mediated inflammation and oxidative stress compared with the alternative HP1. We hypothesized that HP2 increases ARDS susceptibility during sepsis when plasma CFH levels are elevated. In a murine model of sepsis with elevated CFH, transgenic mice homozygous for Hp2 had increased lung inflammation, pulmonary vascular permeability, lung apoptosis, and mortality compared with wild-type mice. We then tested the clinical relevance of our findings in 496 septic critically ill adults, finding that HP2 increased ARDS susceptibility after controlling for clinical risk factors and plasma CFH. These observations identify HP2 as a potentially novel genetic ARDS risk factor during sepsis and may have important implications in the study and treatment of ARDS.
Collapse
Affiliation(s)
- V Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Biomedical Informatics
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Cell and Developmental Biology, and.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Hiromasa Nagata
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - J Brennan McNeil
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Stuart R Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Wen-Kuang Yu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jordan Jesse
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Nancy E Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - Tatiana N Sidorova
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | - David R Janz
- Section of Pulmonary and Critical Care Medicine, Louisiana State University School of Medicine, New Orleans, Louisiana, USA
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Robicsek SA, Bhattacharya A, Rabai F, Shukla K, Doré S. Blood-Related Toxicity after Traumatic Brain Injury: Potential Targets for Neuroprotection. Mol Neurobiol 2019; 57:159-178. [PMID: 31617072 DOI: 10.1007/s12035-019-01766-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Emergency visits, hospitalizations, and deaths due to traumatic brain injury (TBI) have increased significantly over the past few decades. While the primary early brain trauma is highly deleterious to the brain, the secondary injury post-TBI is postulated to significantly impact mortality. The presence of blood, particularly hemoglobin, and its breakdown products and key binding proteins and receptors modulating their clearance may contribute significantly to toxicity. Heme, hemin, and iron, for example, cause membrane lipid peroxidation, generate reactive oxygen species, and sensitize cells to noxious stimuli resulting in edema, cell death, and increased morbidity and mortality. A wide range of other mechanisms such as the immune system play pivotal roles in mediating secondary injury. Effective scavenging of all of these pro-oxidant and pro-inflammatory metabolites as well as controlling maladaptive immune responses is essential for limiting toxicity and secondary injury. Hemoglobin metabolism is mediated by key molecules such as haptoglobin, heme oxygenase, hemopexin, and ferritin. Genetic variability and dysfunction affecting these pathways (e.g., haptoglobin and heme oxygenase expression) have been implicated in the difference in susceptibility of individual patients to toxicity and may be target pathways for potential therapeutic interventions in TBI. Ongoing collaborative efforts are required to decipher the complexities of blood-related toxicity in TBI with an overarching goal of providing effective treatment options to all patients with TBI.
Collapse
Affiliation(s)
- Steven A Robicsek
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurosurgery, Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Ayon Bhattacharya
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.,Department of Pharmacology, KPC Medical College, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Ferenc Rabai
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Krunal Shukla
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurology, Psychiatry, Pharmaceutics and Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Griffiths S, Clark J, Adamides AA, Ziogas J. The role of haptoglobin and hemopexin in the prevention of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage: a review of current literature. Neurosurg Rev 2019; 43:1273-1288. [PMID: 31493061 DOI: 10.1007/s10143-019-01169-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023]
Abstract
Delayed cerebral ischaemia (DCI) after aneurysmal subarachnoid haemorrhage (aSAH) is a major cause of mortality and morbidity. The pathophysiology of DCI after aSAH is thought to involve toxic mediators released from lysis of red blood cells within the subarachnoid space, including free haemoglobin and haem. Haptoglobin and hemopexin are endogenously produced acute phase proteins that are involved in the clearance of these toxic mediators. The aim of this review is to investigate the pathophysiological mechanisms involved in DCI and the role of both endogenous as well as exogenously administered haptoglobin and hemopexin in the prevention of DCI.
Collapse
Affiliation(s)
- Sean Griffiths
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia. .,Western Hospital, 160 Gordon St, Footscray, 3011, Australia.
| | - Jeremy Clark
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia
| | - Alexios A Adamides
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia
| | - James Ziogas
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
12
|
Abstract
Haemoglobin is released into the CNS during the breakdown of red blood cells after intracranial bleeding. Extracellular free haemoglobin is directly neurotoxic. Haemoglobin scavenging mechanisms clear haemoglobin and reduce toxicity; these mechanisms include erythrophagocytosis, haptoglobin binding of haemoglobin, haemopexin binding of haem and haem oxygenase breakdown of haem. However, the capacity of these mechanisms is limited in the CNS, and they easily become overwhelmed. Targeting of haemoglobin toxicity and scavenging is, therefore, a rational therapeutic strategy. In this Review, we summarize the neurotoxic mechanisms of extracellular haemoglobin and the peculiarities of haemoglobin scavenging pathways in the brain. Evidence for a role of haemoglobin toxicity in neurological disorders is discussed, with a focus on subarachnoid haemorrhage and intracerebral haemorrhage, and emerging treatment strategies based on the molecular pathways involved are considered. By focusing on a fundamental biological commonality between diverse neurological conditions, we aim to encourage the application of knowledge of haemoglobin toxicity and scavenging across various conditions. We also hope that the principles highlighted will stimulate research to explore the potential of the pathways discussed. Finally, we present a consensus opinion on the research priorities that will help to bring about clinical benefits.
Collapse
|
13
|
Gaastra B, Ren D, Alexander S, Bennett ER, Bielawski DM, Blackburn SL, Borsody MK, Doré S, Galea J, Garland P, He T, Iihara K, Kawamura Y, Leclerc JL, Meschia JF, Pizzi MA, Tamargo RJ, Yang W, Nyquist PA, Bulters DO, Galea I. Haptoglobin genotype and aneurysmal subarachnoid hemorrhage: Individual patient data analysis. Neurology 2019; 92:e2150-e2164. [PMID: 30952792 DOI: 10.1212/wnl.0000000000007397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To perform an individual patient-level data (IPLD) analysis and to determine the relationship between haptoglobin (HP) genotype and outcomes after aneurysmal subarachnoid hemorrhage (aSAH). METHODS The primary outcome was favorable outcome on the modified Rankin Scale or Glasgow Outcome Scale up to 12 months after ictus. The secondary outcomes were occurrence of delayed ischemic neurologic deficit, radiologic infarction, angiographic vasospasm, and transcranial Doppler evidence of vasospasm. World Federation of Neurological Surgeons (WFNS) scale, Fisher grade, age, and aneurysmal treatment modality were covariates for both primary and secondary outcomes. As preplanned, a 2-stage IPLD analysis was conducted, followed by these sensitivity analyses: (1) unadjusted; (2) exclusion of unpublished studies; (3) all permutations of HP genotypes; (4) sliding dichotomy; (5) ordinal regression; (6) 1-stage analysis; (7) exclusion of studies not in Hardy-Weinberg equilibrium (HWE); (8) inclusion of studies without the essential covariates; (9) inclusion of additional covariates; and (10) including only covariates significant in univariate analysis. RESULTS Eleven studies (5 published, 6 unpublished) totaling 939 patients were included. Overall, the study population was in HWE. Follow-up times were 1, 3, and 6 months for 355, 516, and 438 patients. HP genotype was not associated with any primary or secondary outcome. No trends were observed. When taken through the same analysis, higher age and WFNS scale were associated with an unfavorable outcome as expected. CONCLUSION This comprehensive IPLD analysis, carefully controlling for covariates, refutes previous studies showing that HP1-1 associates with better outcome after aSAH.
Collapse
Affiliation(s)
- Ben Gaastra
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dianxu Ren
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sheila Alexander
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ellen R Bennett
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dawn M Bielawski
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Spiros L Blackburn
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark K Borsody
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sylvain Doré
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - James Galea
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Patrick Garland
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian He
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Koji Iihara
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yoichiro Kawamura
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jenna L Leclerc
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - James F Meschia
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael A Pizzi
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rafael J Tamargo
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wuyang Yang
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul A Nyquist
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Diederik O Bulters
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ian Galea
- From the Wessex Neurological Centre (B.G., D.O.B., I.G.), University Hospital Southampton NHS Foundation Trust, UK; School of Nursing (D.R., S.A.) and Department of Biostatistics (D.R., T.E.), University of Pittsburgh, PA; Department of Neurology (E.R.B.), Duke University School of Medicine, Durham, NC; NeuroSpring (D.M.B., M.K.B.), Dover, DE; Department of Neurosurgery (S.L.B.), University of Texas Health Science Center at Houston; Department of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience (S.D., J.L.L.), College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville; Brain Injury Research Group (J.G.), Division of Cardiovascular Sciences (University of Manchester), Salford Royal NHS Foundation Trust, UK; Clinical Neurosciences, Clinical & Experimental Sciences (P.G., I.G.), Faculty of Medicine, University of Southampton, UK; Department of Neurosurgery (K.I., Y.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology (J.F.M., M.A.P.), Mayo Clinic, Jacksonville, FL; and Division of Cerebrovascular Neurosurgery (R.J.T.) and Departments of Neurology, Anesthesia/Critical Care Medicine, and Neurosurgery (W.Y., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
14
|
Yu Z, Wen D, Zheng J, Guo R, Li H, You C, Ma L. Predictive Accuracy of Alpha-Delta Ratio on Quantitative Electroencephalography for Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage: Meta-Analysis. World Neurosurg 2019; 126:e510-e516. [PMID: 30825635 DOI: 10.1016/j.wneu.2019.02.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Delayed cerebral ischemia (DCI) is significantly related to death and unfavorable functional outcome in patients with aneurysmal subarachnoid hemorrhage (SAH). The association between alpha-delta ratio (ADR) on quantitative electroencephalography (EEG) and DCI has been reported in several previous studies, but their results are conflicting. This meta-analysis was conducted to assess the accuracy of ADR for DCI prediction in patients with aneurysmal SAH. METHODS PubMed and Embase were systematically searched for related records. Study selection and data collection were completed by 2 investigators. Sensitivity, specificity, and their 95% confidence intervals (CIs) were pooled. A summary receiver operating characteristic curve was plotted to show the pooled accuracy. Deeks funnel plot was used to evaluate publication bias. RESULTS Five studies were included in this meta-analysis. The pooled sensitivity and specificity of worsening ADR for DCI prediction in patients with aneurysmal SAH were 0.83 (95% CI 0.44-0.97) and 0.74 (95% CI 0.50-0.89), respectively. In addition, the area under the summary receiver operating characteristic curve was 0.84 (95% CI 0.81-0.87). No obvious publication bias was found using Deeks funnel plot (P = 0.29). CONCLUSIONS Worsening ADR on quantitative EEG is a reliable predictor of DCI in patients with aneurysmal SAH. Further studies are still needed to confirm the role of quantitative EEG in DCI prediction.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Zheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Guo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
van der Steen WE, Leemans EL, van den Berg R, Roos YBWEM, Marquering HA, Verbaan D, Majoie CBLM. Radiological scales predicting delayed cerebral ischemia in subarachnoid hemorrhage: systematic review and meta-analysis. Neuroradiology 2019; 61:247-256. [PMID: 30693409 DOI: 10.1007/s00234-019-02161-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Delayed cerebral ischemia (DCI) is a severe complication of aneurysmal subarachnoid hemorrhage (aSAH). The extent of subarachnoid blood is a strong predictor of DCI and is frequently estimated with the Fisher scale, modified Fisher scale, or Hijdra sum score. It is unclear which scale has the strongest association with clinical DCI. To evaluate this, we performed a systematic review of the literature. METHODS We performed a MEDLINE and EMBASE search from 1980 to 20th of June 2017. Radiological grade and occurrence of clinical DCI were extracted along with odds ratios (ORs) for DCI. When possible, pooled ORs with 95% confidence intervals were calculated per grade increase on the radiological scale. RESULTS Fifty-three studies were included. The Fisher scale was significantly associated with DCI in 62% of the studies compared to 88-100% for the other scales. In studies using the Fisher scale, Fisher 3 had the strongest association with DCI (pooled OR 3.21 (1.87-5.49)). In studies using the modified Fisher score, DCI occurred most frequently (42%) in modified Fisher 4. No pooled OR could be calculated for the other scales. CONCLUSION The Fisher scale, modified Fisher scale, and Hijdra sum score are all associated with clinical DCI. The risk of DCI, however, does not increase with increasing Fisher grade as opposed to the modified Fisher scale. Furthermore, the modified Fisher scale was more commonly significantly associated with DCI than the Fisher scale, which may advocate using the modified Fisher in future SAH-related studies.
Collapse
Affiliation(s)
- Wessel E van der Steen
- Department of Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Room L0-106, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eva L Leemans
- Department of Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Room L0-106, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - René van den Berg
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Yvo B W E M Roos
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk A Marquering
- Department of Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Room L0-106, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Dagmar Verbaan
- Neurosurgical Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Kim BJ, Kim Y, Kim SE, Jeon JP. Study of Correlation Between Hp α1 Expression of Haptoglobin 2-1 and Clinical Course in Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2018; 117:e221-e227. [PMID: 29902601 DOI: 10.1016/j.wneu.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Haptoglobin (Hp) comprising 2 light (α) and 2 heavy (β) chains has an antioxidant effect following free hemoglobin binding. Among 3 phenotypes-Hp1-1 (two α1), Hp2-1 (α1 and α2), and Hp2-2 (two α2)-a greater protective effect for toxic-free hemoglobin was reported for Hp2-2 compared with Hp1-1. However, few studies have focused on the association of Hp2-1 with outcomes. This study examined α1 and α2 expression, and evaluated the correlation of Hp2-1 with outcomes of subarachnoid hemorrhage (SAH). METHODS Eighty-seven patients were enrolled prospectively, including 12 in the Hp1-1 group (13.8%), 36 in the Hp2-1 group (41.4%), and 39 in the Hp2-2 group (44.8%). Phenotypes were confirmed by Western blot analysis. The relative band intensities were measured as α subunit intensities normalized to albumin intensities and expressed as median (interquartile range). The differences in α intensities according to delayed cerebral ischemia (DCI), angiographic vasospasm (AV), and outcome were analyzed. RESULTS DCI and AV were more frequently associated with Hp2-2 than with Hp1-1 (DCI: 21 [53.8%] vs. 3 [25.0%]; AV: 22 [56.4%] vs. 3 [25.0%]). The α1 intensities of Hp2-1 without DCI and AV were significantly higher than those with DCI and AV (without DCI: 0.70 [interquartile range (IQR), 0.54-0.89]; with DCI: 0.24 [IQR, 0.14-0.32]; P < 0.001; without AV: 0.65 [IQR, 0.32-0.88]; with AV: 0.32 [IQR, 0.17-0.67]; P = 0.046). No significant difference was noted with α2 intensities. The α1 (P = 0.359) and α2 (P = 0.233) intensities did not differ significantly according to outcome. CONCLUSIONS Higher α1 intensities in Hp2-1 are associated with a lower risk of DCI and AV. The degree of α1 intensity may provide additional information about the individual risk of secondary injury following SAH in patients with Hp2-1.
Collapse
Affiliation(s)
- Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Youngmi Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Sung-Eun Kim
- Department of Emergency Medicine, Seoul Emergency Operations Center, Seoul, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea; Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
17
|
Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J, Aronowski J, Cardenas JC, Doré S. Unique Contribution of Haptoglobin and Haptoglobin Genotype in Aneurysmal Subarachnoid Hemorrhage. Front Physiol 2018; 9:592. [PMID: 29904350 PMCID: PMC5991135 DOI: 10.3389/fphys.2018.00592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023] Open
Abstract
Survivors of cerebral aneurysm rupture are at risk for significant morbidity and neurological deficits. Much of this is related to the effects of blood in the subarachnoid space which induces an inflammatory cascade with numerous downstream consequences. Recent clinical trials have not been able to reduce the toxic effects of free hemoglobin or improve clinical outcome. One reason for this may be the inability to identify patients at high risk for neurologic decline. Recently, haptoglobin genotype has been identified as a pertinent factor in diabetes, sickle cell, and cardiovascular disease, with the Hp 2-2 genotype contributing to increased complications. Haptoglobin is a protein synthesized by the liver that binds free hemoglobin following red blood cell lysis, and in doing so, prevents hemoglobin induced toxicity and facilitates clearance. Clinical studies in patients with subarachnoid hemorrhage indicate that Hp 2-2 patients may be a high-risk group for hemorrhage related complications and poor outcome. We review the relevance of haptoglobin in subarachnoid hemorrhage and discuss the effects of genotype and expression levels on the known mechanisms of early brain injury (EBI) and cerebral ischemia after aneurysm rupture. A better understanding of haptoglobin and its role in preventing hemoglobin related toxicity should lead to novel therapeutic avenues.
Collapse
Affiliation(s)
- Spiros L Blackburn
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Peeyush T Kumar
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Devin McBride
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Hussein A Zeineddine
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Jenna Leclerc
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - H Alex Choi
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Pramod K Dash
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - James Grotta
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jessica C Cardenas
- Department of Surgery, Division of Acute Care Surgery and Center for Translational Injury Research, The University of Texas Health Science Center, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
18
|
Maserati M, Alexander SA. Genetics and Genomics of Acute Neurologic Disorders. AACN Adv Crit Care 2018; 29:57-75. [PMID: 29496714 DOI: 10.4037/aacnacc2018566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurologic diseases and injuries are complex and multifactorial, making risk prediction, targeted treatment modalities, and outcome prognostication difficult and elusive. Genetics and genomics have affected clinical practice in many aspects in medicine, particularly cancer treatment. Advancements in knowledge of genetic and genomic variability in neurologic disease and injury are growing rapidly. Although these data are not yet ready for use in clinical practice, research continues to progress and elucidate information that eventually will provide answers to complex neurologic questions and serve as a platform to provide individualized care plans aimed at improving outcomes. This article provides a focused review of relevant literature on genetics, genomics, and common complex neurologic disease and injury likely to be seen in the acute care setting.
Collapse
Affiliation(s)
- Megan Maserati
- Megan Maserati is a PhD student at University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander is Associate Professor, University of Pittsburgh, 336 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261
| | - Sheila A Alexander
- Megan Maserati is a PhD student at University of Pittsburgh, Pittsburgh, Pennsylvania. Sheila A. Alexander is Associate Professor, University of Pittsburgh, 336 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261
| |
Collapse
|
19
|
Haptoglobin Genotype and Outcome after Subarachnoid Haemorrhage: New Insights from a Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6747940. [PMID: 29104730 PMCID: PMC5634574 DOI: 10.1155/2017/6747940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Haptoglobin (Hp) is a plasma protein involved in clearing extracellular haemoglobin and regulating inflammation; it exists as two genetic variants (Hp1 and Hp2). In a meta-analysis of six published studies, we confirm that Hp genotype affects short-term outcome (cerebral vasospasm and/or delayed cerebral ischemia) after subarachnoid haemorrhage (SAH) but not long-term outcome (Glasgow Outcome Score and modified Rankin Scale between one and three months). A closer examination of the heterozygous group revealed that the short-term outcome of Hp2-1 individuals clustered with that of Hp1-1 and not Hp2-2, suggesting that the presence of one Hp1 allele was sufficient to confer protection. Since the presence of the Hp dimer is the only common feature between Hp1-1 and Hp2-1 individuals, the absence of this Hp moiety is most likely to underlie vasospasm in Hp2-2 individuals. These results have implications for prognosis after SAH and will inform further research into Hp-based mechanism of action and treatment.
Collapse
|
20
|
Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, Hoh BL, Blackburn S, Doré S. Role of Interleukin-10 in Acute Brain Injuries. Front Neurol 2017; 8:244. [PMID: 28659854 PMCID: PMC5466968 DOI: 10.3389/fneur.2017.00244] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation.
Collapse
Affiliation(s)
- Joshua M Garcia
- College of Medicine, University of Florida, Gainesville, FL, United States
| | | | - Jenna L Leclerc
- Department of Anesthesiology, College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Harrison Phillips
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Nancy J Edwards
- Department of Neurology, University of California, San Francisco, CA, United States.,Department of Neurosurgery, University of California, San Francisco, CA, United States
| | - Steven A Robicsek
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Spiros Blackburn
- Department of Neurosurgery, University of Texas, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Psychology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Psychiatry, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Pharmaceutics, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Andersen CBF, Stødkilde K, Sæderup KL, Kuhlee A, Raunser S, Graversen JH, Moestrup SK. Haptoglobin. Antioxid Redox Signal 2017; 26:814-831. [PMID: 27650279 DOI: 10.1089/ars.2016.6793] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haptoglobin (Hp) is an abundant human plasma protein that tightly captures hemoglobin (Hb) during hemolysis. The Hb-Hp complex formation reduces the oxidative properties of heme/Hb and promotes recognition by the macrophage scavenger receptor CD163. This leads to Hb-Hp breakdown and heme catabolism by heme oxygenase and biliverdin reductase. Gene duplications of a part of or the entire Hp gene in the primate evolution have led to variant Hp gene products that collectively may be designated "the haptoglobins (Hps)" as they all bind Hb. These variant products include the human-specific multimeric Hp phenotypes in individuals, which are hetero- or homozygous for an Hp2 gene allele. The Hp-related protein (Hpr) is another Hp duplication product in humans and other primates. Alternative functions of the variant Hps are indicated by numerous reports on association between Hp phenotypes and disease as well as the elucidation of a specific role of Hpr in the innate immune defense. Recent Advances: Recent functional and structural information on Hp and receptor systems for Hb removal now provides insight on how Hp carries out essential functions such as the Hb detoxification/removal, and how Hpr, by acting as an Hp-lookalike, can sneak a lethal toxin into trypanosome parasites that cause mammalian sleeping sickness. Critical Issues and Future Directions: The new structural insight may facilitate ongoing attempts of developing Hp derivatives for prevention of Hb toxicity in hemolytic diseases such as sickle cell disease and other hemoglobinopathies. Furthermore, the new structural knowledge may help identifying yet unknown functions based on other disease-relevant biological interactions involving Hps. Antioxid. Redox Signal. 26, 814-831.
Collapse
Affiliation(s)
| | | | - Kirstine Lindhardt Sæderup
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Anne Kuhlee
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Stefan Raunser
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Jonas H Graversen
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Søren Kragh Moestrup
- 1 Department of Biomedicine, University of Aarhus , Aarhus C, Denmark .,2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark .,4 Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense C, Denmark
| |
Collapse
|
22
|
Zheng VZ, Wong GKC. Neuroinflammation responses after subarachnoid hemorrhage: A review. J Clin Neurosci 2017; 42:7-11. [PMID: 28302352 DOI: 10.1016/j.jocn.2017.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
Subarachnoid hemorrhage (SAH) is an important cause of stroke mortality and morbidity, especially in the young stroke population. Recent evidences indicate that neuroinflammation plays a critical role in both early brain injury and the delayed brain deterioration after SAH, including cellular and molecular components. Cerebral vasospasm (CV) can lead to death after SAH and independently correlated with poor outcome. Neuroinflammation is evidenced to contribute to the etiology of vasospasm. Besides, systemic inflammatory response syndrome (SIRS) commonly occurs in the SAH patients, with the presence of non-infectious fever and systematic complications. In this review, we summarize the evidences that indicate the prominent role of inflammation in the pathophysiology of SAH. That may provide the potential implications on diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Vera Zhiyuan Zheng
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
23
|
D'Abbondanza JA, Ai J, Lass E, Wan H, Brathwaite S, Tso MK, Lee C, Marsden PA, Macdonald RL. Robust effects of genetic background on responses to subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab 2016; 36:1942-1954. [PMID: 26661216 PMCID: PMC5094306 DOI: 10.1177/0271678x15612489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/08/2015] [Indexed: 01/08/2023]
Abstract
Outcome varies among patients with subarachnoid hemorrhage but known prognostic factors explain only a small portion of the variation in outcome. We hypothesized that individual genetic variations influence brain and vascular responses to subarachnoid hemorrhage and investigated this using inbred strains of mice.Subarachnoid hemorrhage was induced in seven inbred and a chromosome 7 substitution strain of mouse. Cerebral blood flow, vasospasm of the middle cerebral artery, and brain injury were assessed. After 48 h of subarachnoid hemorrhage, mice showed significant middle cerebral artery vasospasm that correlated positively with reduction in cerebral blood flow at 45 min. Mice also had increased neuronal injury compared to sham controls; A/J and C57BL/6 J strains represented the most and least severe, respectively. However, brain injury did not correlate with cerebral blood flow reduction at 45 min or with vasospasm at 48 h. Chromosome 7 substitution did not influence the degree of vasospasm or brain injury.Our data suggested that mouse genetic background influences outcome of subarachnoid hemorrhage. Investigations into the genetic factors causing these inter-strain differences may provide insight into the etiology of the brain damage following subarachnoid hemorrhage. These findings also have implications for animal modeling of disease and suggest that genetic differences may also modulate outcome in other cardiovascular diseases.
Collapse
Affiliation(s)
- Josephine A D'Abbondanza
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.,Labatt Family Centre of Excellence in Brain Injury and Trauma Research, St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jinglu Ai
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.,Labatt Family Centre of Excellence in Brain Injury and Trauma Research, St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Elliot Lass
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.,Labatt Family Centre of Excellence in Brain Injury and Trauma Research, St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Hoyee Wan
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.,Labatt Family Centre of Excellence in Brain Injury and Trauma Research, St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Shakira Brathwaite
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.,Labatt Family Centre of Excellence in Brain Injury and Trauma Research, St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael K Tso
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.,Labatt Family Centre of Excellence in Brain Injury and Trauma Research, St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Charles Lee
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.,Labatt Family Centre of Excellence in Brain Injury and Trauma Research, St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Philip A Marsden
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada .,Labatt Family Centre of Excellence in Brain Injury and Trauma Research, St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Murthy SB, Caplan J, Levy AP, Pradilla G, Moradiya Y, Schneider EB, Shalom H, Ziai WC, Tamargo RJ, Nyquist PA. Haptoglobin 2-2 Genotype Is Associated With Cerebral Salt Wasting Syndrome in Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2016; 78:71-6. [PMID: 26348010 DOI: 10.1227/neu.0000000000001000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Haptoglobin (Hp) genotype has been shown to be a predictor of clinical outcomes in subarachnoid hemorrhage. Cerebral salt wasting (CSW) has been suggested to precede the development of symptomatic vasospasm. OBJECTIVE To determine if Hp genotype was associated with CSW and subsequent vasospasm after aneurysmal subarachnoid hemorrhage. METHODS Hp genotypic determination was done for patients admitted with a diagnosis of subarachnoid hemorrhage. Outcome measures included CSW, delayed cerebral infarction, and Glasgow Outcome Score of 4 to 5 at 30 days. Criteria for CSW included hyponatremia <135 mEq/L, and urine output >4 L in 12 hours with urine sodium >40 mEq/L. RESULTS A total of 133 patients were included in the study. The 3 Hp subgroups did not differ in terms of baseline characteristics. CSW occurred in 1 patient (3.4%) with Hp 1-1, 8 (14.0%) patients with Hp 2-1, and 15 (31.9%) patients with Hp 2-2 (P = .004). In the multivariate regression model, Hp 2-2 was associated with CSW (odds ratio [OR]: 4.94; CI: 1.78-17.43; P = .01), but Hp 2-1 was not (OR: 2.92; CI: 0.56-4.95; P = .15) compared with Hp 1-1. There were no associations between Hp genotypes and functional outcome or delayed cerebral infarction. CSW was associated with delayed cerebral infarction (OR: 7.46; 95% CI: 2.54-21.9; P < .001). CONCLUSION Hp 2-2 genotype was an independent predictor of CSW after subarachnoid hemorrhage. Because CSW is strongly associated with delayed cerebral infarction, the use of Hp genotype testing requires more investigation, and larger prospective confirmation is warranted. Additionally, a more objective definition of CSW needs to be delineated.
Collapse
Affiliation(s)
- Santosh B Murthy
- *Division of Neurosciences Critical Care and‡Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland;§Department of Medicine, Technion Institute of Technology, Haifa, Israel;¶Department of Neurological Surgery, Emory University, Atlanta, Georgia;‖Center for Surgical Trials and Outcomes Research, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Burrell C, Avalon NE, Siegel J, Pizzi M, Dutta T, Charlesworth MC, Freeman WD. Precision medicine of aneurysmal subarachnoid hemorrhage, vasospasm and delayed cerebral ischemia. Expert Rev Neurother 2016; 16:1251-1262. [PMID: 27314601 DOI: 10.1080/14737175.2016.1203257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Precision medicine provides individualized treatment of diseases through leveraging patient-to-patient variation. Aneurysmal subarachnoid hemorrhage carries tremendous morbidity and mortality with cerebral vasospasm and delayed cerebral ischemia proving devastating and unpredictable. Lack of treatment measures for these conditions could be improved through precision medicine. Areas covered: Discussed are the pathophysiology of CV and DCI, treatment guidelines, and evidence for precision medicine used for prediction and prevention of poor outcomes following aSAH. A PubMed search was performed using keywords cerebral vasospasm or delayed cerebral ischemia and either biomarkers, precision medicine, metabolomics, proteomics, or genomics. Over 200 peer-reviewed articles were evaluated. The studies presented cover biomarkers identified as predictive markers or therapeutic targets following aSAH. Expert commentary: The biomarkers reviewed here correlate with CV, DCI, and neurologic outcomes after aSAH. Though practical use in clinical management of aSAH is not well established, using these biomarkers as predictive tools or therapeutic targets demonstrates the potential of precision medicine.
Collapse
Affiliation(s)
| | - Nicole E Avalon
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Jason Siegel
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Michael Pizzi
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Tumpa Dutta
- b Endocrine Research Unit , Mayo Clinic , Rochester , MN , USA
| | | | | |
Collapse
|
26
|
Przybycien-Szymanska MM, Yang Y, Ashley WW. Microparticle derived proteins as potential biomarkers for cerebral vasospasm post subarachnoid hemorrhage. A preliminary study. Clin Neurol Neurosurg 2016; 141:48-55. [DOI: 10.1016/j.clineuro.2015.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
|
27
|
Satopää J, Niemelä M. Blood and the Brain. World Neurosurg 2015; 84:228-30. [DOI: 10.1016/j.wneu.2015.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
|
28
|
Przybycien-Szymanska MM, Ashley WW. Biomarker Discovery in Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2015; 24:1453-64. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.03.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/06/2015] [Accepted: 03/08/2015] [Indexed: 12/19/2022] Open
|
29
|
Rosalind Lai PM, Du R. Role of Genetic Polymorphisms in Predicting Delayed Cerebral Ischemia and Radiographic Vasospasm After Aneurysmal Subarachnoid Hemorrhage: A Meta-Analysis. World Neurosurg 2015; 84:933-41.e2. [PMID: 26074429 DOI: 10.1016/j.wneu.2015.05.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The pathophysiology on cerebral vasospasm and delayed cerebral ischemia (DCI) remains poorly understood. Much research has been dedicated to finding genetic loci associated with vasospasm and ischemia. We present a systematic review and meta-analysis to identify genetic polymorphisms associated with delayed ischemic neurologic deficit (DIND), radiographic infarction attributed to ischemia, and radiographic vasospasm. METHODS PubMed, the Cochrane Library, and Excerpta Medica dataBASE (EMBASE) databases were used to identify relevant studies published up to March 2015 containing the subject terms cerebral or intracranial vasospasm and DCI in combination with genetics, gene, polymorphism or marker. Meta-analyses were performed using a random-effects model to calculate summary odds ratio (ORs) and 95% confidence intervals for each respective gene. RESULTS Of 269 articles initially identified, 20 studies with 1670 patients were included in our comprehensive review, including 27 polymorphisms in 11 genes. The following 6 polymorphisms in 3 genes were selected for subsequent meta-analyses: apolipoprotein E (ApoE2, E4); endothelial nitric oxide (eNOS T786C, VNTR intron 4 a/b, G894T); and haptoglobin (Hp) 1/2 phenotypes. The eNOS VNTR a allele was associated with DIND (a vs. b allele: OR 1.92 [1.31-2.81], padj = 0.008). The Hp 2-2 allele was associated with radiographic vasospasm (2-2 vs. 2-1 and 1-1: OR 3.86 [1.86-8.03], padj = 0.003) but did not reach significance for DIND. CONCLUSIONS This is the first systemic review and meta-analysis to study and evaluate the associations between genetic polymorphism with DCI and radiographic vasospasm independently. In our study, eNOS VNTR and Hp polymorphisms appear to have the strongest associations with DIND and radiographic vasospasm, respectively.
Collapse
Affiliation(s)
- Pui Man Rosalind Lai
- Department of Neurological Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rose Du
- Department of Neurological Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
30
|
Leclerc JL, Blackburn S, Neal D, Mendez NV, Wharton JA, Waters MF, Doré S. Haptoglobin phenotype predicts the development of focal and global cerebral vasospasm and may influence outcomes after aneurysmal subarachnoid hemorrhage. Proc Natl Acad Sci U S A 2015; 112:1155-60. [PMID: 25583472 PMCID: PMC4313833 DOI: 10.1073/pnas.1412833112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cerebral vasospasm (CV) and the resulting delayed cerebral ischemia (DCI) significantly contribute to poor outcomes following aneurysmal subarachnoid hemorrhage (aSAH). Free hemoglobin (Hb) within the subarachnoid space has been implicated in the pathogenesis of CV. Haptoglobin (Hp) binds free pro-oxidant Hb, thereby modulating its harmful effects. Humans can be of three Hp phenotypes: Hp1-1, Hp2-1, or Hp2-2. In several disease states, the Hp2-2 protein has been associated with reduced ability to protect against toxic free Hb. We hypothesized that individuals with the Hp2-2 phenotype would have more CV, DCI, mortality, and worse functional outcomes after aSAH. In a sample of 74 aSAH patients, Hp2-2 phenotype was significantly associated with increased focal moderate (P = 0.014) and severe (P = 0.008) CV and more global CV (P = 0.014) after controlling for covariates. Strong trends toward increased mortality (P = 0.079) and worse functional outcomes were seen for the Hp2-2 patients with modified Rankin scale at 6 wk (P = 0.076) and at 1 y (P = 0.051) and with Glasgow Outcome Scale Extended at discharge (P = 0.091) and at 1 y (P = 0.055). In conclusion, Hp2-2 phenotype is an independent risk factor for the development of both focal and global CV and also predicts poor functional outcomes and mortality after aSAH. Hp phenotyping may serve as a clinically useful tool in the critical care management of aSAH patients by allowing for early prediction of those patients who require increased vigilance due to their inherent genetic risk for the development of CV and resulting DCI and poor outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sylvain Doré
- Departments of Anesthesiology, Neuroscience, Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
31
|
Murthy SB, Levy AP, Duckworth J, Schneider EB, Shalom H, Hanley DF, Tamargo RJ, Nyquist PA. Presence of haptoglobin-2 allele is associated with worse functional outcomes after spontaneous intracerebral hemorrhage. World Neurosurg 2014; 83:583-7. [PMID: 25527876 DOI: 10.1016/j.wneu.2014.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine if the haptoglobin (Hp) phenotype, which has been shown to be a predictor of clinical outcomes in cerebrovascular disorders, particularly subarachnoid hemorrhage, was predictive of functional outcomes after spontaneous intracerebral hemorrhage (ICH). METHODS Patients admitted with a diagnosis of ICH were prospectively included and divided into 3 groups based on their genetically determined Hp phenotype: 1-1, 2-1, and 2-2. Outcome measures included mortality and 30-day modified Rankin Scale scores. Demographics and outcomes were compared for each phenotype using multivariate linear regression analysis. RESULTS The study included 94 patients. The distribution of Hp phenotype was Hp 1-1, 12 (13%); Hp 2-1, 46 (49%); and Hp 2-2, 36 (38%). The 3 Hp subgroups did not differ in terms of demographic variables, comorbidities, or ICH characteristics. There was a nonsignificant trend toward increased mortality in Hp 2-1 and Hp 2-2 compared with Hp 1-1, with mortality of 8% in Hp 1-1, 17% in Hp 2-1, and 25% in Hp 2-2 (P = 0.408). In the regression model adjusted for confounders, Hp 2-1 (odds ratio = 0.05, 95% confidence interval = 0.01-0.47, P < 0.001) and Hp 2-2 phenotypes (odds ratio = 0.14, 95% confidence interval = 0.02-0.86, P = 0.045) had significantly lower odds of modified Rankin Scale scores 0-2 compared with Hp 1-1. CONCLUSIONS After ICH, individuals with the Hp-2 allele (2-1 and 2-2) had worse functional outcomes than individuals with the Hp-1 allele (Hp 1-1). There was a nonsignificant association between Hp phenotype and mortality. Larger prospective studies with better surrogates of ICH outcomes are warranted.
Collapse
Affiliation(s)
- Santosh B Murthy
- Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Andrew P Levy
- Department of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Joshua Duckworth
- Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric B Schneider
- Center for Surgical Trials and Outcomes Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hadar Shalom
- Department of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Daniel F Hanley
- Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rafael J Tamargo
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul A Nyquist
- Division of Neurosciences Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:384342. [PMID: 25105123 PMCID: PMC4106062 DOI: 10.1155/2014/384342] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 12/15/2022]
Abstract
Subarachnoid hemorrhage (SAH) can lead to devastating neurological outcomes, and there are few pharmacologic treatments available for treating this condition. Both animal and human studies provide evidence of inflammation being a driving force behind the pathology of SAH, leading to both direct brain injury and vasospasm, which in turn leads to ischemic brain injury. Several inflammatory mediators that are elevated after SAH have been studied in detail. While there is promising data indicating that blocking these factors might benefit patients after SAH, there has been little success in clinical trials. One of the key factors that complicates clinical trials of SAH is the variability of the initial injury and subsequent inflammatory response. It is likely that both genetic and environmental factors contribute to the variability of patients' post-SAH inflammatory response and that this confounds trials of anti-inflammatory therapies. Additionally, systemic inflammation from other conditions that affect patients with SAH could contribute to brain injury and vasospasm after SAH. Continuing work on biomarkers of inflammation after SAH may lead to development of patient-specific anti-inflammatory therapies to improve outcome after SAH.
Collapse
|
33
|
Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 2014; 115:64-91. [PMID: 24076160 PMCID: PMC3961493 DOI: 10.1016/j.pneurobio.2013.09.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms "early brain injury" and "delayed brain injury" are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
34
|
Atkinson SH, Uyoga SM, Nyatichi E, Macharia AW, Nyutu G, Ndila C, Kwiatkowski DP, Rockett KA, Williams TN. Epistasis between the haptoglobin common variant and α+thalassemia influences risk of severe malaria in Kenyan children. Blood 2014; 123:2008-16. [PMID: 24478401 PMCID: PMC3968387 DOI: 10.1182/blood-2013-10-533489] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/21/2014] [Indexed: 11/20/2022] Open
Abstract
Haptoglobin (Hp) scavenges free hemoglobin following malaria-induced hemolysis. Few studies have investigated the relationship between the common Hp variants and the risk of severe malaria, and their results are inconclusive. We conducted a case-control study of 996 children with severe Plasmodium falciparum malaria and 1220 community controls and genotyped for Hp, hemoglobin (Hb) S heterozygotes, and α(+)thalassemia. Hb S heterozygotes and α(+)thalassemia homozygotes were protected from severe malaria (odds ratio [OR], 0.12; 95% confidence interval [CI], 0.07-0.18 and OR, 0.69; 95% CI, 0.53-0.91, respectively). The risk of severe malaria also varied by Hp genotype: Hp2-1 was associated with the greatest protection against severe malaria and Hp2-2 with the greatest risk. Meta-analysis of the current and published studies suggests that Hp2-2 is associated with increased risk of severe malaria compared with Hp2-1. We found a significant interaction between Hp genotype and α(+)thalassemia in predicting risk of severe malaria: Hp2-1 in combination with heterozygous or homozygous α(+)thalassemia was associated with protection from severe malaria (OR, 0.73; 95% CI, 0.54-0.99 and OR, 0.48; 95% CI, 0.32-0.73, respectively), but α(+)thalassemia in combination with Hp2-2 was not protective. This epistatic interaction together with varying frequencies of α(+)thalassemia across Africa may explain the inconsistent relationship between Hp genotype and malaria reported in previous studies.
Collapse
Affiliation(s)
- Sarah H Atkinson
- Department of Paediatrics, Oxford University Hospitals National Health Service Trust, University of Oxford, and
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cox SE, Makani J, Soka D, L'Esperence VS, Kija E, Dominguez-Salas P, Newton CRJ, Birch AA, Prentice AM, Kirkham FJ. Haptoglobin, alpha-thalassaemia and glucose-6-phosphate dehydrogenase polymorphisms and risk of abnormal transcranial Doppler among patients with sickle cell anaemia in Tanzania. Br J Haematol 2014; 165:699-706. [PMID: 24666344 PMCID: PMC4154124 DOI: 10.1111/bjh.12791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/05/2014] [Indexed: 02/04/2023]
Abstract
Transcranial Doppler ultrasonography measures cerebral blood flow velocity (CBFv) of basal intracranial vessels and is used clinically to detect stroke risk in children with sickle cell anaemia (SCA). Co‐inheritance in SCA of alpha‐thalassaemia and glucose‐6‐phosphate dehydrogenase (G6PD) polymorphisms is reported to associate with high CBFv and/or risk of stroke. The effect of a common functional polymorphism of haptoglobin (HP) is unknown. We investigated the effect of co‐inheritance of these polymorphisms on CBFv in 601 stroke‐free Tanzanian SCA patients aged <24 years. Homozygosity for alpha‐thalassaemia 3·7 deletion was significantly associated with reduced mean CBFv compared to wild‐type (β‐coefficient −16·1 cm/s, P = 0·002) adjusted for age and survey year. Inheritance of 1 or 2 alpha‐thalassaemia deletions was associated with decreased risk of abnormally high CBFv, compared to published data from Kenyan healthy control children (Relative risk ratio [RRR] = 0·53 [95% confidence interval (CI):0·35–0·8] & RRR = 0·43 [95% CI:0·23–0·78]), and reduced risk of abnormally low CBFv for 1 deletion only (RRR = 0·38 [95% CI:0·17–0·83]). No effects were observed for G6PD or HP polymorphisms. This is the first report of the effects of co‐inheritance of common polymorphisms, including the HP polymorphism, on CBFv in SCA patients resident in Africa and confirms the importance of alpha‐thalassaemia in reducing risk of abnormal CBFv.
Collapse
Affiliation(s)
- Sharon E Cox
- MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK; Muhimbili Wellcome Programme, Muhimbili University of Health & Allied Sciences, Dar es Salaam, Tanzania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital; Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital; and Department of Surgery, University of Toronto, Ontario, Canada
| |
Collapse
|
37
|
Natural history of the bruise: formation, elimination, and biological effects of oxidized hemoglobin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:703571. [PMID: 23766858 PMCID: PMC3671564 DOI: 10.1155/2013/703571] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 02/02/2023]
Abstract
Numerous disease states are associated with hemolysis or hemorrhage. Because red cells in the extravascular space tend to lyse quickly, hemoglobin (Hb) is released and is prone to autoxidation producing MetHb. Inorganic and organic peroxides may convert Hb and MetHb to higher oxidation states such as ferrylHb. FerrylHb is not a single chemical entity but is a mixture of globin- and porphyrin-centered radicals and covalently cross-linked Hb multimers. Oxidized Hb species are potent prooxidants caused mainly by heme release from oxidized Hb. Moreover, ferrylHb is a strong proinflammatory agonist that targets vascular endothelial cells. This proinflammatory effect of ferrylHb requires actin polymerization, is characterized by the upregulation of proinflammatory adhesion molecules, and is independent of heme release. Deleterious effects of native Hb are controlled by haptoglobin (Hp) that binds cell-free Hb avidly and facilitates its removal from circulation through the CD163 macrophage scavenger receptor-mediated endocytosis. Under circumstances of Hb oxidation, Hp can prevent heme release from MetHb, but unfortunately the Hp-mediated removal of Hb is severely compromised when Hb is structurally altered such as in ferrylHb allowing deleterious downstream reactions to occur even in the presence of Hp.
Collapse
|