1
|
Wu M, Liu J, Zhang S, Jian Y, Guo L, Zhang H, Mi J, Qu G, Liu Y, Gao C, Cai Q, Wen D, Liu D, Sun J, Jiang J, Huang H. Shh Signaling from the Injured Lung Microenvironment Drives BMSCs Differentiation into Alveolar Type II Cells for Acute Lung Injury Treatment in Mice. Stem Cells Int 2024; 2024:1823163. [PMID: 39372681 PMCID: PMC11455595 DOI: 10.1155/2024/1823163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 08/01/2024] [Indexed: 10/08/2024] Open
Abstract
Alveolar type II (AT2) cells are key effector cells for repairing damaged lungs. Direct differentiation into AT2 cells from bone marrow mesenchymal stem cells (BMSCs) is a promising approach to treating acute lung injury (ALI). The mechanisms of BMSC differentiation into AT2 cells have not been determined. The Sonic Hedgehog (Shh) pathway is involved in regulating multiple differentiation of MSCs. However, the role of the Shh pathway in mediating the differentiation of BMSCs into AT2 cells remains to be explored. The results showed that BMSCs significantly ameliorated lung injury and improved pulmonary function in mice with ALI. These improvements were accompanied by a relatively high proportion of BMSCs differentiate into AT2 cells and an increase in the total number of AT2 cells in the lungs. Lung tissue extracts from mice with ALI (ALITEs) were used to mimic the injured lung microenvironment. The addition of ALITEs significantly improved the differentiation efficiency of BMSCs into AT2 cells along with activation of the Shh pathway. The inhibition of the Shh pathway not only reduced the differentiation rate of BMSCs but also failed to mitigate lung injury and regenerate AT2 cells. The results confirmed that promoting AT2 cell regeneration through the differentiation of BMSCs into AT2 cells is one of the important therapeutic mechanisms for the treatment of ALI with BMSCs. This differentiation process is highly dependent on Shh pathway activation in BMSCs in the injured lung microenvironment.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
- College of BioengineeringChongqing University, Chongqing 400044, China
| | - Jing Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Shu Zhang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Yi Jian
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
- College of BioengineeringChongqing University, Chongqing 400044, China
| | - Ling Guo
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Huacai Zhang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Junwei Mi
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Guoxin Qu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Yaojun Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Chu Gao
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Qingli Cai
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Dalin Wen
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Di Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Jianhui Sun
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Jianxin Jiang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Hong Huang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| |
Collapse
|
2
|
Hossein Geranmayeh M, Farokhi-Sisakht F, Sadigh-Eteghad S, Rahbarghazi R, Mahmoudi J, Farhoudi M. Simultaneous Pericytes and M2 Microglia Transplantation Improve Cognitive Function in Mice Model of mPFC Ischemia. Neuroscience 2023; 529:62-72. [PMID: 37591334 DOI: 10.1016/j.neuroscience.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Cerebral ischemia is one of the major problems threatening global health. Many of the cerebral ischemia survivors would suffer from the physical and cognitive disabilities for their whole lifetime. Cell based-therapies have been introduced as a therapeutic approach for alleviating ischemia-enforced limitations. Photothrombotic stroke model was applied on the left medial prefrontal cortex (mPFC) of adult male BALB/c mice. Then, pericytes isolated from brain microvessels of adult male BALB/c mice, microglia isolated from brain cortices of the neonatal male BALB/c mice, and M2 phenotype shifted microglia by IL-4 treatment were used for transplantation into the injured area after 24 h of ischemia induction. The behavioural outcomes evaluated by social interaction and Barnes tests and the levels of growth associated protein (GAP)-43 and inflammatory cytokine interleukin (IL)-1 protein were assessed by western blotting 7 days after cell transplantation. Animals in both of the microglia + pericytes and microglia M2 + pericytes transplanted groups showed better performance in social memory as well as enhanced spatial learning and memory compared to ischemic controls. Also, improved escape latency was only observed in microglia M2 + pericytes (p < 0.01) group compared to ischemic controls. GAP-43 showed significant protein expression in microglia + pericytes and microglia M2 + pericytes groups compared to the control group. Conversely, IL-1 levels diminished in all of the pericytes microglia + pericytes, and microglia M2 + pericytes groups compared to the ischemic controls. Current study highlights efficiency of M2 microglia and pericytes combinatory transplantation therapeutic role on relieving ischemic stroke outcomes.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Yan J, Liu T, Li Y, Zhang J, Shi B, Zhang F, Hou X, Zhang X, Cui W, Li J, Yao H, Li X, Gao Y, Jiang J. Effects of magnetically targeted iron oxide@polydopamine-labeled human umbilical cord mesenchymal stem cells in cerebral infarction in mice. Aging (Albany NY) 2023; 15:1130-1142. [PMID: 36812482 PMCID: PMC10008509 DOI: 10.18632/aging.204540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Mesenchymal stem cells are a potential therapeutic candidate for cerebral infarction due to their anti-inflammatory proprieties. However, ensuring the engraftment of sufficient cells into the affected brain area remains a challenge. Herein, magnetic targeting techniques were used for the transplantation of a large number of cells noninvasively. Mice subjected to pMCAO surgery were administered MSCs labeled or not with iron oxide@polydopamine nanoparticles by tail vein injection. Iron oxide@polydopamine particles were characterized by transmission electron microscopy, and labeled MSCs were characterized by flow cytometry and their differentiation potential was assessed in vitro. Following the systemic injection of iron oxide@polydopamine-labeled MSCs into pMCAO-induced mices, magnetic navigation increased the MSCs localization to the brain lesion site and reduced the lesion volume. Treatment with iron oxide@polydopamine-labeled MSCs also significantly inhibited M1 microglia polarization and increased M2 microglia cell infiltration. Furthermore, western blotting and immunohistochemical analysis demonstrated that microtubule-associated protein 2 and NeuN levels were upregulated the brain tissue of mice treated with iron oxide@polydopamine-labeled MSCs. Thus, iron oxide@polydopamine-labeled MSCs attenuated brain injury and protected neurons by preventing pro-inflammatory microglia activation. Overall, the proposed iron oxide@polydopamine-labeled MSCs approach may overcome the major drawback of the conventional MSCs therapy for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Jun Yan
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China.,Central Laboratory, Dalian Municipal Women and Children’s Medical Center (Group), Xigang District, Dalian 116012, China
| | - Te Liu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jun Zhang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bo Shi
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Fuqiang Zhang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Xuejia Hou
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Xiaowen Zhang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Wanxing Cui
- Georgetown University Hospital, Washington, DC 20007, USA
| | - Jing Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hua Yao
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Xiuying Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin, China
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
4
|
Li M, Chen H, Zhu M. Mesenchymal stem cells for regenerative medicine in central nervous system. Front Neurosci 2022; 16:1068114. [PMID: 36583105 PMCID: PMC9793714 DOI: 10.3389/fnins.2022.1068114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells, whose paracrine and immunomodulatory potential has made them a promising candidate for central nervous system (CNS) regeneration. Numerous studies have demonstrated that MSCs can promote immunomodulation, anti-apoptosis, and axon re-extension, which restore functional neural circuits. The therapeutic effects of MSCs have consequently been evaluated for application in various CNS diseases including spinal cord injury, cerebral ischemia, and neurodegenerative disease. In this review, we will focus on the research works published in the field of mechanisms and therapeutic effects of MSCs in CNS regeneration.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Mingxin Zhu,
| |
Collapse
|
5
|
Ghozy S, Reda A, Varney J, Elhawary AS, Shah J, Murry K, Sobeeh MG, Nayak SS, Azzam AY, Brinjikji W, Kadirvel R, Kallmes DF. Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature. Front Neurol 2022; 13:870141. [PMID: 35711268 PMCID: PMC9195142 DOI: 10.3389/fneur.2022.870141] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke is the second most common cause of global death following coronary artery disease. Time is crucial in managing stroke to reduce the rapidly progressing insult of the ischemic penumbra and the serious neurologic deficits that might follow it. Strokes are mainly either hemorrhagic or ischemic, with ischemic being the most common of all types of strokes. Thrombolytic therapy with recombinant tissue plasminogen activator and endovascular thrombectomy are the main types of management of acute ischemic stroke (AIS). In addition, there is a vital need for neuroprotection in the setting of AIS. Neuroprotective agents are important to investigate as they may reduce mortality, lessen disability, and improve quality of life after AIS. In our review, we will discuss the main types of management and the different modalities of neuroprotection, their mechanisms of action, and evidence of their effectiveness after ischemic stroke.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States.,Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | | | - Mohamed Gomaa Sobeeh
- Faculty of Physical Therapy, Sinai University, Cairo, Egypt.,Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Sandeep S Nayak
- Department of Internal Medicine, NYC Health + Hospitals/Metropolitan, New York, NY, United States
| | - Ahmed Y Azzam
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Waleed Brinjikji
- Department of Neurosurgery, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - David F Kallmes
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Xenograft of Human Umbilical Mesenchymal Stem Cells Promotes Recovery from Chronic Ischemic Stroke in Rats. Int J Mol Sci 2022; 23:ijms23063149. [PMID: 35328574 PMCID: PMC8953545 DOI: 10.3390/ijms23063149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Stroke is a leading cause of adult disability. In our previous study, transplantation of human umbilical mesenchymal stem cells (HUMSCs) in Wharton’s jelly in the acute phase of ischemic stroke promotes recovery in rats. Unfortunately, there is no cure for chronic stroke. Patients with chronic stroke can only be treated with rehabilitation or supportive interventions. This study aimed to investigate the potential of xenograft of HUMSCs for treating chronic stroke in rats. Rats were subjected to 90 min middle cerebral artery occlusion and then reperfusion to mimic ischemic cerebral stroke. On day 14 following stroke, HUMSCs were transplanted into the damaged cerebral cortex. The motor function in rats of the Stroke + HUMSCs group exhibited significant improvement compared to that of the Stroke + Saline group, and the trend persisted until day 56 post stroke. The cerebral cortex changes were tracked using magnetic resonance imaging, showing that cerebral atrophy was found starting on day 7 and was reduced significantly in rats receiving HUMSCs compared to that in the Stroke + Saline group from day 21 to day 56. HUMSCs were found to be existed in the rats’ cerebral cortex on day 56, with signs of migration. The grafted HUMSCs did not differentiate into neurons or astrocytes and may release cytokines to improve neuroprotection, decrease inflammation and increase angiogenesis. Our results demonstrate that xeno-transplantation of HUMSCs has therapeutic benefits for chronic ischemic stroke. Most importantly, patients do not need to use their own HUMSCs, which is a gospel thing for clinical patients.
Collapse
|
7
|
Warnecke A, Harre J, Shew M, Mellott AJ, Majewski I, Durisin M, Staecker H. Successful Treatment of Noise-Induced Hearing Loss by Mesenchymal Stromal Cells: An RNAseq Analysis of Protective/Repair Pathways. Front Cell Neurosci 2021; 15:656930. [PMID: 34887728 PMCID: PMC8650824 DOI: 10.3389/fncel.2021.656930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are an adult derived stem cell-like population that has been shown to mediate repair in a wide range of degenerative disorders. The protective effects of MSCs are mainly mediated by the release of growth factors and cytokines thereby modulating the diseased environment and the immune system. Within the inner ear, MSCs have been shown protective against tissue damage induced by sound and a variety of ototoxins. To better understand the mechanism of action of MSCs in the inner ear, mice were exposed to narrow band noise. After exposure, MSCs derived from human umbilical cord Wharton's jelly were injected into the perilymph. Controls consisted of mice exposed to sound trauma only. Forty-eight hours post-cell delivery, total RNA was extracted from the cochlea and RNAseq performed to evaluate the gene expression induced by the cell therapy. Changes in gene expression were grouped together based on gene ontology classification. A separate cohort of animals was treated in a similar fashion and allowed to survive for 2 weeks post-cell therapy and hearing outcomes determined. Treatment with MSCs after severe sound trauma induced a moderate hearing protective effect. MSC treatment resulted in an up-regulation of genes related to immune modulation, hypoxia response, mitochondrial function and regulation of apoptosis. There was a down-regulation of genes related to synaptic remodeling, calcium homeostasis and the extracellular matrix. Application of MSCs may provide a novel approach to treating sound trauma induced hearing loss and may aid in the identification of novel strategies to protect hearing.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation (EXC 2177/1), Oldenburg, Germany
| | - Jennifer Harre
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation (EXC 2177/1), Oldenburg, Germany
| | - Matthew Shew
- Department of Otolaryngology–Head & Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | | | - Igor Majewski
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
| | - Martin Durisin
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology–Head & Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| |
Collapse
|
8
|
10-O-(N N-Dimethylaminoethyl)-Ginkgolide B Methane-Sulfonate (XQ-1H) Ameliorates Cerebral Ischemia Via Suppressing Neuronal Apoptosis. J Stroke Cerebrovasc Dis 2021; 30:105987. [PMID: 34273708 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.
Collapse
|
9
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
10
|
Chen Q, Li L, Xie H. [Research progress of different types of stem cells in treatment of ischemic stroke]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:111-117. [PMID: 33448208 DOI: 10.7507/1002-1892.202004160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the recent research progress of different types of stem cells in the treatment of ischemic stroke. Methods By searching the PubMed database, a systematic review had been carried out for the results of applying different types of stem cells in the treatment of ischemic stroke between 2000 and 2020. Results Stem cells can be transplanted via intracranial, intravascular, cerebrospinal fluid, and intranasal route in the treatment of ischemic stroke. Paracrine and cell replacement are the two major mechanisms of the therapy. The researches have mainly focused on utilization of neural stem cells, embryonic stem cells, and mesenchymal stem cells. Each has its own advantages and disadvantages in terms of capability of migration, survival rate, and safety. Certain stem cell therapies have completed phase one clinical trial. Conclusion Stem cells transplantation is feasible and has a great potential for the treatment of ischemic stroke, albeit that certain obstacles, including the selection of stem cells, transplantation strategy, migration ability, survival rate, still wait to be solved.
Collapse
Affiliation(s)
- Qiuzhu Chen
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ling Li
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
11
|
Pacheco-Herrero M, Soto-Rojas LO, Reyes-Sabater H, Garcés-Ramirez L, de la Cruz López F, Villanueva-Fierro I, Luna-Muñoz J. Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. J Alzheimers Dis 2021; 84:917-935. [PMID: 34633316 PMCID: PMC8673502 DOI: 10.3233/jad-200863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases called tauopathies, such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease, among others, are characterized by the pathological processing and accumulation of tau protein. AD is the most prevalent neurodegenerative disease and is characterized by two lesions: neurofibrillary tangles (NFTs) and neuritic plaques. The presence of NFTs in the hippocampus and neocortex in early and advanced stages, respectively, correlates with the patient's cognitive deterioration. So far, no drugs can prevent, decrease, or limit neuronal death due to abnormal pathological tau accumulation. Among potential non-pharmacological treatments, physical exercise has been shown to stimulate the development of stem cells (SCs) and may be useful in early stages. However, this does not prevent neuronal death from the massive accumulation of NFTs. In recent years, SCs therapies have emerged as a promising tool to repopulate areas involved in cognition in neurodegenerative diseases. Unfortunately, protocols for SCs therapy are still being developed and the mechanism of action of such therapy remains unclear. In this review, we show the advances and limitations of SCs therapy. Finally, we provide a critical analysis of its clinical use for AD.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Heidy Reyes-Sabater
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Linda Garcés-Ramirez
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fidel de la Cruz López
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, UNAM, State of Mexico, Mexico
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Dominican Republic
| |
Collapse
|
12
|
Rajbhandari S, Beppu M, Takagi T, Nakano-Doi A, Nakagomi N, Matsuyama T, Nakagomi T, Yoshimura S. Ischemia-Induced Multipotent Stem Cells Isolated from Stroke Patients Exhibit Higher Neurogenic Differentiation Potential than Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Dev 2020; 29:994-1006. [PMID: 32515302 DOI: 10.1089/scd.2020.0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Perivascular areas of the brain harbor multipotent stem cells. We recently demonstrated that after a stroke, brain pericytes exhibit features of multipotent stem cells. Moreover, these ischemia-induced multipotent stem cells (iSCs) are present within ischemic areas of the brain of patients diagnosed with stroke. Although increasing evidence shows that iSCs have traits similar to those of mesenchymal stem cells (MSCs), the phenotypic similarities and differences between iSCs and MSCs remain unclear. In this study, we used iSCs extracted from stroke patients (h-iSCs) and compared their neurogenic potential with that of human MSCs (h-MSCs) in vitro. Microarray analysis, fluorescence-activated cell sorting, immunohistochemistry, and multielectrode array were performed to compare the characteristics of h-iSCs and h-MSCs. Although h-iSCs and h-MSCs had similar gene expression profiles, the percentage expressing the neural stem/progenitor cell marker nestin was significantly higher in h-iSCs than in h-MSCs. Consistent with these findings, h-iSCs, but not h-MSCs, differentiated into electrophysiologically functional neurons. In contrast, although both h-iSCs and h-MSCs were able to differentiate into several mesodermal lineages, including adipocytes, osteocytes, and chondrocytes, the potential of h-iSCs to differentiate into adipocytes and osteocytes was relatively low. These results suggest that compared with h-MSCs, h-iSCs predominantly exhibit neural rather than mesenchymal lineages. In addition, these results indicate that h-iSCs have the potential to repair the injured brain of patients with stroke by directly differentiating into neuronal lineages.
Collapse
Affiliation(s)
| | - Mikiya Beppu
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan.,Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Nami Nakagomi
- Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomohiro Matsuyama
- Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan.,Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan.,Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
13
|
Lin QM, Tang XH, Lin SR, Chen BD, Chen F. Bone marrow-derived mesenchymal stem cell transplantation attenuates overexpression of inflammatory mediators in rat brain after cardiopulmonary resuscitation. Neural Regen Res 2020; 15:324-331. [PMID: 31552906 PMCID: PMC6905325 DOI: 10.4103/1673-5374.265563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence suggests that bone marrow-derived mesenchymal stem cell transplantation improves neurological function after cardiac arrest and cardiopulmonary resuscitation; however, the precise mechanisms remain unclear. This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cell treatment on expression profiles of multiple cytokines in the brain after cardiac arrest and cardiopulmonary resuscitation. Cardiac arrest was induced in rats by asphyxia and cardiopulmonary resuscitation was initiated 6 minutes after cardiac arrest. One hour after successful cardiopulmonary resuscitation, rats were injected with either phosphate-buffered saline (control) or 1 × 106 bone marrow-derived mesenchymal stem cells via the tail vein. Serum S100B levels were measured by enzyme-linked immunosorbent assay and neurological deficit scores were evaluated to assess brain damage at 3 days after cardiopulmonary resuscitation. Serum S100B levels were remarkably decreased and neurological deficit scores were obviously improved in the mesenchymal stem cell group compared with the phosphate-buffered saline group. Brains were isolated from the rats and expression levels of 90 proteins were determined using a RayBio Rat Antibody Array, to investigate the cytokine profiles. Brain levels of the inflammatory mediators tumor necrosis factor-α, interferon-γ, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, macrophage inflammatory protein-3α, macrophage-derived chemokine, and matrix metalloproteinase-2 were decreased ≥ 1.5-fold, while levels of the anti-inflammatory factor interleukin-10 were increased ≥ 1.5-fold in the mesenchymal stem cell group compared with the control group. Donor mesenchymal stem cells were detected by immunofluorescence to determine their distribution in the damaged brain, and were primarily observed in the cerebral cortex. These results indicate that bone marrow-derived mesenchymal stem cell transplantation attenuates brain damage induced by cardiac arrest and cardiopulmonary resuscitation, possibly via regulation of inflammatory mediators. This experimental protocol was approved by the Institutional Animal Care and Use Committee of Fujian Medical University, China in January 2016 (approval No. 2016079).
Collapse
Affiliation(s)
- Qing-Ming Lin
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| | - Xia-Hong Tang
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| | - Shi-Rong Lin
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| | - Ben-Dun Chen
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| | - Feng Chen
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| |
Collapse
|
14
|
Shamsara A, Sheibani V, Asadi-Shekaari M, Nematollahi-Mahani SN. Neural like cells and acetyl-salicylic acid alter rat brain structure and function following transient middle cerebral artery occlusion. Biomol Concepts 2018; 9:155-168. [PMID: 30864349 DOI: 10.1515/bmc-2018-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Introduction Transient cerebral ischemia is a pandemic neurological disorder and the main aim of medical intervention is to reduce complications. Human umbilical cord mesenchymal cells (hUCMs) are capable of differentiating into neural-like cells (NLC) in vitro, therefore we investigated the neuroprotective potential of these cells in comparison to aspirin and in combination (NLC-Aspirin) on spatial memory and neural morphologic changes in male rats submitted to transient cerebral ischemia. Methods Ten days after the intervention, the improvement in learning and memory were assessed in the animals by Morris Water Maze. Thence, the animals were examined for the presence of PKH26 labeled cells in the ischemic area of the brain, the infarct volume and neural changes in the brain tissue. Results Significant spatial memory deficits in the ischemic animals were detected compared with the control animals. The learning and memory were significantly improved (p ≤ 0.05) in the aspirin and NLC groups compared with the ischemic animals. Co-treatment of aspirin and NLCs did not improve the outcome. Moreover, infarction volume and neural changes were significantly altered when aspirin or NLCs were administered. Conclusions Our data suggest the significant neuroprotective potential of aspirin and neural-like cells derived from hUCM cells in the treatment of brain ischemic stroke. Further studies are required to evaluate possible underlying mechanisms, and to evaluate the possible interactions between aspirin and stem cells in a joint treatment aimed at the recovery of cognitive impairments.
Collapse
Affiliation(s)
- Ali Shamsara
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
15
|
Wang F, Tang H, Zhu J, Zhang JH. Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplant 2018; 27:1825-1834. [PMID: 30251564 PMCID: PMC6300770 DOI: 10.1177/0963689718795424] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stroke is a major disease that leads to high mortality and morbidity. Given the ageing population and the potential risk factors, the prevalence of stroke and socioeconomic burden associated with stroke are expected to increase. During the past decade, both prophylactic and therapeutic strategies for stroke have made significant progress. However, current therapies still cannot adequately improve the outcomes of stroke and may not apply to all patients. One of the significant advances in modern medicine is cell-derived neurovascular regeneration and neuronal repair. Progress in stem cell biology has greatly contributed to ameliorating stroke-related brain injuries in preclinical studies and demonstrated clinical potential in stroke treatment. Mesenchymal stem cells (MSCs) have the differentiating potential of chondrocytes, adipocytes, and osteoblasts, and they have the ability to transdifferentiate into endothelial cells, glial cells, and neurons. Due to their great plasticity, MSCs have drawn much attention from the scientific community. This review will focus on MSCs, stem cells widely utilized in current medical research, and evaluate their effect and potential of improving outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Fan Wang
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,2 Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Hailiang Tang
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhong Zhu
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - John H Zhang
- 3 Center for Neuroscience Research, Loma Linda University School of Medicine, CA, USA
| |
Collapse
|
16
|
Marędziak M, Lewandowski D, Tomaszewski KA, Kubiak K, Marycz K. The Effect of Low-Magnitude Low-Frequency Vibrations (LMLF) on Osteogenic Differentiation Potential of Human Adipose Derived Mesenchymal Stem Cells. Cell Mol Bioeng 2017; 10:549-562. [PMID: 29151982 PMCID: PMC5662672 DOI: 10.1007/s12195-017-0501-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Introduction In the current study, we investigated the effect of low magnitude, low frequency (LMLF) mechanical vibrations on the osteogenic differentiation potential of human adipose derived mesenchymal stem cells (hASC), taken from elderly patients. Methods During 21 days in osteogenic culture medium, cells were periodically exposed to three different frequencies (25, 35 and 45 Hz) of continuous sinusoidal oscillation, using a vibration generator. We measured cell proliferation, cell morphology, calcium and phosphorus deposition using Almar Blue assay, fluorescence microscopy, scanning electron microscopy, and a EDX detector, respectively. Osteogenic differentiation was measured by assessing protein and mRNA levels. Osteogenesis was confirmed by detection of specific markers with alkaline phosphatase and enzyme-linked immunosorbent assays for: bone morphogenetic protein 2 (BMP-2), osteocalcin (OCL) and osteopontin (OPN). Results We found that 25 Hz vibrations had the greatest impact on hASC morphology, ultrastructure, and proliferation. We observed the formation of osteocyte- and hydroxyapatite-like structures, an increased quantity of calcium and phosphorus deposits, and increased differentiation in the stimulated groups. Conclusions Our findings suggest that LMLF vibrations could be used to enhance cell-based therapies for treatment of bone deficits, particularly in elderly patients, where the need is greatest.
Collapse
Affiliation(s)
- Monika Marędziak
- Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Norwida 31 St, 50-375 Wrocław, Poland
| | - Daniel Lewandowski
- Institute of Material Science and Applied Mechanics, University of Technology, Smoluchowskiego 25 St, 50-370 Wroclaw, Poland
| | - Krzysztof A. Tomaszewski
- Department of Anatomy, Jagiellonian University Medical College, Kopernika 12 St, 31-034 Kraków, Poland
| | - Krzysztof Kubiak
- Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Norwida 31 St, 50-375 Wrocław, Poland
| | - Krzsztof Marycz
- Department of Experimental Biology, University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wrocław, Poland
- Wrocławskie Centrum Badan EIT+, Stablowicka 147 St, 54-066 Wroclaw, Poland
| |
Collapse
|
17
|
Neuroprotective Effects of Stem Cells in Ischemic Stroke. Stem Cells Int 2017; 2017:4653936. [PMID: 28757878 PMCID: PMC5512103 DOI: 10.1155/2017/4653936] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/11/2017] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke, the most common subtype of stroke, has been one of the leading causes of mobility and mortality worldwide. However, it is still lacking of efficient agents. Stem cell therapy, with its vigorous advantages, has attracted researchers around the world. Numerous experimental researches in animal models of stroke have demonstrated the promising efficacy in treating ischemic stroke. The underlying mechanism involved antiapoptosis, anti-inflammation, promotion of angiogenesis and neurogenesis, formation of new neural cells and neuronal circuitry, antioxidation, and blood-brain barrier (BBB) protection. This review would focus on the types and neuroprotective actions of stem cells and its potential mechanisms for ischemic stroke.
Collapse
|
18
|
Lee NK, Kim HS, Yoo D, Hwang JW, Choi SJ, Oh W, Chang JW, Na DL. Magnetic Resonance Imaging of Ferumoxytol-Labeled Human Mesenchymal Stem Cells in the Mouse Brain. Stem Cell Rev Rep 2017; 13:127-138. [PMID: 27757917 PMCID: PMC5346117 DOI: 10.1007/s12015-016-9694-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The success of stem cell therapy is highly dependent on accurate delivery of stem cells to the target site of interest. Possible ways to track the distribution of MSCs in vivo include the use of reporter genes or nanoparticles. The U.S. Food and Drug Administration (FDA) has approved ferumoxytol (Feraheme® [USA], Rienso® [UK]) as a treatment for iron deficiency anemia. Ferumoxytol is an ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) that has recently been used to track the fate of transplanted cells using magnetic resonance imaging (MRI). The major objectives of this study were to demonstrate the feasibility of labeling hUCB-MSCs with ferumoxytol and to observe, through MRI, the engraftment of ferumoxytol-labeled human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) delivered via stereotactic injection into the hippocampi of a transgenic mouse model of familial Alzheimer's disease (5XFAD). Ferumoxytol had no toxic effects on the viability or stemness of hUCB-MSCs when assessed in vitro. Through MRI, hypointense signals were discernible at the site where ferumoxytol-labeled human MSCs were injected. Iron-positive areas were also observed in the engrafted hippocampi. The results from this study support the use of nanoparticle labeling to monitor transplanted MSCs in real time as a follow-up for AD stem cell therapy in the clinical field.
Collapse
Affiliation(s)
- Na Kyung Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 135-710, Seoul, Republic of Korea
| | - Hyeong Seop Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 135-710, Seoul, Republic of Korea
| | - Dongkyeom Yoo
- Center for Molecular & Cellular Imaging, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Jung Won Hwang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 135-710, Seoul, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., 463-400, Gyeonggi-do, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., 463-400, Gyeonggi-do, Republic of Korea
| | - Jong Wook Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710, Seoul, Republic of Korea.
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 135-710, Seoul, Republic of Korea.
| | - Duk L Na
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710, Seoul, Republic of Korea.
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 135-710, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Choi YK, Urnukhsaikhan E, Yoon HH, Seo YK, Cho H, Jeong JS, Kim SC, Park JK. Combined effect of pulsed electromagnetic field and sound wave on In vitro and In vivo neural differentiation of human mesenchymal stem cells. Biotechnol Prog 2016; 33:201-211. [PMID: 27790871 DOI: 10.1002/btpr.2389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Biophysical wave stimulus has been used as an effective tool to promote cellular maturation and differentiation in the construction of engineered tissue. Pulsed electromagnetic fields (PEMFs) and sound waves have been selected as effective stimuli that can promote neural differentiation. The aim of this study was to investigate the synergistic effect of PEMFs and sound waves on the neural differentiation potential in vitro and in vivo using human bone marrow mesenchymal stem cells (hBM-MSCs). In vitro, neural-related genes in hBM-MSCs were accelerated by the combined exposure to both waves more than by individual exposure to PEMFs or sound waves. The combined wave also up-regulated the expression of neural and synaptic-related proteins in a three-dimensional (3-D) culture system through the phosphorylation of extracellular signal-related kinase. In a mouse model of photochemically induced ischemia, exposure to the combined wave reduced the infarction volume and improved post-injury behavioral activity. These results indicate that a combined stimulus of biophysical waves, PEMFs and sound can enhance and possibly affect the differentiation of MSCs into neural cells. Our study is meaningful for highlighting the potential of combined wave for neurogenic effects and providing new therapeutic approaches for neural cell therapy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:201-211, 2017.
Collapse
Affiliation(s)
- Yun-Kyong Choi
- Dept. of Medical Biotechnology, Dongguk University, Seoul, Korea
| | | | - Hee-Hoon Yoon
- Dongguk University Research Inst. of Biotechnology, Seoul, Korea
| | - Young-Kwon Seo
- Dept. of Medical Biotechnology, Dongguk University, Seoul, Korea
| | - Hyunjin Cho
- Dongguk University Research Inst. of Biotechnology, Seoul, Korea
| | - Jong-Seob Jeong
- Dept. of Medical Biotechnology, Dongguk University, Seoul, Korea
| | - Soo-Chan Kim
- Graduate School of Bio and Information Technology, Hankyong National University, Anseong-si, Kyonggi-do, Korea
| | - Jung-Keug Park
- Dept. of Medical Biotechnology, Dongguk University, Seoul, Korea
| |
Collapse
|
20
|
Choi YK, Urnukhsaikhan E, Yoon HH, Seo YK, Park JK. Effect of human mesenchymal stem cell transplantation on cerebral ischemic volume-controlled photothrombotic mouse model. Biotechnol J 2016; 11:1397-1404. [PMID: 27440447 PMCID: PMC5132146 DOI: 10.1002/biot.201600057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/03/2022]
Abstract
Various animal models of stroke have been developed to simulate the human stroke with the development of the ischemic method facilitates preclinical stroke research. The photothrombotic ischemia model, based on the intravascular photochemical reaction, is widely used for in vivo studies. However, this study has limitations, which generated a relatively small‐sized infarction model on superficial cortex compared to that of the MCAO stroke model. In this study, the photothorombosis mouse model is adapted and the optimum conditions for generation of cell death and deficits with high reproducibility is determined. The extent of damage within the cortex was assessed by infarct volume and cellular/behavioral analyses. In this model, the neural cell death and inflammatory responses is detected; moreover, the degree of behavioral impairment is correlated with the brain infarct volume. Further, to enhance the understanding of neural repair, the effect of neural differentiation by transplantation of human bone marrow‐derived mesenchymal stem cells (BM‐MSCs) is analyzed. The authors demonstrated that transplantation of BM‐MSCs promoted the neural differentiation and behavioral performance in their photothrombosis model. Therefore, this research was meaningful to provide a stable animal model of stroke with low variability. Moreover, this model will facilitate development of novel MSC‐based therapeutics for stroke.
Collapse
Affiliation(s)
- Yun-Kyong Choi
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Enerelt Urnukhsaikhan
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Hee-Hoon Yoon
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| | - Jung-Keug Park
- Department of Medical Biotechnology, Dongguk University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
21
|
Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:5896061. [PMID: 27293445 PMCID: PMC4886089 DOI: 10.1155/2016/5896061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases.
Collapse
|
22
|
Hosseini SM, Samimi N, Farahmandnia M, Shakibajahromi B, Sarvestani FS, Sani M, Mohamadpour M. The Preventive Effects of Neural Stem Cells and Mesenchymal Stem Cells Intra-ventricular Injection on Brain Stroke in Rats. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 7:390-6. [PMID: 26605202 PMCID: PMC4630731 DOI: 10.4103/1947-2714.166216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Stroke is one of the most important causes of disability in developed countries and, unfortunately, there is no effective treatment for this major problem of central nervous system (CNS); cell therapy may be helpful to recover this disease. In some conditions such as cardiac surgeries and neurosurgeries, there are some possibilities of happening brain stroke. Inflammation of CNS plays an important role in stroke pathogenesis, in addition, apoptosis and neural death could be the other reasons of poor neurological out come after stroke. In this study, we examined the preventive effects of the neural stem cells (NSCs) and mesenchymal stem cells (MSCs) intra-ventricular injected on stroke in rats. Aim: The aim of this study was to investigate the preventive effects of neural and MSCs for stroke in rats. Materials and Methods: The MSCs were isolated by flashing the femurs and tibias of the male rats with appropriate media. The NSCs were isolated from rat embryo ganglion eminence and they cultured NSCs media till the neurospheres formed. Both NSCs and MSCs were labeled with PKH26-GL. One day before stroke, the cells were injected into lateral ventricle stereotactically. Results: During following for 28 days, the neurological scores indicated that there are better recoveries in the groups received stem cells and they had less lesion volume in their brain measured by hematoxylin and eosin staining. Furthermore, the activities of caspase-3 were lower in the stem cell received groups than control group and the florescent microscopy images showed that the stem cells migrated to various zones of the brains. Conclusion: Both NSCs and MSCs are capable of protecting the CNS against ischemia and they may be good ways to prevent brain stroke consequences situations.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Samimi
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Farahmandnia
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benafshe Shakibajahromi
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sabet Sarvestani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Mohamadpour
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Zhang YX, Yuan MZ, Cheng L, Lin LZ, Du HW, Chen RH, Liu N. Treadmill exercise enhances therapeutic potency of transplanted bone mesenchymal stem cells in cerebral ischemic rats via anti-apoptotic effects. BMC Neurosci 2015; 16:56. [PMID: 26342636 PMCID: PMC4560892 DOI: 10.1186/s12868-015-0196-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022] Open
Abstract
Background The transplantation of bone marrow stromal cells (MSCs) has proved to ameliorate ischemic brain injury in animals, but most transplanted MSCs undergo apoptosis in the ischemic penumbra, greatly compromising the therapeutic value of this treatment. Meanwhile, cell apoptosis can be inhibited by post-ischemia exercise which has been demonstrated to improve the expression of related anti-apoptotic proteins. The present study investigated whether treadmill exercise enhances the neuroprotective effects of transplanted MSCs in a rat experimental stroke model. Result Rats were subjected to 2-h middle cerebral artery occlusion (MCAO). Twenty-four hours after reperfusion, they were assigned randomly to receive no MSCs treatment and no exercise (control group), intravenous transplantation of MSCs and treadmill exercise (MSCs + Ex group), MSCs transplantation only (MSCs group) and treadmill exercise only (Ex group). Neurological assessment, TUNEL staining and western blot were performed. Compared with the MSCs group and Ex group, the MSCs + Ex group reported markedly improved neurological function, significantly decreased apoptotic cells, and increased expressions of survivin and bcl-2 (p < 0.05 or p < 0.01, respectively). Interestingly, the treadmill exercise significantly inhibited the apoptosis of transplanted MSCs. As a result, the number of engrafted MSCs in the MSCs + Ex group was significantly higher than that in the MSC group (p < 0.01). Conclusions Treadmill exercise enhances the therapeutic potency of MSCs by improving neurological function and possibly inhibiting the apoptosis of neuron cells and transplanted MSCs. These effects may involve an increased expression of survivin and bcl-2.
Collapse
Affiliation(s)
- Yi-Xian Zhang
- Department of Rehabilitation, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Ming-Zhou Yuan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China.
| | - Lin Cheng
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Long-Zai Lin
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Hou-Wei Du
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Rong-Hua Chen
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Nan Liu
- Department of Rehabilitation, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China. .,Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
24
|
Shams ara A, Sheibani V, Esmaeilpour K, Eslaminejad T, Nematollahi-Mahani SN. Coadministration of the Human Umbilical Cord Matrix-Derived Mesenchymal Cells and Aspirin Alters Postischemic Brain Injury in Rats. J Stroke Cerebrovasc Dis 2015; 24:2005-16. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.04.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/09/2015] [Indexed: 01/01/2023] Open
|
25
|
Piscioneri A, Morelli S, Mele M, Canonaco M, Bilotta E, Pantano P, Drioli E, De Bartolo L. Neuroprotective effect of human mesenchymal stem cells in a compartmentalized neuronal membrane system. Acta Biomater 2015; 24:297-308. [PMID: 26087109 DOI: 10.1016/j.actbio.2015.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
In this work, we describe the development of a compartmentalized membrane system using neonatal rodent hippocampal cells and human mesenchymal stem cells (hMSCs) to investigate the neuroprotective effects of hMSCs. To elucidate this interaction an in vitro oxygen-glucose deprivation (OGD) model was used that mimics central nervous system insults in vivo. Cells were cultured in a membrane system with a sandwich configuration in which the hippocampal cells were seeded on a fluorocarbon (FC) membrane, and were separated by hMSCs through a semipermeable polyethersulfone (PES) membrane that ensures the transport of molecules and paracrine factors, but prevents cell-to-cell contact. This system was used to simulate a cerebral ischemic damage by inducing OGD for 120min. The core contribution of the work highlights the neuroprotective effects of hMSCs on hippocampal cells in a membrane system for the first time. The novel results show that hMSC secretome factors protect hippocampal cells against OGD insults as indicated by the conservation of specific structural and functional cell features together with the development of a highly branched neural network after the damage. Moreover, neuronal cells co-cultured with hMSCs before OGD insult were able to maintain BDNF production and O2 consumption and did not express the apoptotic markers that were expressed in similarly insulted neuronal cells that had not been co-cultured with hMSCs. This compartmentalized membrane system appears to be a very useful and reliable system for studying the neuroprotective effects of hMSCs and identifying secreted factors that may be involved. STATEMENT OF SIGNIFICANCE This paper is based on a combined synergism of biomaterials technology and stem cell approach, focusing on the development of a compartmentalized membrane system that serves as an innovative tool for highlighting the role of hMSCs on hippocampal neurons upon damage. The membrane system consists of two different flat sheet membranes, giving rise to double and separated cell membrane compartments that prevent cell-to-cell contact but allow the transport of paracrine factors. This system strongly corroborates the paracrine mediated neuroprotection of hMSCs on ischemic damaged neurons. The challenging and pioneeristic approach by using biomaterials allowed to perform a stepwise analysis of the phenomena, providing new insights into the field of MSC therapy.
Collapse
Affiliation(s)
- Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87030 Rende (CS) Italy
| | - Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87030 Rende (CS) Italy
| | - Maria Mele
- Comparative Neuroanatomy Laboratory, DIBEST, via P. Bucci, 87036 Rende (CS), Italy
| | - Marcello Canonaco
- Comparative Neuroanatomy Laboratory, DIBEST, via P. Bucci, 87036 Rende (CS), Italy
| | - Eleonora Bilotta
- Department of Physics, University of Calabria, via P. Bucci, 87036 Rende (CS), Italy
| | - Pietro Pantano
- Department of Physics, University of Calabria, via P. Bucci, 87036 Rende (CS), Italy
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87030 Rende (CS) Italy
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87030 Rende (CS) Italy.
| |
Collapse
|
26
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
27
|
Hosseini SM, Farahmandnia M, Razi Z, Delavarifar S, Shakibajahromi B. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation. Neural Regen Res 2015. [PMID: 26199606 PMCID: PMC4498351 DOI: 10.4103/1673-5374.158354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Farahmandnia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Razi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Delavarifar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benafsheh Shakibajahromi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Hosseini SM, Farahmandnia M, Razi Z, Delavari S, Shakibajahromi B, Sarvestani FS, Kazemi S, Semsar M. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats. Int J Stem Cells 2015; 8:99-105. [PMID: 26019759 PMCID: PMC4445714 DOI: 10.15283/ijsc.2015.8.1.99] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 02/08/2015] [Indexed: 12/25/2022] Open
Abstract
Objectives Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. Method and Materials The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. Result The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. Conclusions The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Farahmandnia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Razi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Delavari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benafsheh Shakibajahromi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sabet Sarvestani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepehr Kazemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Semsar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Dulamea AO. The potential use of mesenchymal stem cells in stroke therapy--From bench to bedside. J Neurol Sci 2015; 352:1-11. [PMID: 25818674 DOI: 10.1016/j.jns.2015.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
Abstract
Stroke is the second main cause of morbidity and mortality worldwide. The rationale for the use of mesenchymal stem cells (MSCs) in stroke is based on the capacity of MSCs to secrete a large variety of bioactive molecules such as growth factors, cytokines and chemokines leading to reduction of inflammation, increased neurogenesis from the germinative niches of central nervous system, increased angiogenesis, effects on astrocytes, oligodendrocytes and axons. This review presents the data derived from experimental studies and the evidence available from clinical trials about the use of MSCs in stroke therapy.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. "Carol Davila", Fundeni Clinical Institute, Department of Neurology, 258 Sos. Fundeni, Sector 2, Bucharest, Romania.
| |
Collapse
|
30
|
Liu B, Li Z, Xie P. Angioplasty and stenting for severe vertebral artery orifice stenosis: effects on cerebellar function remodeling verified by blood oxygen level-dependent functional magnetic resonance imaging. Neural Regen Res 2015; 9:2095-101. [PMID: 25657727 PMCID: PMC4316475 DOI: 10.4103/1673-5374.147937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 01/13/2023] Open
Abstract
Vertebral artery orifice stenting may improve blood supply of the posterior circulation of the brain to regions such as the cerebellum and brainstem. However, previous studies have mainly focused on recovery of cerebral blood flow and perfusion in the posterior circulation after interventional therapy. This study examined the effects of functional recovery of local brain tissue on cerebellar function remodeling using blood oxygen level-dependent functional magnetic resonance imaging before and after interventional therapy. A total of 40 Chinese patients with severe unilateral vertebral artery orifice stenosis were enrolled in this study. Patients were equally and randomly assigned to intervention and control groups. The control group received drug treatment only. The intervention group received vertebral artery orifice angioplasty and stenting + identical drug treatment to the control group. At 13 days after treatment, the Dizziness Handicap Inventory score was compared between the intervention and control groups. Cerebellar function remodeling was observed between the two groups using blood oxygen level-dependent functional magnetic resonance imaging. The improvement in dizziness handicap and cerebellar function was more obvious in the intervention group than in the control group. Interventional therapy for severe vertebral artery orifice stenosis may effectively promote cerebellar function remodeling and exert neuroprotective effects.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China ; Institute of Neuroscience, Chongqing Medical University, Chongqing, China ; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Zhiwei Li
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China ; Institute of Neuroscience, Chongqing Medical University, Chongqing, China ; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China ; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|