1
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Pan X, Liu Y, Zhou F, Tao Y, Liu R, Tian B, Li N, Chen S, Xing Y. Associations between carotid plaques and white matter hyperintensities in cerebral small vessel disease. J Clin Neurosci 2024; 129:110871. [PMID: 39433006 DOI: 10.1016/j.jocn.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) can lead to stroke and cognitive impairment. Small vessels cannot be visualized by neuroimaging directly, and CSVD can only be evaluated by cerebral parenchymal changes in MRI. Therefore, a convenient screening method for identifying high-risk and susceptible patients is needed. Recently, some studies found that CSVD was related to large atherosclerosis, and atherosclerosis was an essential pathological feature of CSVD. Therefore, we aimed to investigate the association between carotid plaque size characteristics and white matter hyperintensities (WMHs) in patients with CSVD. METHODS We continuously enrolled patients with CSVD. Carotid plaque features were evaluated using carotid ultrasound, and WMHs were evaluated using brain magnetic resonance imaging. Plaque characteristics were compared between patients with no/mild WMHs and those with severe WMHs. Associations between the plaque characteristics and WMH severity were analyzed using logistic regression. RESULTS In total, 180 patients were recruited, of whom 92 had severe WMHs. The severe WMHs group had a higher sum of the bilateral maximum intima-media thickness (4.15 mm vs. 3.30 mm), longer maximum plaque length (17.20 mm vs. 13.90 mm), thicker plaques (2.70 mm vs. 2.30 mm), and more plaques (3 vs. 2) than the no/mild WMHs group. Adjusted logistic regression analyses revealed that maximum plaque length and thickness were associated with WMHs. CONCLUSIONS Carotid atherosclerotic plaque features, such as plaque length and thickness, were associated with the severity of WMHs, which suggested that carotid atherosclerotic plaque characteristics measured using ultrasound might be helpful indicators for identifying high-risk patients with CSVD.
Collapse
Affiliation(s)
- Xijuan Pan
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yumei Liu
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fubo Zhou
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yunlu Tao
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ran Liu
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Bing Tian
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Na Li
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Songwei Chen
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yingqi Xing
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Ban R, Huo C, Wang J, Zhang G, Zhao X. Exploration of the Shared Gene Signatures and Molecular Mechanisms Between Ischemic Stroke and Atherosclerosis. Int J Gen Med 2024; 17:2223-2239. [PMID: 38784404 PMCID: PMC11114141 DOI: 10.2147/ijgm.s454336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Purpose Atherosclerosis (AS) is a chronic inflammatory vascular disease and the predominant cause of ischemic stroke (IS). AS is a potential pathogenetic factor in IS. However, the processes by which they interact remain unknown. The purpose of this paper was to investigate the shared gene signatures and putative molecular processes in AS and IS. Methods Gene Expression Omnibus (GEO) data for AS and IS microarrays were retrieved. The co-expression modules associated with AS and IS were identified using the Weighted Gene Co-Expression Network Analysis (WGCNA). We constructed an interaction network of shared differentially expressed genes in AS and IS and conducted an enrichment analysis using ClueGO software. We validated the results in a separate cohort through differential gene analysis. Additionally, we retrieved AS and IS-related miRNAs from the Human microRNA Disease Database (HMDD) and predicted their target genes using miRWalk. We then built a network of miRNAs-mRNAs-KEGG pathways using the shared genes. Results Through WGCNA, we identified five modules and six modules as significant in AS and IS, respectively. A ClueGO enrichment analysis of common genes showed that highly active CCR1 chemokine receptor binding is critical to AS and IS pathogenesis. The differential analysis expression results in another cohort closely matched these findings. The miRNA-mRNA network suggested that hsa-miR-330-5p, hsa-miR-143-3p, hsa-miR-16-5p, hsa-miR-152-3p might regulate the shared gene KRAS, which could be a key player in AS and IS. Conclusion We integrated ischemic stroke and carotid atherosclerosis public database data and found that ATF3, CCL3, CCL4, JUNB, KRAS, and ZC3H12A may affect both, making them novel biomarkers or therapeutic target genes. Clinical samples and expression trends supported our analyses of pivotal genes.
Collapse
Affiliation(s)
- Ru Ban
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| | - Chengju Huo
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| | - Jingru Wang
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| | - Xin Zhao
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, People’s Republic of China
| |
Collapse
|
5
|
Zhou D, Mao Q, Sun Y, Cheng H, Zhao J, Liu Q, Deng M, Xu S, Zhao X. Association of Blood Copper With the Subclinical Carotid Atherosclerosis: An Observational Study. J Am Heart Assoc 2024; 13:e033474. [PMID: 38700020 PMCID: PMC11179917 DOI: 10.1161/jaha.123.033474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Copper exposure is reported to be associated with increased risk of stroke. However, the association of copper exposure with subclinical carotid atherosclerosis remains unclear. METHODS AND RESULTS This observational study included consecutive participants from Xinqiao Hospital between May 2020 and August 2021. Blood metals were measured using inductively coupled plasma mass spectrometry and carotid atherosclerosis was assessed using ultrasound. Modified Poisson regression was performed to evaluate the associations of copper and other metals with subclinical carotid plaque presence. Blood metals were analyzed as categorical according to the quartiles. Multivariable models were adjusted for age, sex, body mass index, education, smoking, drinking, hypertension, diabetes, dyslipidemia, estimated glomerular filtration rate, and coronary artery disease history. Bayesian Kernel Machine Regression was conducted to evaluate the overall association of metal mixture with subclinical carotid plaque presence. One thousand five hundred eighty-five participants were finally enrolled in our study, and carotid plaque was found in 1091 subjects. After adjusting for potential confounders, metal-progressively-adjusted models showed that blood copper was positively associated with subclinical carotid plaque (relative risk according to comparing quartile 4 to quartile 1 was 1.124 [1.021-1.238], relative risk according to per interquartile increment was 1.039 [1.008-1.071]). Blood cadmium and lead were also significantly associated with subclinical carotid plaque. Bayesian Kernel Machine Regression analyses suggested a synergistic effect of copper-cadmium-lead mixture on subclinical carotid plaque presence. CONCLUSIONS Our findings identify copper as a novel risk factor of subclinical carotid atherosclerosis and show the potential synergistic proatherogenic effect of copper, cadmium, and lead mixture.
Collapse
Affiliation(s)
- Denglu Zhou
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Qi Mao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Yapei Sun
- Center of Laboratory Medicine Chongqing Prevention and Treatment Center for Occupational Diseases Chongqing China
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning Chongqing China
- School of Public Health Nanjing Medical University Nanjing China
| | - Hao Cheng
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Jianhua Zhao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Qingsong Liu
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Mengyang Deng
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| | - Shangcheng Xu
- Center of Laboratory Medicine Chongqing Prevention and Treatment Center for Occupational Diseases Chongqing China
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning Chongqing China
- School of Public Health Nanjing Medical University Nanjing China
| | - Xiaohui Zhao
- Department of Cardiology, Institute of Cardiovascular Research, Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
6
|
Chen J, Xu F, Mo X, Cheng Y, Wang L, Yang H, Li J, Zhang S, Zhang S, Li N, Cao Y. Exploratory Study of Differentially Expressed Genes of Peripheral Blood Monocytes in Patients with Carotid Atherosclerosis. Comb Chem High Throughput Screen 2024; 27:1344-1357. [PMID: 37608666 DOI: 10.2174/1386207326666230822122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The abundance of circulating monocytes is closely associated with the development of atherosclerosis in humans. OBJECTIVE This study aimed to further research into diagnostic biomarkers and targeted treatment of carotid atherosclerosis (CAS). METHODS We performed transcriptomics analysis through weighted gene co-expression network analysis (WGCNA) of monocytes from patients in public databases with and without CAS. Differentially expressed genes (DEGs) were screened by R package limma. Diagnostic molecules were derived by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms. NetworkAnalyst, miRWalk, and Star- Base databases assisted in the construction of diagnostic molecule regulatory networks. The Drug- Bank database predicted drugs targeting the diagnostic molecules. RT-PCR tested expression profiles. RESULTS From 14,369 hub genes and 61 DEGs, six differentially expressed monocyte-related hub genes were significantly associated with immune cells, immune responses, monocytes, and lipid metabolism. LASSO and SVM-RFE yielded five genes for CAS prediction. RT-PCR of these genes showed HMGB1 was upregulated, and CCL3, CCL3L1, CCL4, and DUSP1 were downregulated in CAS versus controls. Then, we constructed and visualized the regulatory networks of 9 transcription factors (TFs), which significantly related to 5 diagnostic molecules. About 11 miRNAs, 19 lncRNAs, and 39 edges centered on four diagnostic molecules (CCL3, CCL4, DUSP1, and HMGB1) were constructed and displayed. Eleven potential drugs were identified, including ibrutinib, CTI-01, roflumilast etc. Conclusion: A set of five biomarkers were identified for the diagnosis of CAS and for the study of potential therapeutic targets.
Collapse
Affiliation(s)
- Juhai Chen
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
- Internal Medicine Department Three Ward, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Fengyan Xu
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Xiangang Mo
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yiju Cheng
- The Department of Respiratory and Critical Medicine, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Lan Wang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Hui Yang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jiajing Li
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shiyue Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shuping Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Nannan Li
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yang Cao
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Cai X, Li H, Jin A, Jiang L, Chen W, Jing J, Mei L, Li S, Meng X, Wei T, Wang Y, Pan Y, Wang Y. Association of intracranial atherosclerosis with cerebral small vessel disease in a community-based population. Eur J Neurol 2023; 30:2700-2712. [PMID: 37294661 DOI: 10.1111/ene.15908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to explore the relationship between intracranial atherosclerosis and cerebral small vessel disease (CSVD). METHODS Community-dwelling residents of Lishui, China in the PRECISE (Polyvascular Evaluation for Cognitive Impairment and Vascular Events) study were involved. Intracranial atherosclerosis was grouped by the severity of intracranial artery plaques with stenosis and burden. Four imaging markers including lacunes, white matter hyperintensity (WMH), cerebral microbleeds (CMBs), and perivascular spaces (PVS) as well as the CSVD burden scores were assessed. Logistic regression or ordinal logistic regression models with odds ratio (OR) or common OR (cOR) were used to estimate the relationship between intracranial atherosclerosis and CSVD markers and burdens. RESULTS The mean age was 61.20 ± 6.68 years, and 1424 (46.52%) were men among 3061 participants included at baseline. Intracranial atherosclerotic burden was associated with the severity of the lacunes (OR = 4.18, 95% confidence interval [CI] = 1.83-9.58), modified WMH burden (cOR = 1.94, 95% CI = 1.01-3.71), presence of CMBs (OR = 2.28, 95% CI = 1.05-4.94), and CMB burden (OR = 2.23, 95% CI = 1.03-4.80). However, it was not associated with the WMH burden and PVS. Intracranial atherosclerotic burden was associated with CSVD burden (Wardlaw: cOR = 2.73, 95% CI = 1.48-5.05; Rothwell: cOR = 2.70, 95% CI = 1.47-4.95). The association between intracranial atherosclerosis and CSVD was obvious in participants with both anterior and posterior circulation artery stenosis. CONCLUSIONS Based on a Chinese community population, there may be an association between intracranial atherosclerosis and CSVD, but its mechanism in relation to vascular risk factors still needs to be clarified.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xueli Cai
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
- Lishui Clinical Research Center for Neurological Diseases, Lishui, China
| | - Hang Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Geriatrics, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lingling Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lerong Mei
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Shan Li
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tiemin Wei
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
8
|
Association between high-risk extracranial carotid plaque and covert brain infarctions and cerebral microbleeds. Neuroradiology 2023; 65:287-295. [PMID: 36278979 DOI: 10.1007/s00234-022-03062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/02/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Covert brain infarctions (CBIs) and cerebral microbleeds (CMBs) represent subclinical sequelae of ischemic and hemorrhagic cerebral small vessel disease, respectively. In addition to thromboembolic stroke, carotid atherosclerosis has been associated with downstream vascular brain injury, including inflammation and small vessel disease. The specific plaque features responsible for this are unknown. We aimed to determine the association of specific vulnerable carotid plaque features to CBIs and CMBs to better understand the relation of large and small vessel disease in a single-center retrospective observational study. METHODS Intraplaque hemorrhage (IPH) and plaque ulceration were recorded on carotid MRA and total, cortical, and lacunar CBIs and CMBs were recorded on brain MR in 349 patients (698 carotid arteries). Multivariable Poisson regression was performed to relate plaque features to CBIs and CMBs. Within-subject analysis in those with unilateral IPH and ulceration was performed with Poisson regression. RESULTS Both IPH and plaque ulceration were associated with total CBI (prevalence ratios (PR) 3.33, 95% CI: 2.16-5.15 and 1.91, 95% CI: 1.21-3.00, respectively), after adjusting for stenosis, demographic, and vascular risk factors. In subjects with unilateral IPH, PR was 2.83, 95% CI: 1.76-4.55, for CBI in the ipsilateral hemisphere after adjusting for stenosis. Among those with unilateral ulceration, PR was 1.82, 95% CI: 1.18-2.81, for total CBI ipsilateral to ulceration after adjusting for stenosis. No statistically significant association was seen with CMBs. CONCLUSION Both IPH and plaque ulceration are associated with total, cortical, and lacunar type CBIs but not CMBs suggesting that advanced atherosclerosis contributes predominantly to ischemic markers of subclinical vascular injury.
Collapse
|
9
|
Baradaran H, Sarrami AH, Gupta A. Asymptomatic Carotid Disease and Cognitive Impairment: What Is the Evidence? Front Neurol 2021; 12:741500. [PMID: 34867724 PMCID: PMC8636319 DOI: 10.3389/fneur.2021.741500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The development of cognitive dysfunction and dementia is a complex, multifactorial process. One of the contributors to various types of cognitive dysfunction is carotid atherosclerosis which can frequently be seen in asymptomatic individuals. There are a number of different manifestations of asymptomatic carotid atherosclerosis including arterial stiffness, carotid intima-media thickening, flow-limiting stenosis, and complex, atherosclerotic plaque. Each of these forms of atherosclerosis may contribute to cerebral parenchymal damage, contributing to cognitive dysfunction. In this review article, we will discuss each of these forms of carotid atherosclerosis, present the potential mechanistic underpinnings behind an association, and then review the scientific evidence supporting potential associations to cognitive dysfunction and dementia.
Collapse
Affiliation(s)
- Hediyeh Baradaran
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Amir Hossein Sarrami
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
10
|
Li Z, Hao J, Chen K, Jiang Q, Wang P, Xing X, Wang J, Zhang Y, Xiao Y, Zhang L. Identification of key pathways and genes in carotid atherosclerosis through bioinformatics analysis of RNA-seq data. Aging (Albany NY) 2021; 13:12733-12747. [PMID: 33973530 PMCID: PMC8148499 DOI: 10.18632/aging.202943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/31/2021] [Indexed: 01/22/2023]
Abstract
While acknowledging carotid atherosclerosis (CAS) as a risk factor for ischemic stroke, reports on its pathogenesis are scarce. This study aimed to explore the potential mechanism of CAS through RNA-seq data analysis. Carotid intima tissue samples from CAS patients and healthy subjects were subjected to RNA-seq analysis, which yielded, 1,427 differentially expressed genes (DEGs) related to CAS. Further, enrichment analysis (Gene Ontology, KEGG pathway, and MOCDE analysis) was performed on the DEGs. Hub genes identified via the protein-protein interaction network (PPI) were then analyzed using TRRUST, DisGeNET, PaGenBase, and CMAP databases. Results implicated inflammation and immunity in the pathogenesis of CAS. Also, lung disease was associated with CAS. Hub genes were expressed in multiple diseases, mainly regulated by RELA and NFKB1. Moreover, three small-molecule compounds were found via the CMAP database for management of CAS; hub genes served as potential targets. Collectively, inflammation and immunity are the potential pathological mechanisms of CAS. This study implicates CeForanide, Chenodeoxycholic acid, and 0317956-0000 as potential drug candidates for CAS treatment.
Collapse
Affiliation(s)
- Zhongchen Li
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Kun Chen
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Qunlong Jiang
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Peijian Wang
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Xiaohui Xing
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Yinjiang Zhang
- School of Pharmacy, Minzu University of China, Zhongguancun, Beijing 100081, P.R. China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| |
Collapse
|
11
|
Yu K, Zhu S, He M, Li Z, Zhang L, Sui Z, Li Y, Xia X. Epidemiological characteristics of 561 cases of intracerebral hemorrhage in Chengdu, China. Medicine (Baltimore) 2021; 100:e24952. [PMID: 33847611 PMCID: PMC8052055 DOI: 10.1097/md.0000000000024952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT To explore the epidemiology of patients with spontaneous intracerebral hemorrhage (sICH) in Chengdu, China, we retrieved the data of patients with spontaneous cerebral hemorrhage admitted to the First Affiliated Hospital of Chengdu Medical College from January 2017 to December 2019. We performed a comprehensive analysis of the location of hemorrhage, demographics, factors of hemorrhage, condition of body, severity of disturbance of consciousness, treatment, length of stay (days), inpatient costs, prognosis, and mortality rate in patients with sICH. In total, data of 561 in patients with sICH were included. The hemorrhage site was primarily located in the basal ganglia and thalamus (64.71%). The mean patient age was 63.2 ± 12.4 years (64.17% men, 35.83% women). Male patients (mean age 62.3 ± 12.5 year) were younger than female patients (mean age 64.9 ± 12.1 year). The age of sICH onset in our sample was between 40 and 79 years; this occurred in 87.70% of the included cases. There were more males than females, which may be related to more daily smoking, longer drinking years, and overweight in males than in females. Cases occurred most frequently during the winter and spring months, and the relationship between sICH visits and hospitalizations appeared as a U-shape. The median time from illness onset to hospital admission was 3.0 hours. According to the Glasgow Coma Scale (GCS) score at admission, 20.50% of sICH cases were of mild intensity, 39.93% were moderate, and 39.57% were severe. Moderate disorder is the most common sICH severity. Factors influencing the disturbance of consciousness were blood glucose level at the time of admission as well as the number of years with hypertension. The lower the degree of disturbance of consciousness and the more they smoked per day indicated they had a higher likelihood of receiving surgical treatment while in hospital. The median hospital stay was 13.0 days, while the median inpatient cost was USD 3609. The 30-day mortality rate was 18.36%. sICH is an important public health problem in Chengdu, China. A governmental initiative is urgently needed to establish a sICH monitoring system that covers the Chengdu region to develop more effective and targeted measures for sICH prevention, treatment, and rehabilitation.
Collapse
Affiliation(s)
- Kai Yu
- Department of Neurosurgery
| | - Shu Zhu
- Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College
| | | | | | | | | | - Yunming Li
- Department of Medical Management, Division of Health Services, The General Hospital of Western Theater Command
- Department of Statistics, College of Mathematics, Southwest Jiaotong University, Chengdu
- School of Public Health, Southwestern Medical University, Lu Zhou, Sichuan Province, China
| | | |
Collapse
|
12
|
Baradaran H, Gupta A. Brain imaging biomarkers of carotid artery disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1277. [PMID: 33178809 PMCID: PMC7607077 DOI: 10.21037/atm-20-1939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracranial carotid artery atherosclerotic disease is a major contributor to ischemic stroke. Carotid atherosclerotic disease can present with a spectrum of findings ranging from mild carotid intima-media thickness to high-risk vulnerable carotid plaque features and carotid stenosis. Before leading to clinically overt stroke or transient ischemic attack, there may be other markers of downstream ischemia secondary to carotid atherosclerotic disease. In this review article, we will review some of the imaging findings that may be seen downstream to carotid artery disease on various imaging modalities, including hemodynamic and perfusional abnormalities which may be seen on CT, MR, or using other advanced imaging techniques, white matter hyperintensities on brain imaging, silent or covert brain infarctions, cerebral microbleeds, and regional and generalized cerebral volume loss. Many of these imaging findings are seen routinely on brain magnetic resonance imaging in patients without overt clinical symptoms. Despite frequently being asymptomatic, many of these imaging findings are also strongly associated with increased risk of future stroke, cognitive impairment, and even mortality. We will review the existing evidence underpinning the associations between these frequently encountered imaging findings and carotid artery atherosclerotic disease. Future validation of these imaging findings could lead to them being powerful biomarkers of cerebrovascular health.
Collapse
Affiliation(s)
- Hediyeh Baradaran
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Feng H, Wang X, Wang W, Zhao X. Association Between Non-high-density Lipoprotein Cholesterol and 3-Month Prognosis in Patients With Spontaneous Intracerebral Hemorrhage. Front Neurol 2020; 11:920. [PMID: 32973669 PMCID: PMC7473302 DOI: 10.3389/fneur.2020.00920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Previous studies have indicated a significant correlation between cholesterol levels and the incidence and outcomes of intracerebral hemorrhage (ICH), However, the association between non-high-density lipoprotein cholesterol (non-HDLC) levels and ICH functional outcomes are still unclear. Method: We included 654 consecutive spontaneous ICH patients who were enrolled in a prospective registry. We collected clinical, demographic, and laboratory data using standardized forms, and non-HDLC levels and 3-month modified Rankin Scale (mRS) scores were recorded. We performed multivariate logistic regression and interaction analyses to explored the association between non-HDLC levels and ICH functional outcomes. Results: Of 654 patients included in the study, 281 (42.9%) had poor functional outcome. Univariate analysis showed that high non-HDLC level was associated with good functional outcome at 90 days (p = 0.001). After adjustment for confounding factors, a high non-HDLC level (≥154.89 mg/dl) remained as an indicator of good functional outcome at 90 days [multivariate-adjusted odds ratios (OR) 0.50, 95%CI 0.27–0.92; p-value for trend = 0.043], and was stronger for female patients (OR: 0.13, 95%CI: 0.03–0.50). Conclusion: ICH patients with higher non-HDLC levels had a decreased prevalence of poor functional outcome at 90 days, and a high non-HDLC level is an independent indicator of good functional outcome at 90 days from onset, especially in females.
Collapse
Affiliation(s)
- Hao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wenjuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
14
|
Jiang D, Wang Y, Chang G, Duan Q, You L, Sun M, Hu C, Gao L, Wu S, Tao H, Lu K, Zhang D. DNA hydroxymethylation combined with carotid plaques as a novel biomarker for coronary atherosclerosis. Aging (Albany NY) 2020; 11:3170-3181. [PMID: 31123222 PMCID: PMC6555448 DOI: 10.18632/aging.101972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
Abstract
Little is known about the diagnostic value of DNA methylation and hydroxymethylation for coronary atherosclerosis. Carotid plaque is a common marker for coronary atherosclerosis. Our aim is to determine whether DNA methylation and hydroxymethylation combined with carotid plaques can be useful to the diagnosis of coronary atherosclerosis. The 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels from peripheral blood mononuclear cells (PBMCs) were measured in 113 enrolled patients. Crouse score and Gensini score were used to evaluate the severity of carotid and coronary atherosclerosis, respectively. With the increasing of severity of carotid plaque, a stepwise upward trend was observed in 5-mC and 5-hmC levels from PBMCs, which were significantly correlated with the risk factors, Crouse score and Gensini score. Crouse score and 5-hmC, not 5-mC, were the risk factors for coronary atherosclerosis after adjustment for the risk factors (the history of diabetes, FPG and HbA1c). Receiver operating characteristic (ROC) analysis indicated that 5-hmC combined with Crouse score was the diagnostic biomarker for coronary atherosclerosis, with the highest areas under the curve (AUC) for 0.980 (0.933–0.997), valuable sensitivity for 96.23% and specificity for 91.67%. These findings suggest 5-hmC level combined with Crouse score may provide the meaningful information for coronary atherosclerosis diagnosis.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Ying Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Qin Duan
- Department of Cardiology, The First Branch of the First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Linna You
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Min Sun
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Chunxiao Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Lei Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Shiyong Wu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Hongmei Tao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Kai Lu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| |
Collapse
|
15
|
Mota RI, Morgan SE, Bahnson EM. Diabetic vasculopathy: macro and microvascular injury. CURRENT PATHOBIOLOGY REPORTS 2020; 8:1-14. [PMID: 32655983 PMCID: PMC7351096 DOI: 10.1007/s40139-020-00205-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Diabetes is a common and prevalent medical condition as it affects many lives around the globe. Specifically, type-2 Diabetes (T2D) is characterized by chronic systemic inflammation alongside hyperglycemia and insulin resistance in the body, which can result in atherosclerotic legion formation in the arteries and thus progression of related conditions called diabetic vasculopathies. T2D patients are especially at risk for vascular injury; adjunct in many of these patients heir cholesterol and triglyceride levels reach dangerously high levels and accumulate in the lumen of their vascular system. RECENT FINDINGS Microvascular and macrovascular vasculopathies as complications of diabetes can accentuate the onset of organ illnesses, thus it is imperative that research efforts help identify more effective methods for prevention and diagnosis of early vascular injuries. Current research into vasculopathy identification/treatment will aid in the amelioration of diabetes-related symptoms and thus reduce the large number of deaths that this disease accounts annually. SUMMARY This review aims to showcase the evolution and effects of diabetic vasculopathy from development to clinical disease as macrovascular and microvascular complications with a concerted reference to sex-specific disease progression as well.
Collapse
Affiliation(s)
- Roberto I. Mota
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
- McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599
| | - Samuel E. Morgan
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
| | - Edward M. Bahnson
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
- McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599
- Department of Cell Biology and Physiology. University of North Carolina at Chapel Hill, NC 27599
| |
Collapse
|
16
|
Gyanwali B, Shaik MA, Venketasubramanian N, Chen C, Hilal S. Mixed-Location Cerebral Microbleeds: An Imaging Biomarker for Cerebrovascular Pathology in Cognitive Impairment and Dementia in a Memory Clinic Population. J Alzheimers Dis 2019; 71:1309-1320. [DOI: 10.3233/jad-190540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Bibek Gyanwali
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Muhammad Amin Shaik
- Ageing Research Institute for Society and Education, Nanyang Technological University, Singapore, Singapore
| | | | - Christopher Chen
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Saima Hilal
- Memory Aging & Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Department of Radiology and Nuclear medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Xu F, Wang F, Liu YS. Brachiocephalic artery stenting through the carotid artery: A case report and review of the literature. World J Clin Cases 2019; 7:2644-2651. [PMID: 31559305 PMCID: PMC6745338 DOI: 10.12998/wjcc.v7.i17.2644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND As the population ages and people's living standards gradually improve, the incidence of cerebrovascular disease in China is increasing annually, posing a serious threat to people's health. The incidence of brachiocephalic artery stenosis in ischemic cerebrovascular disease is relatively low, accounting for 0.5% to 2% of patients, but its consequences are very serious. Herein, we report a case of brachiocephalic artery stenting through the carotid artery. CASE SUMMARY The patient was a 66-year-old man. He came to our hospital because of repeated dizziness and was diagnosed with ischemic cerebrovascular disease (stenosis at the beginning of the brachiocephalic artery). Cerebral angiography suggested that the stenosis of the brachiocephalic artery had almost occluded it. Contrast agent threaded a line through the stenosis, and there was reversed blood flow through the right vertebral artery to compensate for the subclavian steal syndrome in the right subclavian artery. To improve the symptoms, we placed an Express LD (8 mm × 37 mm) balloon expanding stent in the stenosis section. After the operation, the patient's dizziness significantly improved. However, after 6 mo, the patient was re-admitted to the hospital due to dizziness. A computed tomography scan of the head revealed multiple cerebral infarctions in bilateral basal ganglia and the right lateral ventricle. An auxiliary examination including computerized tomography angiography of the vessels of the head and cerebral angiography both showed severe stenosis in the brachiocephalic artery stent. During the operation, the guidewire and catheter were matched to reach the opening of the brachiocephalic artery. Therefore, we decided to use a right carotid artery approach to complete the operation. We sutured the neck puncture point with a vascular stapler and then ended the operation. After the operation, the patient recovered well, his symptoms related to dizziness disappeared, and his right radial artery pulsation could be detected. CONCLUSION In patients with brachial artery stenosis, when the femoral artery approach is difficult, the carotid artery is an unconventional but safe and effective approach. At the same time, the use of vascular suturing devices to suture a carotid puncture point is also commendable. Although it is beyond the published scope of the application, when used cautiously, it can effectively avoid cerebral ischemia caused by prolonged artificial compression, and improper suturing can lead to stenosis of the puncture site and improper blood pressure, resulting in the formation of a hematoma. Finally, satisfactory hemostasis can be achieved.
Collapse
Affiliation(s)
- Fang Xu
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Feng Wang
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Yong-Sheng Liu
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning Province, China
| |
Collapse
|