1
|
Modi B, Caldwell KCN, Witt CE, Weese-Myers ME, Ross AE. New approach to control ischemic severity ex vivo. J Neurosci Methods 2025; 413:110321. [PMID: 39532187 PMCID: PMC11627121 DOI: 10.1016/j.jneumeth.2024.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND It is advantageous to be able to both control and define a metric for ischemia severity in ex vivo models to enable more precise comparisons to in vivo models and to facilitate more sophisticated mechanistic studies. Currently, the primary method to induce and study ischemia ex vivo is to completely deplete oxygen and glucose in the culture media; however, in vivo ischemia often involves varying degrees of severities. NEW METHOD In this work, we have successfully developed an approach to both control and characterize three different ischemic severities ex vivo and we define these standard condition metrics via an oxygen sensor: normoxia (control), mild ischemia (partial oxygen-glucose deprivation), and severe ischemia (complete oxygen-glucose deprivation). RESULTS To validate the extent to which controlling oxygen and glucose concentration ex vivo impacts cell expression, recruitment, and cell damage, we demonstrate changes in cytokine and HIF-1ɑ, an increase in glucose transporter expression level, changes in caspase-3, and rapid microglia recruitment to neurons within only 30 minutes. COMPARISON TO EXISTING METHODS To the best of our knowledge, this is the first time ischemic severity was controlled and shown to have a measurable effect on protein expression and cell movement within only 30 minutes ex vivo. Our new approach matches with existing literature for controlling ischemic severity in vivo. CONCLUSIONS Overall, this new approach will significantly impact our ability to expand ex vivo platforms for assessing ischemic damage and will provide a new experimental approach for investigating the molecular mechanisms involved in ischemia.
Collapse
Affiliation(s)
- Bindu Modi
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Kaejaren C N Caldwell
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Colby E Witt
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Moriah E Weese-Myers
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
2
|
Kwon HJ, Hahn KR, Moon SM, Yoo DY, Kim DW, Hwang IK. PFKFB3 ameliorates ischemia-induced neuronal damage by reducing reactive oxygen species and inhibiting nuclear translocation of Cdk5. Sci Rep 2024; 14:24694. [PMID: 39433564 PMCID: PMC11494100 DOI: 10.1038/s41598-024-75031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) plays an essential role in glycolysis and in the antioxidant pathway associated with glutathione. Therefore, we investigated the effects of PFKFB3 on oxidative and ischemic damage. We synthesized a fusion protein of transactivator of transcription (Tat)-PFKFB3 to facilitate its passage into the intracellular space and examine its effects against oxidative stress induced by hydrogen peroxide (H2O2) treatment and ischemic damage caused by occlusion of the common carotid arteries for 5 min in gerbils. The Tat-PFKFB3 protein was efficiently delivered into HT22 cells in a concentration- and time-dependent manner, with higher levels observed 18 h after treatment. Furthermore, treatment with 6 µM Tat-PFKFB3 demonstrated intracellular delivery into HT22 cells, as analyzed through immunocytochemical staining. Moreover, it significantly ameliorated the reduction of cell viability induced by 200 µM H2O2 treatment. Tat-PFKFB3 treatment also alleviated H2O2-induced DNA fragmentation and reactive oxygen species formation in HT22 cells. In gerbils, the intraperitoneal administration of 2 mg/kg Tat-PFKFB3 efficiently delivered the substance to all hippocampal areas, including the hippocampal CA1 region. This administration significantly mitigated ischemia-induced hyperlocomotion, long-term memory deficits, and ischemic neuronal death in the hippocampal CA1 region after ischemia. Additionally, treatment with 2 mg/kg Tat-PFKFB3 significantly ameliorated the translocation of Cdk5 from the cytosol to the nucleus in the hippocampal CA1 region 24 h after ischemia, but not in other regions. The treatment also significantly reduced reactive oxygen species formation in the CA1 region. These findings suggest that Tat-PFKFB3 reduces neuronal damage in the hippocampal CA1 region after ischemia through the reduction of Cdk5 signaling and reactive oxygen species formation. Therefore, Tat-PFKFB3 may have potential applications in reducing ischemic damage.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Chen KW, Chen YR, Yang LY, Cheng YW, Chou SC, Chen YH, Chen YT, Hsieh ST, Kuo MF, Wang KC. Microcirculatory Impairment and Cerebral Injury in Hydrocephalus and the Effects of Cerebrospinal Fluid Diversion. Neurosurgery 2024; 95:469-479. [PMID: 38511941 DOI: 10.1227/neu.0000000000002908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/22/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Hydrocephalus is characterized by progressive enlargement of cerebral ventricles, resulting in impaired microvasculature and cerebral hypoperfusion. This study aimed to demonstrate the microvascular changes in hydrocephalic rats and the effects of cerebrospinal fluid (CSF) release on cerebral blood flow (CBF). METHODS On postnatal day 21 (P21), male Wistar rats were intracisternally injected with either a kaolin suspension or saline. On P47, Evan's ratio (ER) was measured using MRI. On P49, the arteriolar diameter and vascular density of the pia were quantified using a capillary video microscope. The CBF was measured using laser Doppler flowmetry. The expressions of NeuN and glial fibrillary acidic protein determined by immunochemical staining were correlated with the ER. The CBF and rotarod test performance were recorded before and after CSF release. The expressions of 4-hydroxynonenal (4-HNE) and c-caspase-3 were studied on P56. RESULTS Ventriculomegaly was induced to varying degrees, resulting in the stretching and abnormal narrowing of pial arterioles, which regressed with increasing ER. Quantitative analysis revealed significant decreases in the arteriolar diameter and vascular density in the hydrocephalic group compared with those in the control group. In addition, the CBF in the hydrocephalic group decreased to 30%-50% of that in the control group. In hydrocephalus, the neurons appear distorted, and the expression of 4-HNE and reactive astrogliosis increase in the cortex. After CSF was released, improvements in the CBF and rotarod test performance were inversely associated with the ER. In addition, the levels of 4-HNE and c-caspase-3 were further elevated. CONCLUSION Rapid ventricular dilatation is associated with severe microvascular distortion, vascular regression, cortical hypoperfusion, and cellular changes that impair the recovery of CBF and motor function after CSF release. Moreover, CSF release may induce reperfusion injury. This pathophysiology should be taken into account when treating hydrocephalus.
Collapse
Affiliation(s)
- Kuo-Wei Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei , Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei , Taiwan
- Master Degree of Public Health, College of Public Health, National Taiwan University, Taipei , Taiwan
| | - Yong-Ren Chen
- Non-invasive Cancer Therapy Research Institute, Taipei , Taiwan
| | - Ling-Yu Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei , Taiwan
| | - Ya-Wen Cheng
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei , Taiwan
| | - Sheng-Che Chou
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei , Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei , Taiwan
- Department of Traumatology, National Taiwan University Hospital, National Taiwan University, College of Medicine, Taipei , Taiwan
| | - Yi-Hsing Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei , Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei , Taiwan
| | - Yi-Tzu Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei , Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei , Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei , Taiwan
| | - Meng-Fai Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei , Taiwan
| | - Kuo-Chuan Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei , Taiwan
| |
Collapse
|
4
|
de Oliveira RMW, Kohara NA, Milani H. Cannabidiol in experimental cerebral ischemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:95-120. [PMID: 39029992 DOI: 10.1016/bs.irn.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The absence of blood flow in cerebral ischemic conditions triggers a multitude of intricate pathophysiological mechanisms, including excitotoxicity, oxidative stress, neuroinflammation, disruption of the blood-brain barrier and white matter disarrangement. Despite numerous experimental studies conducted in preclinical settings, existing treatments for cerebral ischemia (CI), such as mechanical and pharmacological therapies, remain constrained and often entail significant side effects. Therefore, there is an imperative to explore innovative strategies for addressing CI outcomes. Cannabidiol (CBD), the most abundant non-psychotomimetic compound derived from Cannabis sativa, is a pleiotropic substance that interacts with diverse molecular targets and has the potential to influence various pathophysiological processes, thereby contributing to enhanced outcomes in CI. This chapter provides a comprehensive overview of the primary effects of CBD in in vitro and diverse animal models of CI and delves into some of its plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
| | - Nathalia Akemi Kohara
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
5
|
Chen Y, Chen S, Wu M, Chen F, Guan Q, Zhang S, Wen J, Sun Z, Chen Z. Hydrogen Sulfide Protects against Rat Ischemic Brain Injury by Promoting RhoA Phosphorylation at Serine 188. ACS OMEGA 2024; 9:13227-13238. [PMID: 38524410 PMCID: PMC10956087 DOI: 10.1021/acsomega.3c10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
The protective role of hydrogen sulfide against cerebral ischemia-reperfusion injury involves the inhibition of the RhoA-/Rho-associated coiled-coil kinase (ROCK) pathway. However, the specific mechanism remains elusive. This study investigates the impact of hydrogen sulfide on RhoA phosphorylation at serine 188 (Ser188) in vivo, aiming to test the hypothesis that hydrogen sulfide exerts neuroprotection by enhancing RhoA phosphorylation at Ser188, subsequently inhibiting the RhoA/ROCK pathway. Recombinant RhoAwild-pEGFP-N1 and RhoAS188A-pEGFP-N1 plasmids were constructed and administered via stereotaxic injection into the rat hippocampus. A rat global cerebral ischemia-reperfusion model was induced by bilateral carotid artery ligation to elucidate the neuroprotective mechanisms of hydrogen sulfide. Both RhoAwild-pEGFP-N1 and RhoAS188A-pEGFP-N1 plasmids expressed RhoAwild and RhoAS188A proteins, respectively, in rat hippocampal tissues, alongside the intrinsic RhoA protein. Systemic administration of the exogenous hydrogen sulfide donor sodium hydrosulfide led to an increase in Ser188 phosphorylation of transfected RhoAwild and intrinsic RhoA protein within the hippocampus. However, this effect was not observed in tissues transfected with RhoAS188A. Sodium hydrosulfide-mediated RhoA phosphorylation correlated with decreased RhoA and ROCK2 activity in rat hippocampal tissues. Furthermore, sodium hydrosulfide administration reduced cerebral ischemia-reperfusion-induced neuronal damage and apoptosis in rat hippocampal tissues transfected with RhoAwild. However, this neuroprotective effect was attenuated in rats transfected with RhoAS188A. These findings suggest that the neuroprotective mechanism of hydrogen sulfide against cerebral ischemia/reperfusion injury involves increased RhoA phosphorylation at Ser188. Promoting this phosphorylation may represent a potential intrinsic therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Ye Chen
- Department
of Pathology, The First Affiliated Hospital
of Anhui Medical University, Hefei 230000, Anhui, China
| | - Shuo Chen
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Miao Wu
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Fang Chen
- Department
of Neurology, The First Affiliated
Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Qianjun Guan
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Sen Zhang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Jiyue Wen
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| | - Zhongwu Sun
- Department
of Neurology, The First Affiliated
Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Zhiwu Chen
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China
| |
Collapse
|
6
|
Wu Y, Hu C, Li Z, Li F, Lv J, Guo M, Liu X, Li C, Huo X, Chen Z, Yang L, Du X. Development of a new cerebral ischemia reperfusion model of Mongolian gerbils and standardized evaluation system. Animal Model Exp Med 2024; 7:48-55. [PMID: 38372486 PMCID: PMC10961892 DOI: 10.1002/ame2.12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/19/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The Mongolian gerbil is an excellent laboratory animal for preparing the cerebral ischemia model due to its inherent deficiency in the circle of Willis. However, the low incidence and unpredictability of symptoms are caused by numerous complex variant types of the circle. Additionally, the lack of an evaluation system for the cerebral ischemia/reperfusion (I/R) model of gerbils has shackled the application of this model. METHODS We created a symptom-oriented principle and detailed neurobehavioral scoring criteria. At different time points of reperfusion, we analyzed the alteration in locomotion by rotarod test and grip force score, infarct volume by triphenyltetrazolium chloride (TTC) staining, neuron loss using Nissl staining, and histological characteristics using hematoxylin-eosin (H&E) straining. RESULTS With a successful model rate of 56%, 32 of the 57 gerbils operated by our method harbored typical features of cerebral I/R injury, and the mortality rate in the male gerbils was significantly higher than that in the female gerbils. The successfully prepared I/R gerbils demonstrated a significant reduction in motility and grip strength at 1 day after reperfusion; formed obvious infarction; exhibited typical pathological features, such as tissue edema, neuronal atrophy and death, and vacuolated structures; and were partially recovered with the extension of reperfusion time. CONCLUSION This study developed a new method for the unilateral common carotid artery ligation I/R model of gerbil and established a standardized evaluation system for this model, which could provide a new cerebral I/R model of gerbils with more practical applications.
Collapse
Affiliation(s)
- Ying Wu
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Caijiao Hu
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Zhihui Li
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Feiyang Li
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jianyi Lv
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Meng Guo
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xin Liu
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Changlong Li
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xueyun Huo
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Zhenwen Chen
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Lifeng Yang
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Xiaoyan Du
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Huang Y, Han M, Shi Q, Li X, Mo J, Liu Y, Chu Z, Li W. Li, P HY-021068 alleviates cerebral ischemia-reperfusion injury by inhibiting NLRP1 inflammasome and restoring autophagy function in mice. Exp Neurol 2024; 371:114583. [PMID: 37884189 DOI: 10.1016/j.expneurol.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a severe pathological condition that involves oxidative stress, inflammatory response, and neuronal damage. HY-021068 belongs to a new drug of chemical class 1, which is a potential thromboxane synthase inhibitor. Our preliminary experiment found that HY-021068 has significant anti-neuroinflammatory and neuroprotective effects. However, the protective effect and mechanism of HY-021068 in CIRI remain unclear. To investigate the protective effect and mechanism of HY-021068 in CIRI mice. In mice, CIRI was induced by bilateral common carotid artery occlusion and reperfusion. Mice were treated with HY-021068 or LV-NLRP1-shRNA (lentivirus-mediated shRNA transfection to knock down NLRP1 expression). The locomotor activity, neuronal damage, pathological changes, postsynaptic density protein-95 (PSD-95) expression, NLRP1 inflammasome activation, autophagy markers, and apoptotic proteins were assessed in CIRI mice. In this study, treatment with HY-021065 and LV-NLRP1-shRNA significantly improved motor dysfunction and neuronal damage after CIRI in mice. HY-021065 and NLRP1 knockdown significantly ameliorated the pathological damage and increased PSD-95 expression in the cortex and hippocampus CA1 and CA3 regions. The further studies showed that compared with the CIRI model group, HY-021065 and NLRP1 knockdown treatment inhibited the expressions of NLRP1, ASC, caspase-1, and IL-1β, restored the expressions of p-AMPK/AMPK, Beclin1, LC3II/LC3I, p-mTOR/m-TOR and P62, and regulated the expressions of BCL-2, Caspase3, and BAX in brain tissues of CIRI mice in CIRI mice. These results suggest that HY-021068 exerts a protective role in CIRI mice by inhibiting NLRP1 inflammasome activation and regulating autophagy function and neuronal apoptosis. HY-021068 is expected to become a new therapeutic drug for CIRI.
Collapse
Affiliation(s)
- Ye Huang
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Min Han
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Qifeng Shi
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Jiajia Mo
- Hefei Industrial and Pharmaceutical Co., Ltd, Hefei 230200, Anhui, China
| | - Yan Liu
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Zhaoxing Chu
- Hefei Industrial and Pharmaceutical Co., Ltd, Hefei 230200, Anhui, China.
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
8
|
Alpirez J, Leon-Moreno LC, Aguilar-García IG, Castañeda-Arellano R, Dueñas-Jiménez JM, Asencio-Piña CR, Dueñas-Jiménez SH. Walk Locomotion Kinematic Changes in a Model of Penetrating Hippocampal Injury in Male/Female Mice and Rats. Brain Sci 2023; 13:1545. [PMID: 38002505 PMCID: PMC10669690 DOI: 10.3390/brainsci13111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Traumatic brain injury has been the leading cause of mortality and morbidity in human beings. One of the most susceptible structures to this damage is the hippocampus due to cellular and synaptic loss and impaired hippocampal connectivity to the brain, brain stem, and spinal cord. Thus, hippocampal damage in rodents using a stereotaxic device could be an adequate method to study a precise lesion from CA1 to the dentate gyrus structures. We studied male and female rats and mice, analyzing hindlimb locomotion kinematics changes to compare the locomotion kinematics using the same methodology in rodents. We measure (1) the vertical hindlimb metatarsus, ankle, and knee joint vertical displacements (VD) and (2) the factor of dissimilarity (DF). The VD in intact rats in metatarsus, ankle, and knee joints differs from that in intact mice in similar joints. In rats, the vertical displacement through the step cycle changed in the left and right metatarsus, ankle, and knee joints compared to the intact group versus the lesioned group. More subtle changes were also observed in mice. DF demonstrates contrasting results when studying locomotion kinematics of mice or rats and sex-dependent differences. Thus, a precise lesion in a rodent's hippocampal structure discloses some hindlimb locomotion changes related to species and sex. Thus, we only have a qualitative comparison between murine species. In order to make a comparison with other species, we should standardize the model.
Collapse
Affiliation(s)
- Jonatan Alpirez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.); (L.C.L.-M.); (I.G.A.-G.)
| | - Lilia Carolina Leon-Moreno
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.); (L.C.L.-M.); (I.G.A.-G.)
| | - Irene Guadalupe Aguilar-García
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.); (L.C.L.-M.); (I.G.A.-G.)
| | - Rolando Castañeda-Arellano
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico;
| | - Judith Marcela Dueñas-Jiménez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Cesar Rodolfo Asencio-Piña
- Departamento de Electronica, Centro Universitario de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Sergio Horacio Dueñas-Jiménez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.A.); (L.C.L.-M.); (I.G.A.-G.)
| |
Collapse
|
9
|
Mercan M, Sehirli AO, Gultekin C, Chukwunyere U, Sayiner S, Gencosman S, Cetinel S, Abacioglu N. MESNA (2-Mercaptoethanesulfonate) Attenuates Brain, Heart, and Lung Injury Induced by Carotid Ischemia-Reperfusion in Rats. Niger J Clin Pract 2023; 26:941-948. [PMID: 37635578 DOI: 10.4103/njcp.njcp_654_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background Ischemia-reperfusion (I/R) causes organ dysfunction as a result of the increased formation of various reactive oxygen metabolites, infiltration of inflammatory cells, interstitial edema, cellular dysfunction, and tissue death. Aim The study aimed to investigate the cytoprotective effect of 2-mercaptoethanesulfonate (MESNA) against tissue damage in rats exposed to carotid ischemia-reperfusion. Materials and Methods Twenty-four male Wistar albino rats were divided into four groups (n = 6): sham, carotid I/R, I/R + MESNA (75 mg/kg), and I/R + MESNA (150 mg/kg) groups. To induce ischemia in rats, the carotid arteries were ligated with silk sutures for 10 min; the silk suture was then opened, and 1 h reperfusion was done. MESNA (75 and 150 mg/kg) was administered intraperitoneally 30 min before ischemia-reperfusion. Tissue samples from the animals were taken for histological examination, while the serum levels of some biochemical parameters were utilized to evaluate the systemic alterations. ANOVA and Tukey's post hoc tests were applied with a significance level of 5%. Results The ischemia-reperfusion-induced tissue damage as evidenced by increase in serum levels of alanine transaminase, aspartate aminotransferase, alkaline phosphatase, malondialdehyde, lactate dehydrogenase, and matrix metalloproteinases (MMP-1, -2, -8) was significantly (P < 0.05-0.0001) reversed after treatment with MESNA in a dose-dependent manner. Treatment with MESNA (75 and 150 mg/kg), significantly (P < 0.05-0.0001) decreased the I/R-induced increase in serum tumor necrosis factor-alpha (TNF-α) and Interleukin-1-beta (IL-1 β). Conclusion The results of this study suggest that MESNA has a protective effect on tissues by suppressing cellular responses to oxidants and inflammatory mediators associated with carotid ischemia-reperfusion.
Collapse
Affiliation(s)
- M Mercan
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - A O Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - C Gultekin
- Department of Surgery, Faculty of Veterinary, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - U Chukwunyere
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Gencosman
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Cetinel
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, İstanbul, Türkiye
| | - N Abacioglu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| |
Collapse
|
10
|
Assad RM, Al Mudhafar AM, Hadi NR. THE NEUROPROTECTIVE EFFECT OF TOCILIZUMAB IN BRAIN ISCHEMIA REPERFUSION INJURY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:2965-2968. [PMID: 36723311 DOI: 10.36740/wlek202212112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: This research was conducted to assess the possible neuroprotective effect of Tocilizumab in brain ischemic reperfusion injury in rats. PATIENTS AND METHODS Materials and methods: 24 adult Sprague-Dawley rats were divided into four groups randomly. The sham group was given anesthesia at the same time as the other groups and was in the same condition as the other groups. Control group: 1 h of ischemia followed by 4 h of reperfusion. The vehicle group was the same as the control, but they were given the vehicle intraperitoneally (1 ml/kg of 0.9 % NaCl) for 7 days before the ischemia. The treatment group as the control group, but they were given tocilizumab (8 mg/ kg) intraperitoneally for 7 days before ischemia. RESULTS Results: control group, inducing ischemia/reperfusion increased infarction size considerably (p<0.001), when comparison to the control and vehicle groups, tocilizumab at dose (8 mg/kg) showed a significantly (p<0.001) smaller infraction area. CONCLUSION Conclusions: In a cerebral ischemia/reperfusion, a reduction in infarction area in injected with Tocilizumab medication was considered neuroprotective for cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Rashid Muhssen Assad
- DEPARTMENT OF PHARMACOLOGY, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Ahmed M Al Mudhafar
- DEPARTMENT OF PHARMACOLOGY, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Najah R Hadi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
11
|
Feng B, Jia S, Li L, Wang J, Zhou F, Gou X, Wang Q, Xiong L, Zeng Y, Zhong H. TAT-LBD-Ngn2-improved cognitive functions after global cerebral ischemia by enhancing neurogenesis. Brain Behav 2023; 13:e2847. [PMID: 36495119 PMCID: PMC9847610 DOI: 10.1002/brb3.2847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Stroke is the major cause of adult neurocognitive disorders (NCDs), and presents a significant burden on both of the families and society. To improve the cerebral injury, we generated a blood-brain barrier penetrating peptide TAT-LBD-Ngn2, in which Ngn2 (Neurogenin2) is a classical preneural gene that enhances neurogenesis, and neural precursor cells survival and differentiation. We previously demonstrated that it has a short-term protective effect against cerebral ischemia-reperfusion injury. However, it is uncertain if TAT-LBD-Ngn2 could promote neurogenesis to exhibit long-term therapeutic impact. METHODS AND RESULTS In present study, TAT-LBD-Ngn2 was administered for 14 or 28 days following bilateral common carotid arteries occlusion (BCCAO). After confirming that TAT-LBD-Ngn2 could cross the brain blood barrier and aggregate in the hippocampus, we conducted open field test, Morris water maze and contextual fear conditioning to examine the long-term effect of TAT-LBD-Ngn2 on cognition. We discovered that TAT-LBD-Ngn2 significantly improved the spatial and contextual learning and memory on both days 14 and 28 after BCCAO, while TAT-LBD-Ngn2 exhibited anxiolytic effect only on day 14, but had no effect on locomotion. Using western blot and immunofluorescence, TAT-LBD-Ngn2 was also shown to promote neurogenesis, as evidenced by increased BrdU+ and DCX+ neurons in dentate gyrus. Meanwhile, TAT-LBD-Ngn2 elevated the expression of brain derived neurotrophic factor rather than nerve growth factor compared to the control group. CONCLUSIONS Our findings revealed that TAT-LBD-Ngn2 could dramatically promote learning and memory in long term by facilitating neurogenesis in the hippocampus after global cerebral ischemia, indicating that TAT-LBD-Ngn2 may be an appealing candidate for treating poststroke NCD.
Collapse
Affiliation(s)
- Bin Feng
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sansan Jia
- Department of Anesthesiology and perioperative medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liya Li
- Department of Anesthesiology and perioperative medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiajia Wang
- Department of Anesthesiology and perioperative medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fang Zhou
- Department of Anesthesiology and perioperative medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and perioperative medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lize Xiong
- Department of Anesthesiology and perioperative medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zeng
- Department of Anesthesiology and perioperative medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haixing Zhong
- Department of Anesthesiology and perioperative medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Semenov DG, Belyakov AV, Rybnikova EA. Experimental Modeling of Damaging and Protective Hypoxia of the Mammalian Brain. J EVOL BIOCHEM PHYS+ 2022; 58:2021-2034. [PMID: 36573160 PMCID: PMC9773672 DOI: 10.1134/s0022093022060291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
Abstract
Currently, there is a new surge of interest in the problem of hypoxia, almost lost in recent decades. Due to the fact that the circle of competent specialists in this field has significantly narrowed, it is necessary to carry out an intensive exchange of knowledge. In order to inform a wide range of interested researchers and doctors, this review summarizes the current understanding of hypoxia, its pathogenic and adaptogenic consequences, as well as key physiological and molecular mechanisms that implement the response to hypoxia at various levels-from cellular to organismic. The review presents a modern classification of forms of hypoxia, the understanding of which is necessary for the formation of a scientifically based approach to experimental modeling of hypoxic states. An analysis of the literature covering the history and current level of hypoxia modeling in mammals and human experiments, including methods for creating moderate hypoxia used to increase the resistance of the nervous system to severe forms of hypoxia and other extreme factors, is carried out. Special attention is paid to the discussion of the features and limitations of various approaches to the creation of hypoxia, as well as the disclosure of the potential for the practical application of moderate hypoxic effects in medicine.
Collapse
Affiliation(s)
- D G Semenov
- Pavlov Institute of Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Belyakov
- Pavlov Institute of Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| | - E A Rybnikova
- Pavlov Institute of Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
13
|
Jeon YJ, Park SE, Chang KA, Baek HM. Signal-to-Noise Ratio Enhancement of Single-Voxel In Vivo 31P and 1H Magnetic Resonance Spectroscopy in Mice Brain Data Using Low-Rank Denoising. Metabolites 2022; 12:metabo12121191. [PMID: 36557229 PMCID: PMC9782548 DOI: 10.3390/metabo12121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a noninvasive technique for measuring metabolite concentration. It can be used for preclinical small animal brain studies using rodents to provide information about neurodegenerative diseases and metabolic disorders. However, data acquisition from small volumes in a limited scan time is technically challenging due to its inherently low sensitivity. To mitigate this problem, this study investigated the feasibility of a low-rank denoising method in enhancing the quality of single voxel multinuclei (31P and 1H) MRS data at 9.4 T. Performance was evaluated using in vivo MRS data from a normal mouse brain (31P and 1H) and stroke mouse model (1H) by comparison with signal-to-noise ratios (SNRs), Cramer-Rao lower bounds (CRLBs), and metabolite concentrations of a linear combination of model analysis results. In 31P MRS data, low-rank denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared with the original data. In 1H MRS data, the method also improved the SNRs, CRLBs, but it performed better for 31P MRS data with relatively simpler patterns compared to the 1H MRS data. Therefore, we suggest that the low-rank denoising method can improve spectra SNR and metabolite quantification uncertainty in single-voxel in vivo 31P and 1H MRS data, and it might be more effective for 31P MRS data. The main contribution of this study is that we demonstrated the effectiveness of the low-rank denoising method on small-volume single-voxel MRS data. We anticipate that our results will be useful for the precise quantification of low-concentration metabolites, further reducing data acquisition voxel size, and scan time in preclinical MRS studies.
Collapse
Affiliation(s)
- Yeong-Jae Jeon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Biomedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Shin-Eui Park
- Department of Biomedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: ; Tel.: +82-(32)-8996678
| |
Collapse
|
14
|
Proteomic investigations of acute ischemic stroke in animal models: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Morse PT, Wan J, Bell J, Lee I, Goebel DJ, Malek MH, Sanderson TH, Hüttemann M. Sometimes less is more: inhibitory infrared light during early reperfusion calms hyperactive mitochondria and suppresses reperfusion injury. Biochem Soc Trans 2022; 50:1377-1388. [PMID: 36066188 PMCID: PMC10121102 DOI: 10.1042/bst20220446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Ischemic stroke affects over 77 million people annually around the globe. Due to the blockage of a blood vessel caused by a stroke, brain tissue becomes ischemic. While prompt restoration of blood flow is necessary to save brain tissue, it also causes reperfusion injury. Mitochondria play a crucial role in early ischemia-reperfusion injury due to the generation of reactive oxygen species (ROS). During ischemia, mitochondria sense energy depletion and futilely attempt to up-regulate energy production. When reperfusion occurs, mitochondria become hyperactive and produce large amounts of ROS which damages neuronal tissue. This ROS burst damages mitochondria and the cell, which results in an eventual decrease in mitochondrial activity and pushes the fate of the cell toward death. This review covers the relationship between the mitochondrial membrane potential (ΔΨm) and ROS production. We also discuss physiological mechanisms that couple mitochondrial energy production to cellular energy demand, focusing on serine 47 dephosphorylation of cytochrome c (Cytc) in the brain during ischemia, which contributes to ischemia-reperfusion injury. Finally, we discuss the use of near infrared light (IRL) to treat stroke. IRL can both stimulate or inhibit mitochondrial activity depending on the wavelength. We emphasize that the use of the correct wavelength is crucial for outcome: inhibitory IRL, applied early during reperfusion, can prevent the ROS burst from occurring, thus preserving neurological tissue.
Collapse
Affiliation(s)
- Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Division of Pediatric Critical Care, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Dennis J. Goebel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Zhou Z, Ma Y, Xu T, Wu S, Yang GY, Ding J, Wang X. Deeper cerebral hypoperfusion leads to spatial cognitive impairment in mice. Stroke Vasc Neurol 2022; 7:527-533. [PMID: 35817499 PMCID: PMC9811541 DOI: 10.1136/svn-2022-001594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second-leading cause of dementia worldwide, which is caused by cerebrovascular diseases or relevant risk factors. However, there are no appropriate animal models, which can be used to study changes of neuropathology in the human VCI. To better understand the development of VCI, we modified three mouse models of chronical vascular diseases, and further compared the advantage and disadvantage of these models. We hope to establish a more suitable mouse model mimicking VCI in human beings. METHODS Adult male C57/BL6 mice (n=98) were used and animals underwent transient bilateral common carotid arteries occlusion (tBCCAO), or bilateral common carotid artery stenosis (BCAS), or right unilateral common carotid artery occlusion, respectively. Haemodynamic changes of surface cerebral blood flow (CBF) were examined up to 4 weeks. Spatial cognitive impairment was evaluated to determine the consequence of chronic cerebral ischaemia. RESULTS These mouse models showed different extents of CBF reduction and spatial reference memory impairment from 1 week up to 4 weeks postoperation compared with the control group (p<0.05). We found that (1) bilaterally ligation of common carotid artery caused decrease of 90% CBF in C57/BL6 mice (p<0.05) and caused acute instead of prolonged impairment of spatial reference memory (p<0.05); (2) unilateral ligation of common carotid artery did not cause severe ipsilateral ischaemia as seen in the tBCCAO mice and caused minor but significant spatial reference memory disturbance (p<0.05); and (3) 20% decrease in the bilateral CBF did not cause spatial reference memory impairment 4 weeks postoperation (p>0.05), while 30% decrease in bilateral or unilateral CBF led to significant memory disturbance in mice (p<0.05). CONCLUSION We demonstrated that BCAS using 0.16/0.18 mm microcoils is an alternative VCI mouse model when studying the mechanism and developing therapy of VCI.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tongtong Xu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China,Department of the State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Hedayatpour A, Shiasi M, Modarresi P, Bashghareh A. Remote ischemic preconditioning combined with atorvastatin improves memory after global cerebral ischemia-reperfusion in male rats. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.75753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Damage to hippocampus can occur through ischemia. Memory problems are among the most significant disabilities after stroke. Therefore, improving memory is of great interest in helping post-stroke patients. This study demonstrated that intraperitoneally injection of atorvastatin with a short cycle of ischemia-reperfusion in the left femoral artery improved hippocampal CA1 neurons injury and memory problems after global cerebral ischemia.
Materials and methods: In this article survey, we used 64 animals. Rats were divided into 8 groups, (n=8). Group 1: control; group 2: sham; group 3: global cerebral ischemia (GCI) only; group 4: remote ischemic preconditioning (RIP) + GCI; group 5: GCI + atorvastatin (ATO); group 6: GCI + vehicle; group 7: RIP + GCI + ATO; group 8: RIP + GCI + vehicle. We created global cerebral ischemia (GCI) with 20 min occlusion of the Common carotid artery.
Results and discussion: Remote ischemic preconditioning could improve rats performance in water maze tests along with a decrease in neuronal death. Also, atorvastatin combined with remote ischemic preconditioning was more effective for memory improvement and reduction of neuronal death. Inconsistent with our result, the function of the animals in the ischemia group was impaired. CA1 hippocampal neurons have an important role in memory and learning, and they can be damaged after cerebral ischemia. Therefore, ischemia can create memory problems. Remote ischemic preconditioning and atorvastatin had a neuroprotective effect and could improve rat performance in water maze test.
Conclusion: This study showed that remote ischemic preconditioning with atorvastatin could improve CA1 neuronal injury and memory.
Graphical abstract:
Collapse
|
18
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
19
|
Vilhena ER, Bonato JM, Schepers M, Kunieda JKC, Milani H, Vanmierlo T, Prickaerts J, de Oliveira RMW. Positive effects of roflumilast on behavior, neuroinflammation, and white matter injury in mice with global cerebral ischemia. Behav Pharmacol 2021; 32:459-471. [PMID: 34320520 DOI: 10.1097/fbp.0000000000000640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibition of phosphodiesterase 4 (PDE4) is a promising pharmacological strategy for the treatment of cerebral ischemic conditions. To increase the relevance and increase the translational value of preclinical studies, it is important to conduct experiments using different animal species and strains, different animal models, and to evaluate long-term functional outcomes after cerebral ischemia. In the present study, the effects of the selective PDE4 inhibitor roflumilast were evaluated in vivo and in vitro. Balb/c mice were subjected to bilateral common carotid artery occlusion (BCCAO) and tested during 21 days in multiple behavioral tasks to investigate the long-term effects of roflumilast on functional recovery. The effects of roflumilast were also investigated on hippocampal cell loss, white matter injury, and expression of neuroinflammatory markers. Roflumilast prevented cognitive and emotional deficits induced by BCCAO in mice. Roflumilast also prevented neurodegeneration and reduced the white matter damage in the brain of ischemic animals. Besides, roflumilast decreased Iba-1 (microglia marker) levels and increased Arginase-1 (Arg-1; microglia M2 phenotype marker) levels in the hippocampus of these mice. Likewise, roflumilast suppressed inducible nitric oxide synthase (microglia M1 phenotype marker) expression and increased Arg-1 levels in a primary mouse microglia culture. These findings support evidence that PDE4 inhibition by roflumilast might be beneficial in cerebral ischemic conditions. The neuroprotective effects of roflumilast appear to be mediated by a decrease in neuroinflammation.
Collapse
Affiliation(s)
- Emanuella R Vilhena
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Melissa Schepers
- Neuroimmune Connect and Repair Lab., Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Juliana K C Kunieda
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Tim Vanmierlo
- Neuroimmune Connect and Repair Lab., Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia M W de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| |
Collapse
|
20
|
Aguiar RPD, Newman-Tancredi A, Prickaerts J, Oliveira RMWD. The 5-HT 1A receptor as a serotonergic target for neuroprotection in cerebral ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110210. [PMID: 33333136 DOI: 10.1016/j.pnpbp.2020.110210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia due to stroke or cardiac arrest greatly affects daily functioning and the quality of life of patients and has a high socioeconomic impact due to the surge in their prevalence. Advances in the identification of an effective pharmacotherapy to promote neuroprotection and recovery after a cerebral ischemic insult are, however, limited. The serotonin 1A (5-HT1A) receptor has been implicated in the regulation of several brain functions, including mood, emotions, memory, and neuroplasticity, all of which are deleteriously affected by cerebral ischemia. This review focuses on the specific roles and mechanisms of 5-HT1A receptors in neuroprotection in experimental models of cerebral ischemia. We present experimental evidence that 5-HT1A receptor agonists can prevent neuronal damage and promote functional recovery induced by focal and transient global ischemia in rodents. However, indiscriminate activation of pre-and postsynaptic by non-biased 5-HT1A receptor agonists may be a limiting factor in the anti-ischemic clinical efficacy of these compounds since 5-HT1A receptors in different brain regions can mediate diverging or even contradictory responses. Current insights are presented into the 'biased' 5-HT1A post-synaptic heteroreceptor agonist NLX-101 (also known as F15599), a compound that preferentially and potently stimulates postsynaptic cortical pyramidal neurons without inhibiting firing of serotoninergic neurons, as a potential strategy providing neuroprotection in cerebral ischemic conditions.
Collapse
Affiliation(s)
- Rafael Pazinatto de Aguiar
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | | | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
21
|
Komatsu T, Ohta H, Motegi H, Hata J, Terawaki K, Koizumi M, Muta K, Okano HJ, Iguchi Y. A novel model of ischemia in rats with middle cerebral artery occlusion using a microcatheter and zirconia ball under fluoroscopy. Sci Rep 2021; 11:12806. [PMID: 34140618 PMCID: PMC8211726 DOI: 10.1038/s41598-021-92321-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
The failure of neuroprotective treatment-related clinical trials may be partially caused by unestablished animal models. Existing animal models are less likely to provide occlusion confined to the middle cerebral artery (MCA), making transarterial intervention difficult. We aimed to develop a novel focal stroke model using a microcatheter and zirconium dioxide that is non-magnetic under fluoroscopic guidance, which can monitor MCA occlusion and can improve hemorrhagic complications. Using male Sprague Dawley rats (n = 10), a microcatheter was navigated from the caudal ventral artery to the left internal carotid artery using an X-ray fluoroscopy to establish local occlusion. All rat cerebral angiographies were successful. No rats had hemorrhagic complications. Eight (80%) rats underwent occlusion of the MCA bifurcation by zirconium dioxide. Accidentally, the left posterior cerebral artery was failure embolized in 2 rats (20%). The median operating time was 8 min. All rats of occlusion MCA revealed an incomplete hemiparesis on the right side with neurological deficit score ranging from 1 to 3 (median 1, interquartile range 1-3) at 24 h after the induction of ischemia. Moreover, 2% 2,3,5-triphenyl tetrazolium chloride staining showed that the median infarct volume (mm3) was 280 (interquartile range 267-333) 24 h after the left MCA bifurcation occlusion. We present a novel rat model for focal stroke using a microcatheter and zirconium dioxide which does not affect the MRI. The model is predictable which is well confined within the territory supplied by the MCA, and reproducibility of this model is 80%. Fluoroscopy was able to identify which the MCA occlusion and model success while creating the model. It permitted exclusion of animals with complications from the experiment.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Koshiro Terawaki
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Makoto Koizumi
- Laboratory Animal Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Kanako Muta
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
22
|
Cissus verticillata Extract Decreases Neuronal Damage Induced by Oxidative Stress in HT22 Cells and Ischemia in Gerbils by Reducing the Inflammation and Phosphorylation of MAPKs. PLANTS 2021; 10:plants10061217. [PMID: 34203930 PMCID: PMC8232592 DOI: 10.3390/plants10061217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
In the present study, we examined the effects of Cissus verticillata leaf extracts (CVE) against hydrogen peroxide (H2O2)- and ischemia-induced neuronal damage in HT22 cells and gerbil hippocampus. Incubation with CVE produced concentration-dependent toxicity in HT22 cells. Significant cellular toxicity was observed with >75 μg/mL CVE. CVE treatment at 50 μg/mL ameliorated H2O2-induced reactive oxygen species formation, DNA fragmentation, and cell death in HT22 cells. In addition, incubation with CVE significantly mitigated the increase in Bax and decrease in Bcl-2 induced by H2O2 treatment in HT22 cells. In an in vivo study, the administration of CVE to gerbils significantly decreased ischemia-induced motor activity 1 d after ischemia, as well as neuronal death and microglial activation 4 d after ischemia, respectively. CVE treatment reduced the release of interleukin-1β, interleukin-6, and tumor necrosis factor-α 6 h after ischemia. Furthermore, CVE treatment significantly ameliorated ischemia-induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38. These results suggest that CVE has the potential to reduce the neuronal damage induced by oxidative and ischemic stress by reducing the inflammatory responses and phosphorylation of MAPKs, suggesting that CVE could be a functional food to prevent neuronal damage induced by ischemia.
Collapse
|
23
|
Yang GX, Sun JM, Zheng LL, Zhang L, Li J, Gan HX, Huang Y, Huang J, Diao XX, Tang Y, Wang R, Ma L. Twin drug design, synthesis and evaluation of diosgenin derivatives as multitargeted agents for the treatment of vascular dementia. Bioorg Med Chem 2021; 37:116109. [PMID: 33780813 DOI: 10.1016/j.bmc.2021.116109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/21/2022]
Abstract
A novel series of multitargeted molecules were designed and synthesized by combining the pharmacological role of cholinesterase inhibitor and antioxidant of steroid as potential ligands for the treatment of Vascular Dementia (VD). The oxygen-glucose deprivation (OGD) model was used to evaluate these molecules, among which the most potent compound ML5 showed the highest activity. Firstly, ML5 showed appropriate inhibition of cholinesterases (ChEs) at orally 15 mg/kg in vivo. The further test revealed that ML5 promoted the nuclear translocation of Nrf2. Furthermore, ML5 has significant neuroprotective effect in vivo model of bilateral common carotid artery occlusion (BCCAO), significantly increasing the expression of Nrf2 protein in the cerebral cortex. In the molecular docking research, we predicted the ML5 combined with hAChE and Keap1. Finally, compound ML5 displayed normal oral absorption and it was nontoxic at 500 mg/kg, po, dose. We can draw the conclusion that ML5 could be considered as a new potential compound for VD treatment.
Collapse
Affiliation(s)
- Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jia-Min Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lu-Lu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hai-Xian Gan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xing-Xing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
24
|
Sigfridsson E, Marangoni M, Hardingham GE, Horsburgh K, Fowler JH. Deficiency of Nrf2 exacerbates white matter damage and microglia/macrophage levels in a mouse model of vascular cognitive impairment. J Neuroinflammation 2020; 17:367. [PMID: 33261626 PMCID: PMC7709339 DOI: 10.1186/s12974-020-02038-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion causes damage to the brain's white matter underpinning vascular cognitive impairment. Inflammation and oxidative stress have been proposed as key pathophysiological mechanisms of which the transcription factor Nrf2 is a master regulator. We hypothesised that white matter pathology, microgliosis, blood-brain barrier breakdown and behavioural deficits induced by chronic hypoperfusion would be exacerbated in mice deficient in the transcription factor Nrf2. METHODS Mice deficient in Nrf2 (male heterozygote or homozygous for Nrf2 knockout) or wild-type littermates on a C57Bl6/J background underwent bilateral carotid artery stenosis (BCAS) to induce chronic cerebral hypoperfusion or sham surgery and survived for a further 6 weeks. White matter pathology was assessed with MAG immunohistochemistry as a marker of altered axon-glial integrity; alterations to astrocytes and microglia/macrophages were assessed with GFAP and Iba1 immunohistochemistry, and blood-brain barrier breakdown was assessed with IgG immunohistochemistry. Behavioural alterations were assessed using 8-arm radial arm maze, and alterations to Nrf2-related and inflammatory-related genes were assessed with qRT-PCR. RESULTS Chronic cerebral hypoperfusion induced white matter pathology, elevated microglial/macrophage levels and blood-brain barrier breakdown in white matter tracts that were increased in Nrf2+/- mice and further exacerbated by the complete absence of Nrf2. Chronic hypoperfusion induced white matter astrogliosis and induced an impairment in behaviour assessed with radial arm maze; however, these measures were not affected by Nrf2 deficiency. Although Nrf2-related antioxidant gene expression was not altered by chronic cerebral hypoperfusion, there was evidence for elevated pro-inflammatory related gene expression following chronic hypoperfusion that was not affected by Nrf2 deficiency. CONCLUSIONS The results demonstrate that the absence of Nrf2 exacerbates white matter pathology and microgliosis following cerebral hypoperfusion but does not affect behavioural impairment.
Collapse
Affiliation(s)
- Emma Sigfridsson
- Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Martina Marangoni
- Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
- Present address: Department of Health Sciences, University of Florence, Florence, Italy
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Jill H. Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| |
Collapse
|