1
|
Raïch I, Lillo J, Rivas-Santisteban R, Rebassa JB, Capó T, Santandreu M, Cubeles-Juberias E, Reyes-Resina I, Navarro G. Potential of CBD Acting on Cannabinoid Receptors CB 1 and CB 2 in Ischemic Stroke. Int J Mol Sci 2024; 25:6708. [PMID: 38928415 PMCID: PMC11204117 DOI: 10.3390/ijms25126708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is one of the leading causes of death. It not only affects adult people but also many children. It is estimated that, every year, 15 million people suffer a stroke worldwide. Among them, 5 million people die, while 5 million people are left permanently disabled. In this sense, the research to find new treatments should be accompanied with new therapies to combat neuronal death and to avoid developing cognitive impairment and dementia. Phytocannabinoids are among the compounds that have been used by mankind for the longest period of history. Their beneficial effects such as pain regulation or neuroprotection are widely known and make them possible therapeutic agents with high potential. These compounds bind cannabinoid receptors CB1 and CB2. Unfortunately, the psychoactive side effect has displaced them in the vast majority of areas. Thus, progress in the research and development of new compounds that show efficiency as neuroprotectors without this psychoactive effect is essential. On the one hand, these compounds could selectively bind the CB2 receptor that does not show psychoactive effects and, in glia, has opened new avenues in this field of research, shedding new light on the use of cannabinoid receptors as therapeutic targets to combat neurodegenerative diseases such as Alzheimer's, Parkinson's disease, or stroke. On the other hand, a new possibility lies in the formation of heteromers containing cannabinoid receptors. Heteromers are new functional units that show new properties compared to the individual protomers. Thus, they represent a new possibility that may offer the beneficial effects of cannabinoids devoid of the unwanted psychoactive effect. Nowadays, the approval of a mixture of CBD (cannabidiol) and Δ9-THC (tetrahydrocannabinol) to treat the neuropathic pain and spasticity in multiple sclerosis or purified cannabidiol to combat pediatric epilepsy have opened new therapeutic possibilities in the field of cannabinoids and returned these compounds to the front line of research to treat pathologies as relevant as stroke.
Collapse
Affiliation(s)
- Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Rafael Rivas-Santisteban
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Montserrat Santandreu
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Erik Cubeles-Juberias
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
2
|
Vicente-Acosta A, Ceprian M, Sobrino P, Pazos MR, Loría F. Cannabinoids as Glial Cell Modulators in Ischemic Stroke: Implications for Neuroprotection. Front Pharmacol 2022; 13:888222. [PMID: 35721207 PMCID: PMC9199389 DOI: 10.3389/fphar.2022.888222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is the second leading cause of death worldwide following coronary heart disease. Despite significant efforts to find effective treatments to reduce neurological damage, many patients suffer from sequelae that impair their quality of life. For this reason, the search for new therapeutic options for the treatment of these patients is a priority. Glial cells, including microglia, astrocytes and oligodendrocytes, participate in crucial processes that allow the correct functioning of the neural tissue, being actively involved in the pathophysiological mechanisms of ischemic stroke. Although the exact mechanisms by which glial cells contribute in the pathophysiological context of stroke are not yet completely understood, they have emerged as potentially therapeutic targets to improve brain recovery. The endocannabinoid system has interesting immunomodulatory and protective effects in glial cells, and the pharmacological modulation of this signaling pathway has revealed potential neuroprotective effects in different neurological diseases. Therefore, here we recapitulate current findings on the potential promising contribution of the endocannabinoid system pharmacological manipulation in glial cells for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Ceprian
- ERC Team, PGNM, INSERM U1315, CNRS UMR5261, University of Lyon 1, University of Lyon, Lyon, France
| | - Pilar Sobrino
- Departamento de Neurología, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Frida Loría
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| |
Collapse
|
3
|
ACEA Attenuates Oxidative Stress by Promoting Mitophagy via CB1R/Nrf1/PINK1 Pathway after Subarachnoid Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1024279. [PMID: 35251464 PMCID: PMC8894021 DOI: 10.1155/2022/1024279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 12/22/2022]
Abstract
Method Endovascular perforation was performed to establish a SAH model of rats. ACEA was administered intraperitoneally 1 h after SAH. The CB1R antagonist AM251 was injected intraperitoneally 1 h before SAH induction. Adenoassociated virus- (AAV-) Nrf1 shRNA was infused into the lateral ventricle 3 weeks before SAH induction. Neurological tests, immunofluorescence, DHE, TUNEL, Nissl staining, transmission electron microscopy (TEM), and Western blot were performed. Results The expression of CB1R, Nrf1, PINK1, Parkin, and LC3II increased and peaked at 24 h after SAH. ACEA treatment exhibited the antioxidative stress and antiapoptosis effects after SAH. In addition, ACEA treatment increased the expression of Nrf1, PINK1, Parkin, LC3II, and Bcl-xl but repressed the expression of Romo-1, Bax, and cleaved caspase-3. Moreover, the TEM results demonstrated that ACEA promoted the formation of mitophagosome and maintained the normal mitochondrial morphology of neurons. The protective effect of ACEA was reversed by AM251 and Nrf1 shRNA, respectively. Conclusions This study demonstrated that ACEA alleviated oxidative stress and neurological dysfunction by promoting mitophagy after SAH, at least in part via the CB1R/Nrf1/PINK1 signaling pathway.
Collapse
|
4
|
Deng G, Ma C, Zhao H, Zhang S, Liu J, Liu F, Chen Z, Chen AT, Yang X, Avery J, Zou P, Du F, Lim KP, Holden D, Li S, Carson RE, Huang Y, Chen Q, Kimberly WT, Simard JM, Sheth KN, Zhou J. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics 2019; 9:6991-7002. [PMID: 31660082 PMCID: PMC6815966 DOI: 10.7150/thno.35791] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Stroke is a deadly disease without effective pharmacotherapies, which is due to two major reasons. First, most therapeutics cannot efficiently penetrate the brain. Second, single agent pharmacotherapy may be insufficient and effective treatment of stroke requires targeting multiple complementary targets. Here, we set to develop single component, multifunctional nanoparticles (NPs) for targeted delivery of glyburide to the brain for stroke treatment. Methods: To characterize the brain penetrability, we radiolabeled glyburide, intravenously administered it to stroke- bearing mice, and determined its accumulation in the brain using positron emission tomography-computed tomography (PET/CT). To identify functional nanomaterials to improve drug delivery to the brain, we developed a chemical extraction approach and tested it for isolation of nanomaterials from E. ulmoides, a medicinal herb. To assess the therapeutic benefits, we synthesized glyburide-loaded NPs and evaluated them in stroke- bearing mice. Results: We found that glyburide has a limited ability to penetrate the ischemic brain. We identified betulinic acid (BA) capable of forming NPs, which, after intravenous administration, efficiently penetrate the brain and significantly reduce ischemia-induced infarction as an antioxidant agent. We demonstrated that BA NPs enhance delivery of glyburide, leading to therapeutic benefits significantly greater than those achieved by either glyburide or BA NPs. Conclusion: This study suggests a new direction to identify functional nanomaterials and a simple approach to achieving anti-edema and antioxidant combination therapy. The resulting glyburide- loaded BA NPs may be translated into clinical applications to improve clinical management of stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chao Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haitian Zhao
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Xin Yang
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Pan Zou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Fengyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Keun-poong Lim
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Daniel Holden
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Richard E. Carson
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06510, USA
| | - Yiyun Huang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - W. Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kevin N. Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
5
|
Sierra S, Gupta A, Gomes I, Fowkes M, Ram A, Bobeck EN, Devi LA. Targeting Cannabinoid 1 and Delta Opioid Receptor Heteromers Alleviates Chemotherapy-Induced Neuropathic Pain. ACS Pharmacol Transl Sci 2019; 2:219-229. [PMID: 31565698 PMCID: PMC6764458 DOI: 10.1021/acsptsci.9b00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Cannabinoid 1 (CB1R) and delta opioid receptors (DOR) associate to form heteromers that exhibit distinct pharmacological properties. Not much is known about CB1R-DOR heteromer location or signaling along the pain circuit in either animal models or patients with chemotherapy-induced peripheral neuropathy (CIPN). Here, we use paclitaxel to induce CIPN in mice and confirm the development of mechanical allodynia. Under these conditions, we find significant increases in CB1R-DOR heteromers in the dorsal spinal cord of mice with CIPN as well as in postmortem spinal cords from human subjects with CIPN compared to controls. Next, we investigated receptor signaling in spinal cords of mice with CIPN and found that treatment with a combination of low signaling doses of CB1R and DOR ligands leads to significant enhancement in G-protein activity that could be selectively blocked by the CB1R-DOR antibody. Consistent with this, administration of subthreshold doses of a combination of ligands (CB1R agonist, Hu-210, and DOR agonist, SNC80) leads to significant attenuation of allodynia in mice with CIPN that is not seen with the administration of individual ligands, and this could be blocked by the CB1R-DOR antibody. Together, these results imply that CB1R-DOR heteromers upregulated during CIPN-associated mechanical allodynia could serve as a potential target for treatment of neuropathic pain including CIPN.
Collapse
Affiliation(s)
- Salvador Sierra
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Achla Gupta
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ivone Gomes
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Mary Fowkes
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Akila Ram
- Department
of Biology, Utah State University, Logan, Utah 84322, United States
| | - Erin N. Bobeck
- Department
of Biology, Utah State University, Logan, Utah 84322, United States
| | - Lakshmi A. Devi
- Department
of Pharmacological Sciences and Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
6
|
Kolb B, Saber H, Fadel H, Rajah G. The endocannabinoid system and stroke: A focused review. Brain Circ 2019; 5:1-7. [PMID: 31001593 PMCID: PMC6458776 DOI: 10.4103/bc.bc_29_18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/25/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Stroke is an important cause of morbidity and mortality worldwide. Development of novel neuroprotectants is of paramount importance. This review seeks to summarize the recent evidence for the role of the endocannabinoid signaling system in stroke pathophysiology, as well as the evidence from preclinical studies regarding the efficacy of cannabinoids as neuroprotective therapies in the treatment of stroke. Recent evidence from rodent models implicating cannabinoid 1 receptor (CB1R), cannabinoid 2 receptor (CB2R), and CB1R and CB2R co-antagonism as neuroprotective strategies in stroke are reviewed. Rodent evidence for the therapeutic role of the endocannabinoid system in treating poststroke depression is reviewed. Finally, evidence for the role of cannabidiol, a publicly available cannabinoid that does not bind directly to known endocannabinoid receptors, as a stroke neuroprotectant is also reviewed. The review closes with a consideration of the role of human cannabinoid abuse in stroke and considers future directions for research on endocannabinoid-based stroke therapeutics.
Collapse
Affiliation(s)
- Bradley Kolb
- Department of Neurosurgery, Wayne State University, Detroit, Michigan, United States of America
| | - Hamidreza Saber
- Department of Neurology, Wayne State University, Detroit, Michigan, United States of America
| | - Hassan Fadel
- Department of Neurosurgery, Wayne State University, Detroit, Michigan, United States of America
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
7
|
Choi SH, Arai AL, Mou Y, Kang B, Yen CCC, Hallenbeck J, Silva AC. Neuroprotective Effects of MAGL (Monoacylglycerol Lipase) Inhibitors in Experimental Ischemic Stroke. Stroke 2018; 49:718-726. [PMID: 29440474 DOI: 10.1161/strokeaha.117.019664] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE MAGL (monoacylglycerol lipase) is an enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol and regulates the production of arachidonic acid and prostaglandins-substances that mediate tissue inflammatory response. Here, we have studied the effects of the selective MAGL inhibitors JZL184 and MJN110 and their underlying molecular mechanisms on 3 different experimental models of focal cerebral ischemia. METHODS SHR (spontaneously hypertensive rats) and normotensive WKY (Wistar Kyoto) rats were subject to an intracortical injection of the potent vasoconstrictor endothelin-1, permanent occlusion of a distal segment of the middle cerebral artery via craniectomy, or transient occlusion of the middle cerebral artery by the intraluminal suture method. JZL184 or MJN110 was administered 60 minutes after focal cerebral ischemia. Infarct volumes, hemispheric swelling, and functional outcomes were assessed between days 1 to 28 by magnetic resonance imaging, histology, and behavioral tests. RESULTS Pharmacological inhibition of MAGL significantly attenuated infarct volume and hemispheric swelling. MAGL inhibition also ameliorated sensorimotor deficits, suppressed inflammatory response, and decreased the number of degenerating neurons. These beneficial effects of MAGL inhibition were not fully abrogated by selective antagonists of cannabinoid receptors, indicating that the anti-inflammatory effects are caused by inhibition of eicosanoid production rather than by activation of cannabinoid receptors. CONCLUSIONS Our results suggest that MAGL may contribute to the pathophysiology of focal cerebral ischemia and is thus a promising therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Sang-Ho Choi
- From the Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging (S.-H.C., A.A., C.C.-C.Y., A.C.S.); National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (Y.M., J.H.); and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea (B.K.)
| | - Allison L Arai
- From the Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging (S.-H.C., A.A., C.C.-C.Y., A.C.S.); National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (Y.M., J.H.); and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea (B.K.)
| | - Yongshan Mou
- From the Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging (S.-H.C., A.A., C.C.-C.Y., A.C.S.); National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (Y.M., J.H.); and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea (B.K.)
| | - Byeongteck Kang
- From the Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging (S.-H.C., A.A., C.C.-C.Y., A.C.S.); National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (Y.M., J.H.); and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea (B.K.)
| | - Cecil Chern-Chyi Yen
- From the Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging (S.-H.C., A.A., C.C.-C.Y., A.C.S.); National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (Y.M., J.H.); and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea (B.K.)
| | - John Hallenbeck
- From the Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging (S.-H.C., A.A., C.C.-C.Y., A.C.S.); National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (Y.M., J.H.); and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea (B.K.)
| | - Afonso C Silva
- From the Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging (S.-H.C., A.A., C.C.-C.Y., A.C.S.); National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (Y.M., J.H.); and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea (B.K.).
| |
Collapse
|