1
|
Ghézali G, Ribot J, Curry N, Pillet LE, Boutet-Porretta F, Mozheiko D, Calvo CF, Ezan P, Perfettini I, Lecoin L, Janel S, Zapata J, Escartin C, Etienne-Manneville S, Kaminski CF, Rouach N. Connexin 30 locally controls actin cytoskeleton and mechanical remodeling in motile astrocytes. Glia 2024; 72:1915-1929. [PMID: 38982826 DOI: 10.1002/glia.24590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.
Collapse
Affiliation(s)
- Grégory Ghézali
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Jérôme Ribot
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Nathan Curry
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Laure-Elise Pillet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N°562, Université Paris Cité, Paris, France
| | - Flora Boutet-Porretta
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Daria Mozheiko
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Charles-Félix Calvo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Isabelle Perfettini
- Institut Pasteur, Université de Paris, CNRS, Cell Polarity, Migration and Cancer Unit, Paris, France
| | - Laure Lecoin
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Sébastien Janel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Mirzakhel Z, Reddy GA, Boman J, Manns B, Veer ST, Katira P. "Patchiness" in mechanical stiffness across a tumor as an early-stage marker for malignancy. BMC Ecol Evol 2024; 24:33. [PMID: 38486161 PMCID: PMC10938681 DOI: 10.1186/s12862-024-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024] Open
Abstract
Mechanical phenotyping of tumors, either at an individual cell level or tumor cell population level is gaining traction as a diagnostic tool. However, the extent of diagnostic and prognostic information that can be gained through these measurements is still unclear. In this work, we focus on the heterogeneity in mechanical properties of cells obtained from a single source such as a tissue or tumor as a potential novel biomarker. We believe that this heterogeneity is a conventionally overlooked source of information in mechanical phenotyping data. We use mechanics-based in-silico models of cell-cell interactions and cell population dynamics within 3D environments to probe how heterogeneity in cell mechanics drives tissue and tumor dynamics. Our simulations show that the initial heterogeneity in the mechanical properties of individual cells and the arrangement of these heterogenous sub-populations within the environment can dictate overall cell population dynamics and cause a shift towards the growth of malignant cell phenotypes within healthy tissue environments. The overall heterogeneity in the cellular mechanotype and their spatial distributions is quantified by a "patchiness" index, which is the ratio of the global to local heterogeneity in cell populations. We observe that there exists a threshold value of the patchiness index beyond which an overall healthy population of cells will show a steady shift towards a more malignant phenotype. Based on these results, we propose that the "patchiness" of a tumor or tissue sample, can be an early indicator for malignant transformation and cancer occurrence in benign tumors or healthy tissues. Additionally, we suggest that tissue patchiness, measured either by biochemical or biophysical markers, can become an important metric in predicting tissue health and disease likelihood just as landscape patchiness is an important metric in ecology.
Collapse
Affiliation(s)
- Zibah Mirzakhel
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Gudur Ashrith Reddy
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Jennifer Boman
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Brianna Manns
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Savannah Ter Veer
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA.
- Computational Science Research Center, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
3
|
Effect of Therapeutic Ultrasound on the Mechanical and Biological Properties of Fibroblasts. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
This paper explores the effect of therapeutic ultrasound on the mechanical and biological properties of ligament fibroblasts.
Methods and Results
We assessed pulsed ultrasound doses of 1.0 and 2.0 W/cm2 at 1 MHz frequency for five days on ligament fibroblasts using a multidisciplinary approach. Atomic force microscopy showed a decrease in cell elastic modulus for both doses, but the treated cells were still viable based on flow cytometry. Finite element method analysis exhibited visible cytoskeleton displacements and decreased harmonics in treated cells. Colorimetric assay revealed increased cell proliferation, while scratch assay showed increased migration at a low dose. Enzyme-linked immunoassay detected increased collagen and fibronectin at a high dose, and immunofluorescence imaging technique visualized β-actin expression for both treatments.
Conclusion
Both doses of ultrasound altered the fibroblast mechanical properties due to cytoskeletal reorganization and enhanced the regenerative and remodeling stages of cell repair.
Lay Summary
Knee ligament injuries are a lesion of the musculoskeletal system frequently diagnosed in active and sedentary lifestyles in young and older populations. Therapeutic ultrasound is a rehabilitation strategy that may lead to the regenerative and remodeling of ligament wound healing. This research demonstrated that pulsed therapeutic ultrasound applied for 5 days reorganized the ligament fibroblasts structure to increase the cell proliferation and migration at a low dose and to increase the releasing proteins that give the stiffness of the healed ligament at a high dose.
Future Works
Future research should further develop and confirm that therapeutic ultrasound may improve the regenerative and remodeling stages of the ligament healing process applied in clinical trials in active and sedentary lifestyles in young and older populations.
Graphical abstract
Collapse
|
4
|
Papadakis L, Karatsis E, Michalakis K, Tsouknidas A. Cellular Biomechanics: Fluid-Structure Interaction Or Structural Simulation? J Biomech 2022; 136:111084. [DOI: 10.1016/j.jbiomech.2022.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
|
5
|
Papadakis L, Kanakousaki D, Bakopoulou A, Tsouknidas A, Michalakis K. A finite element model of an osteoblast to quantify the transduction of exogenous forces to cellular components. Med Eng Phys 2021; 94:61-69. [PMID: 34303503 DOI: 10.1016/j.medengphy.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023]
Abstract
Encouraged by recent advances of biophysical and biochemical assays we introduce a 3D finite element model of an osteoblast, seeking an analogue between exogenous forces and intracellularly activated sensory mechanisms. The cell was reverse engineered and the dimensions of the internal cellular structures were based on literature data. The model was verified and validated against atomic force microscopy experiments and four loading scenarios were considered. The stress distributions developing on the main cellular components were calculated along with their corresponding strain values. The nucleus and mitochondria exhibited similar loading trends, with the mitochondria being stressed by an order of magnitude higher than the nucleus (e.g. 1.4 vs. 0.16 MPa). Equivalent stiffness was determined to increase by almost 50%, from the apex to the cell's periphery, as was the cell's elasticity, which was lowest when the load was exerted directly above the nucleus. The assessment of how extrinsic loads are propagated to a cell's internal structures is inherently a problem of high complexity. The findings presented in this study can provide important insight into biophysical and biochemical responses elicited in cells through mechanical stimulus. This was evident in both the nuclear and mitochondrial loading and would stipulate the important contribution of even more accurate models in the interpretation of cellular events. One Sentence Summary: The results of this numerical biomechanical study demonstrated that even minor extrinsic loads irrespective of the application site, are transduced by a fraction of the cytoskeleton to its internal structure (primarily to its mitochondria and secondary to the cell's nucleus), indicating mechanical stimulus as the dominant pathway to cell expression.
Collapse
Affiliation(s)
- Labros Papadakis
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, GR-50132, Kozani, Greece
| | - Dimitra Kanakousaki
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece
| | - Alexander Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, GR-50132, Kozani, Greece.
| | - Konstantinos Michalakis
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece; Division of Postgraduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Graybill PM, Bollineni RK, Sheng Z, Davalos RV, Mirzaeifar R. A constriction channel analysis of astrocytoma stiffness and disease progression. BIOMICROFLUIDICS 2021; 15:024103. [PMID: 33763160 PMCID: PMC7968935 DOI: 10.1063/5.0040283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 05/12/2023]
Abstract
Studies have demonstrated that cancer cells tend to have reduced stiffness (Young's modulus) compared to their healthy counterparts. The mechanical properties of primary brain cancer cells, however, have remained largely unstudied. To investigate whether the stiffness of primary brain cancer cells decreases as malignancy increases, we used a microfluidic constriction channel device to deform healthy astrocytes and astrocytoma cells of grade II, III, and IV and measured the entry time, transit time, and elongation. Calculating cell stiffness directly from the experimental measurements is not possible. To overcome this challenge, finite element simulations of the cell entry into the constriction channel were used to train a neural network to calculate the stiffness of the analyzed cells based on their experimentally measured diameter, entry time, and elongation in the channel. Our study provides the first calculation of stiffness for grades II and III astrocytoma and is the first to apply a neural network analysis to determine cell mechanical properties from a constriction channel device. Our results suggest that the stiffness of astrocytoma cells is not well-correlated with the cell grade. Furthermore, while other non-central-nervous-system cell types typically show reduced stiffness of malignant cells, we found that most astrocytoma cell lines had increased stiffness compared to healthy astrocytes, with lower-grade astrocytoma having higher stiffness values than grade IV glioblastoma. Differences in nucleus-to-cytoplasm ratio only partly explain differences in stiffness values. Although our study does have limitations, our results do not show a strong correlation of stiffness with cell grade, suggesting that other factors may play important roles in determining the invasive capability of astrocytoma. Future studies are warranted to further elucidate the mechanical properties of astrocytoma across various pathological grades.
Collapse
Affiliation(s)
| | - R. K. Bollineni
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Z. Sheng
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine and Virginia Tech Fralin Biomedical Research Institute, Roanoke, Virginia 24016, USA
| | - R. V. Davalos
- Authors to whom correspondence should be addressed: and
| | - R. Mirzaeifar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
On the mechanical response of the actomyosin cortex during cell indentations. Biomech Model Mechanobiol 2020; 19:2061-2079. [PMID: 32356071 DOI: 10.1007/s10237-020-01324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/01/2023]
Abstract
A mechanical model is presented to analyze the mechanics and dynamics of the cell cortex during indentation. We investigate the impact of active contraction on the cross-linked actin network for different probe sizes and indentation rates. The essential molecular mechanisms of filament stretching, cross-linking and motor activity, are represented by an active and viscous mechanical continuum. The filaments behave as worm-like chains linked either by passive rigid linkers or by myosin motors. In the first example, the effects of probe size and loading rate are evaluated using the model for an idealized rounded cell shape in which properties are based on the results of parallel-plate rheometry available in the literature. Extreme cases of probe size and indentation rate are taken into account. Afterward, AFM experiments were done by engaging smooth muscle cells with both sharp and spherical probes. By inverse analysis with finite element software, our simulations mimicking the experimental conditions show the model is capable of fitting the AFM data. The results provide spatiotemporal dependence on the size and rate of the mechanical stimuli. The model captures the general features of the cell response. It characterizes the actomyosin cortex as an active solid at short timescales and as a fluid at longer timescales by showing (1) higher levels of contraction in the zones of high curvature; (2) larger indentation forces as the probe size increases; and (3) increase in the apparent modulus with the indentation depth but no dependence on the rate of the mechanical stimuli. The methodology presented in this work can be used to address and predict microstructural dependence on the force generation of living cells, which can contribute to understanding the broad spectrum of results in cell experiments.
Collapse
|
8
|
Graybill PM, Davalos RV. Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers (Basel) 2020; 12:E1132. [PMID: 32366043 PMCID: PMC7281591 DOI: 10.3390/cancers12051132] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell-cell and cell-substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.
Collapse
Affiliation(s)
- Philip M. Graybill
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech–Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Van Liedekerke P, Neitsch J, Johann T, Warmt E, Gonzàlez-Valverde I, Hoehme S, Grosser S, Kaes J, Drasdo D. A quantitative high-resolution computational mechanics cell model for growing and regenerating tissues. Biomech Model Mechanobiol 2019; 19:189-220. [PMID: 31749071 PMCID: PMC7005086 DOI: 10.1007/s10237-019-01204-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
Mathematical models are increasingly designed to guide experiments in biology, biotechnology, as well as to assist in medical decision making. They are in particular important to understand emergent collective cell behavior. For this purpose, the models, despite still abstractions of reality, need to be quantitative in all aspects relevant for the question of interest. This paper considers as showcase example the regeneration of liver after drug-induced depletion of hepatocytes, in which the surviving and dividing hepatocytes must squeeze in between the blood vessels of a network to refill the emerged lesions. Here, the cells' response to mechanical stress might significantly impact the regeneration process. We present a 3D high-resolution cell-based model integrating information from measurements in order to obtain a refined and quantitative understanding of the impact of cell-biomechanical effects on the closure of drug-induced lesions in liver. Our model represents each cell individually and is constructed by a discrete, physically scalable network of viscoelastic elements, capable of mimicking realistic cell deformation and supplying information at subcellular scales. The cells have the capability to migrate, grow, and divide, and the nature and parameters of their mechanical elements can be inferred from comparisons with optical stretcher experiments. Due to triangulation of the cell surface, interactions of cells with arbitrarily shaped (triangulated) structures such as blood vessels can be captured naturally. Comparing our simulations with those of so-called center-based models, in which cells have a largely rigid shape and forces are exerted between cell centers, we find that the migration forces a cell needs to exert on its environment to close a tissue lesion, is much smaller than predicted by center-based models. To stress generality of the approach, the liver simulations were complemented by monolayer and multicellular spheroid growth simulations. In summary, our model can give quantitative insight in many tissue organization processes, permits hypothesis testing in silico, and guide experiments in situations in which cell mechanics is considered important.
Collapse
Affiliation(s)
- Paul Van Liedekerke
- Inria Paris & Sorbonne Université LJLL, 2 Rue Simone IFF, 75012, Paris, France. .,IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund, Germany.
| | - Johannes Neitsch
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Tim Johann
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund, Germany
| | - Enrico Warmt
- Faculty of Physics and Earth Science, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.,Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Steffen Grosser
- Faculty of Physics and Earth Science, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | - Josef Kaes
- Faculty of Physics and Earth Science, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | - Dirk Drasdo
- Inria Paris & Sorbonne Université LJLL, 2 Rue Simone IFF, 75012, Paris, France. .,IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund, Germany. .,Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
10
|
Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat Commun 2019; 10:4185. [PMID: 31519914 PMCID: PMC6744572 DOI: 10.1038/s41467-019-12155-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis.
Collapse
|
11
|
Sano M, Kaji N, Rowat AC, Yasaki H, Shao L, Odaka H, Yasui T, Higashiyama T, Baba Y. Microfluidic Mechanotyping of a Single Cell with Two Consecutive Constrictions of Different Sizes and an Electrical Detection System. Anal Chem 2019; 91:12890-12899. [PMID: 31442026 DOI: 10.1021/acs.analchem.9b02818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanical properties of a cell, which include parameters such as elasticity, inner pressure, and tensile strength, are extremely important because changes in these properties are indicative of diseases ranging from diabetes to malignant transformation. Considering the heterogeneity within a population of cancer cells, a robust measurement system at the single cell level is required for research and in clinical purposes. In this study, a potential microfluidic device for high-throughput and practical mechanotyping were developed to investigate the deformability and sizes of cells through a single run. This mechanotyping device consisted of two different sizes of consecutive constrictions in a microchannel and measured the size of cells and related deformability during transit. Cell deformability was evaluated based on the transit and on the effects of cytoskeleton-affecting drugs, which were detected within 50 ms. The mechanotyping device was able to also measure a cell cycle without the use of fluorescent or protein tags.
Collapse
Affiliation(s)
- Mamiko Sano
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan
| | - Noritada Kaji
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan.,Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , Moto-oka 744 , Nishi-ku, Fukuoka 819-0395 , Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Amy C Rowat
- Department of Integrative Biology & Physiology , University of California Los Angeles , 610 Charles E Young Dr. East , Los Angeles , California 90095 , United States
| | - Hirotoshi Yasaki
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan
| | - Long Shao
- AGC Inc. , Suehiro 1-1 , Tsurumi-ku, Yokohama City , Kanagawa 230-0045 , Japan
| | - Hidefumi Odaka
- AGC Inc. , Suehiro 1-1 , Tsurumi-ku, Yokohama City , Kanagawa 230-0045 , Japan
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM) , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8602 , Japan.,Division of Biological Science, Graduate School of Science , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8602 , Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8603 , Japan.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Hayashi-cho 2217-14 , Takamatsu 761-0395 , Japan.,College of Pharmacy , Kaohsiung Medical University , 100, Shih-Chuan First Road , Kaohsiung , 807 , Taiwan, R.O.C
| |
Collapse
|
12
|
Mierke CT. The Role of the Optical Stretcher Is Crucial in the Investigation of Cell Mechanics Regulating Cell Adhesion and Motility. Front Cell Dev Biol 2019; 7:184. [PMID: 31552247 PMCID: PMC6736998 DOI: 10.3389/fcell.2019.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanical properties of cells, tissues, and the surrounding extracellular matrix environment play important roles in the process of cell adhesion and migration. In physiological and pathological processes of the cells, such as wound healing and cancer, the capacity to migrate through the extracellular matrix is crucial. Hence biophysical techniques were used to determine the mechanical properties of cells that facilitate the various migratory capacities. Since the field of mechanobiology is rapidly growing, the reliable and reproducible characterization of cell mechanics is required that facilitates the adhesion and migration of cells. One of these cell mechanical techniques is the optical stretching device, which was originally developed to investigate the mechanical properties of cells, such as the deformation of single cells in suspension. After discussing the strengths and weaknesses of the technology, the latest findings in optical stretching-based cell mechanics are presented in this review. Finally, the mechanical properties of cells are correlated with their migratory potential and it is pointed out how the inhibition of biomolecules that contribute to the to the maintenance of cytoskeletal structures in cells affect their mechanical deformability.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
13
|
Dagro A, Rajbhandari L, Orrego S, Kang SH, Venkatesan A, Ramesh KT. Quantifying the Local Mechanical Properties of Cells in a Fibrous Three-Dimensional Microenvironment. Biophys J 2019; 117:817-828. [PMID: 31421835 DOI: 10.1016/j.bpj.2019.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/28/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022] Open
Abstract
Measurements of the mechanical response of biological cells are critical for understanding injury and disease, for developing diagnostic tools, and for computational models in mechanobiology. Although it is well known that cells are sensitive to the topography of their microenvironment, the current paradigm in mechanical testing of adherent cells is mostly limited to specimens grown on flat two-dimensional substrates. In this study, we introduce a technique in which cellular indentation via optical trapping is performed on cells at a high spatial resolution to obtain their regional mechanical properties while they exist in a more favorable three-dimensional microenvironment. We combine our approach with nonlinear contact mechanics theory to consider the effects of a large deformation. This allows us to probe length scales that are relevant for obtaining overall cell stiffness values. The experimental results herein provide the hyperelastic material properties at both high (∼100 s-1) and low (∼1-10 s-1) strain rates of murine central nervous system glial cells. The limitations due to possible misalignment of the indenter in the three-dimensional space are examined using a computational model.
Collapse
Affiliation(s)
- Amy Dagro
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland.
| | | | - Santiago Orrego
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, Maryland
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Kaliat T Ramesh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
14
|
Kunschmann T, Puder S, Fischer T, Steffen A, Rottner K, Mierke CT. The Small GTPase Rac1 Increases Cell Surface Stiffness and Enhances 3D Migration Into Extracellular Matrices. Sci Rep 2019; 9:7675. [PMID: 31118438 PMCID: PMC6531482 DOI: 10.1038/s41598-019-43975-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Membrane ruffling and lamellipodia formation promote the motility of adherent cells in two-dimensional motility assays by mechano-sensing of the microenvironment and initiation of focal adhesions towards their surroundings. Lamellipodium formation is stimulated by small Rho GTPases of the Rac subfamily, since genetic removal of these GTPases abolishes lamellipodium assembly. The relevance of lamellipodial or invadopodial structures for facilitating cellular mechanics and 3D cell motility is still unclear. Here, we hypothesized that Rac1 affects cell mechanics and facilitates 3D invasion. Thus, we explored whether fibroblasts that are genetically deficient for Rac1 (lacking Rac2 and Rac3) harbor altered mechanical properties, such as cellular deformability, intercellular adhesion forces and force exertion, and exhibit alterations in 3D motility. Rac1 knockout and control cells were analyzed for changes in deformability by applying an external force using an optical stretcher. Five Rac1 knockout cell lines were pronouncedly more deformable than Rac1 control cells upon stress application. Using AFM, we found that cell-cell adhesion forces are increased in Rac1 knockout compared to Rac1-expressing fibroblasts. Since mechanical deformability, cell-cell adhesion strength and 3D motility may be functionally connected, we investigated whether increased deformability of Rac1 knockout cells correlates with changes in 3D motility. All five Rac1 knockout clones displayed much lower 3D motility than Rac1-expressing controls. Moreover, force exertion was reduced in Rac1 knockout cells, as assessed by 3D fiber displacement analysis. Interference with cellular stiffness through blocking of actin polymerization by Latrunculin A could not further reduce invasion of Rac1 knockout cells. In contrast, Rac1-expressing controls treated with Latrunculin A were again more deformable and less invasive, suggesting actin polymerization is a major determinant of observed Rac1-dependent effects. Together, we propose that regulation of 3D motility by Rac1 partly involves cellular mechanics such as deformability and exertion of forces.
Collapse
Affiliation(s)
- Tom Kunschmann
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Stefanie Puder
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Tony Fischer
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Claudia Tanja Mierke
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
15
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
16
|
Quantitative cell-based model predicts mechanical stress response of growing tumor spheroids over various growth conditions and cell lines. PLoS Comput Biol 2019; 15:e1006273. [PMID: 30849070 PMCID: PMC6538187 DOI: 10.1371/journal.pcbi.1006273] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 05/28/2019] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
Model simulations indicate that the response of growing cell populations on mechanical stress follows the same functional relationship and is predictable over different cell lines and growth conditions despite experimental response curves look largely different. We develop a hybrid model strategy in which cells are represented by coarse-grained individual units calibrated with a high resolution cell model and parameterized by measurable biophysical and cell-biological parameters. Cell cycle progression in our model is controlled by volumetric strain, the latter being derived from a bio-mechanical relation between applied pressure and cell compressibility. After parameter calibration from experiments with mouse colon carcinoma cells growing against the resistance of an elastic alginate capsule, the model adequately predicts the growth curve in i) soft and rigid capsules, ii) in different experimental conditions where the mechanical stress is generated by osmosis via a high molecular weight dextran solution, and iii) for other cell types with different growth kinetics from the growth kinetics in absence of external stress. Our model simulation results suggest a generic, even quantitatively same, growth response of cell populations upon externally applied mechanical stress, as it can be quantitatively predicted using the same growth progression function.
Collapse
|
17
|
Kang JH, Miettinen TP, Chen L, Olcum S, Katsikis G, Doyle PS, Manalis SR. Noninvasive monitoring of single-cell mechanics by acoustic scattering. Nat Methods 2019; 16:263-269. [PMID: 30742041 PMCID: PMC6420125 DOI: 10.1038/s41592-019-0326-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/09/2019] [Indexed: 02/05/2023]
Abstract
Monitoring mechanics of the same cell throughout the cell cycle has been hampered by the invasiveness of mechanical measurements. Here, we quantify mechanical properties via acoustic scattering of waves from a cell inside a fluid-filled vibrating cantilever with a temporal resolution of <1 min. Through simulations, experiments with hydrogels and chemically perturbed cells, we show that our readout, the size-normalized acoustic scattering (SNACS), measures stiffness. We demonstrate the noninvasiveness of SNACS over successive cell cycles using measurements that result in < 15 nm deformations. Cells maintain constant SNACS throughout interphase but exhibit dynamic changes during mitosis. Our work provides a basis for understanding how growing cells maintain mechanical integrity and demonstrates that acoustic scattering can non-invasively probe subtle and transient dynamics.
Collapse
Affiliation(s)
- Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lynna Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Selim Olcum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick S Doyle
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
18
|
Hu J, Zhou Y, Obayemi JD, Du J, Soboyejo WO. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells. J Mech Behav Biomed Mater 2018; 86:1-13. [DOI: 10.1016/j.jmbbm.2018.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/30/2022]
|
19
|
Jannatbabaei A, Tafazzoli-Shadpour M, Seyedjafari E, Fatouraee N. Cytoskeletal remodeling induced by substrate rigidity regulates rheological behaviors in endothelial cells. J Biomed Mater Res A 2018; 107:71-80. [PMID: 30242964 DOI: 10.1002/jbm.a.36533] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 11/10/2022]
Abstract
Altered microenvrionmental mechanical cues induce cytoskeletal remodeling in cells and have a profound impact on their functions as well as rheological properties. This article is aimed to characterize the viscoelastic behavior of endothelial cells, cultivated on variably compliant substrates. Synthetic tunable poly(dimethylsyloxane) substrates, with elastic moduli ranging from 1.5 MPa to 3 kPa, were used to trigger cytoskeletal remodeling of endothelial cells, verified by morphological analysis and actin fluorescent labeling. Elasticity and stress relaxation tests were conducted using an AFM, resulting in a wide range of data. To account for this heterogeneity, fuzzy c-means clustering algorithm was applied to partition elastic data into biologically meaningful groups, representative of different regions in cells. Nanocharacterization of biomechanical properties, along with cytoskeletal studies, proved a significant correlation between substrate flexibility and viscoelasticity of the cells. Regardless of the viscoelastic model applied, increasing substrate rigidity was related to an overall increase in cell stiffness and apparent viscosity (2.95 ± 1.56 kPa and 921.45 ± 102.46 Pa.s for the stiff substrate; 2.17 ± 1.30 kPa and 557.37 ± 494.11 Pa.s for the intermediate substrate), associated with an organized actin cytoskeleton. Conversely, cells on soft substrate were more deformable (1.84 ± 1.3 kPa) and less viscous (327.13 ± 124.25 Pa.s), exhibiting an increased actin disorganization. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 71-80, 2019.
Collapse
Affiliation(s)
- Atefeh Jannatbabaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Nasser Fatouraee
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
20
|
Meinhövel F, Stange R, Schnauß J, Sauer M, Käs JA, Remmerbach TW. Changing cell mechanics—a precondition for malignant transformation of oral squamous carcinoma cells. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2018. [DOI: 10.1088/2057-1739/aac72d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Gullekson C, Cojoc G, Schürmann M, Guck J, Pelling A. Mechanical mismatch between Ras transformed and untransformed epithelial cells. SOFT MATTER 2017; 13:8483-8491. [PMID: 29091102 DOI: 10.1039/c7sm01396e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The organization of the actin cytoskeleton plays a key role in regulating cell mechanics. It is fundamentally altered during transformation, affecting how cells interact with their environment. We investigated mechanical properties of cells expressing constitutively active, oncogenic Ras (RasV12) in adherent and suspended states. To do this, we utilized atomic force microscopy and a microfluidic optical stretcher. We found that adherent cells stiffen and suspended cells soften with the expression of constitutively active Ras. The effect on adherent cells was reversed when contractility was inhibited with the ROCK inhibitor Y-27632, resulting in softer RasV12 cells. Our findings suggest that increased ROCK activity as a result of Ras has opposite effects on suspended and adhered cells. Our results also establish the importance of the activation of ROCK by Ras and its effect on cell mechanics.
Collapse
Affiliation(s)
- Corinne Gullekson
- Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, 598 King Edward, Ottawa, ON, K1N5N5 Canada.
| | | | | | | | | |
Collapse
|
22
|
Golfier S, Rosendahl P, Mietke A, Herbig M, Guck J, Otto O. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications. Cytoskeleton (Hoboken) 2017; 74:283-296. [PMID: 28445605 PMCID: PMC5601209 DOI: 10.1002/cm.21369] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
Abstract
The mechanical fingerprint of cells is inherently linked to the structure of the cytoskeleton and can serve as a label‐free marker for cell homeostasis or pathologic states. How cytoskeletal composition affects the physical response of cells to external loads has been intensively studied with a spectrum of techniques, yet quantitative and statistically powerful investigations in the form of titration assays are hampered by the low throughput of most available methods. In this study, we employ real‐time deformability cytometry (RT‐DC), a novel microfluidic tool to examine the effects of biochemically modified F‐actin and microtubule stability and nuclear chromatin structure on cell deformation in a human leukemia cell line (HL60). The high throughput of our method facilitates extensive titration assays that allow for significance assessment of the observed effects and extraction of half‐maximal concentrations for most of the applied reagents. We quantitatively show that integrity of the F‐actin cortex and microtubule network dominate cell deformation on millisecond timescales probed with RT‐DC. Drug‐induced alterations in the nuclear chromatin structure were not found to consistently affect cell deformation. The sensitivity of the high‐throughput cell mechanical measurements to the cytoskeletal modifications we present in this study opens up new possibilities for label‐free dose‐response assays of cytoskeletal modifications.
Collapse
Affiliation(s)
- Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alexander Mietke
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,ZIK HIKE, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Chan CJ, Li W, Cojoc G, Guck J. Volume Transitions of Isolated Cell Nuclei Induced by Rapid Temperature Increase. Biophys J 2017; 112:1063-1076. [PMID: 28355535 PMCID: PMC5374986 DOI: 10.1016/j.bpj.2017.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Understanding the physical mechanisms governing nuclear mechanics is important as it can impact gene expression and development. However, how cell nuclei respond to external cues such as heat is not well understood. Here, we studied the material properties of isolated nuclei in suspension using an optical stretcher. We demonstrate that isolated nuclei regulate their volume in a highly temperature-sensitive manner. At constant temperature, isolated nuclei behaved like passive, elastic and incompressible objects, whose volume depended on the pH and ionic conditions. When the temperature was increased suddenly by even a few degrees Kelvin, nuclei displayed a repeatable and reversible temperature-induced volume transition, whose sign depended on the valency of the solvent. Such phenomenon is not observed for nuclei subjected to slow heating. The transition temperature could be shifted by adiabatic changes of the ambient temperature, and the magnitude of temperature-induced volume transition could be modulated by modifying the chromatin compaction state and remodeling processes. Our findings reveal that the cell nucleus can be viewed as a highly charged polymer gel with intriguing thermoresponsive properties, which might play a role in nuclear volume regulation and thermosensing in living cells.
Collapse
Affiliation(s)
- Chii J Chan
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| | - Wenhong Li
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Gheorghe Cojoc
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
24
|
Fischer-Friedrich E, Toyoda Y, Cattin CJ, Müller DJ, Hyman AA, Jülicher F. Rheology of the Active Cell Cortex in Mitosis. Biophys J 2017; 111:589-600. [PMID: 27508442 DOI: 10.1016/j.bpj.2016.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system.
Collapse
Affiliation(s)
- Elisabeth Fischer-Friedrich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Institute of Life Science, Kurume University, Kurume, Japan
| | - Cedric J Cattin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
| |
Collapse
|
25
|
Alibert C, Goud B, Manneville JB. Are cancer cells really softer than normal cells? Biol Cell 2017; 109:167-189. [DOI: 10.1111/boc.201600078] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Charlotte Alibert
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| | - Bruno Goud
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| | - Jean-Baptiste Manneville
- Institut Curie; PSL Research University, CNRS; UMR 144 Paris France
- Sorbonne Universités, UPMC University Paris 06, CNRS; UMR 144 Paris France
| |
Collapse
|
26
|
Mietke A, Otto O, Girardo S, Rosendahl P, Taubenberger A, Golfier S, Ulbricht E, Aland S, Guck J, Fischer-Friedrich E. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment. Biophys J 2016; 109:2023-36. [PMID: 26588562 PMCID: PMC4656812 DOI: 10.1016/j.bpj.2015.09.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/09/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible.
Collapse
Affiliation(s)
- Alexander Mietke
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Salvatore Girardo
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anna Taubenberger
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elke Ulbricht
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Aland
- Institute of Scientific Computing, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
| |
Collapse
|
27
|
Yang T, Bragheri F, Minzioni P. A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level. MICROMACHINES 2016; 7:E90. [PMID: 30404265 PMCID: PMC6189960 DOI: 10.3390/mi7050090] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022]
Abstract
This paper presents a comprehensive review of the development of the optical stretcher, a powerful optofluidic device for single cell mechanical study by using optical force induced cell stretching. The different techniques and the different materials for the fabrication of the optical stretcher are first summarized. A short description of the optical-stretching mechanism is then given, highlighting the optical force calculation and the cell optical deformability characterization. Subsequently, the implementations of the optical stretcher in various cell-mechanics studies are shown on different types of cells. Afterwards, two new advancements on optical stretcher applications are also introduced: the active cell sorting based on cell mechanical characterization and the temperature effect on cell stretching measurement from laser-induced heating. Two examples of new functionalities developed with the optical stretcher are also included. Finally, the current major limitation and the future development possibilities are discussed.
Collapse
Affiliation(s)
- Tie Yang
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, Pavia 27100, Italy.
| | - Francesca Bragheri
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Paolo Minzioni
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, Pavia 27100, Italy.
| |
Collapse
|
28
|
Roth KB, Neeves KB, Squier J, Marr DWM. High-throughput linear optical stretcher for mechanical characterization of blood cells. Cytometry A 2016; 89:391-7. [PMID: 26565892 PMCID: PMC10625799 DOI: 10.1002/cyto.a.22794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/29/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022]
Abstract
This study describes a linear optical stretcher as a high-throughput mechanical property cytometer. Custom, inexpensive, and scalable optics image a linear diode bar source into a microfluidic channel, where cells are hydrodynamically focused into the optical stretcher. Upon entering the stretching region, antipodal optical forces generated by the refraction of tightly focused laser light at the cell membrane deform each cell in flow. Each cell relaxes as it flows out of the trap and is compared to the stretched state to determine deformation. The deformation response of untreated red blood cells and neutrophils were compared to chemically treated cells. Statistically significant differences were observed between normal, diamide-treated, and glutaraldehyde-treated red blood cells, as well as between normal and cytochalasin D-treated neutrophils. Based on the behavior of the pure, untreated populations of red cells and neutrophils, a mixed population of these cells was tested and the discrete populations were identified by deformability. © 2015 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kevin B. Roth
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
| | - Keith B. Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
- Department of Pediatrics, University of Colorado, Denver, Colorado 80045
| | - Jeff Squier
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401
| | - David W. M. Marr
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
| |
Collapse
|
29
|
Lange JR, Steinwachs J, Kolb T, Lautscham LA, Harder I, Whyte G, Fabry B. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J 2016; 109:26-34. [PMID: 26153699 DOI: 10.1016/j.bpj.2015.05.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
We describe a method for quantifying the mechanical properties of cells in suspension with a microfluidic device consisting of a parallel array of micron-sized constrictions. Using a high-speed charge-coupled device camera, we measure the flow speed, cell deformation, and entry time into the constrictions of several hundred cells per minute during their passage through the device. From the flow speed and the occupation state of the microconstriction array with cells, the driving pressure across each constriction is continuously computed. Cell entry times into microconstrictions decrease with increased driving pressure and decreased cell size according to a power law. From this power-law relationship, the cell elasticity and fluidity can be estimated. When cells are treated with drugs that depolymerize or stabilize the cytoskeleton or the nucleus, elasticity and fluidity data from all treatments collapse onto a master curve. Power-law rheology and collapse onto a master curve are predicted by the theory of soft glassy materials and have been previously shown to describe the mechanical behavior of cells adhering to a substrate. Our finding that this theory also applies to cells in suspension provides the foundation for a quantitative high-throughput measurement of cell mechanical properties with microfluidic devices.
Collapse
Affiliation(s)
- Janina R Lange
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Julian Steinwachs
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thorsten Kolb
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany; Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Lena A Lautscham
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Irina Harder
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Graeme Whyte
- Institute of Biological Chemistry, Biophysics and Bioengineering, Department of Physics, Heriot-Watt University, Edinburgh, UK
| | - Ben Fabry
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
30
|
Shaw Bagnall J, Byun S, Miyamoto DT, Kang JH, Maheswaran S, Stott SL, Toner M, Manalis SR. Deformability-based cell selection with downstream immunofluorescence analysis. Integr Biol (Camb) 2016; 8:654-64. [PMID: 26999591 DOI: 10.1039/c5ib00284b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mechanical properties of single cells have been shown to relate to cell phenotype and malignancy. However, until recently, it has been difficult to directly correlate each cell's biophysical characteristics to its molecular traits. Here, we present a cell sorting technique for use with a suspended microchannel resonator (SMR), which can measure biophysical characteristics of a single cell based on the sensor's record of its buoyant mass as well as its precise position while it traverses through a constricted microfluidic channel. The measurement provides information regarding the amount of time a cell takes to pass through a constriction (passage time), as related to the cell's deformability and surface friction, as well as the particular manner in which it passes through. In the method presented here, cells of interest are determined based on passage time, and are collected off-chip for downstream immunofluorescence imaging. The biophysical single-cell SMR measurement can then be correlated to the molecular expression of the collected cell. This proof-of-principle is demonstrated by sorting and collecting tumor cells from cell line-spiked blood samples as well as a metastatic prostate cancer patient blood sample, identifying them by their surface protein expression and relating them to distinct SMR signal trajectories.
Collapse
Affiliation(s)
- Josephine Shaw Bagnall
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Schlosser F, Rehfeldt F, Schmidt CF. Force fluctuations in three-dimensional suspended fibroblasts. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140028. [PMID: 25533089 PMCID: PMC4275901 DOI: 10.1098/rstb.2014.0028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cells are sensitive to mechanical cues from their environment and at the same time generate and transmit forces to their surroundings. To test quantitatively forces generated by cells not attached to a substrate, we used a dual optical trap to suspend 3T3 fibroblasts between two fibronectin-coated beads. In this simple geometry, we measured both the cells' elastic properties and the force fluctuations they generate with high bandwidth. Cell stiffness decreased substantially with both myosin inhibition by blebbistatin and serum-starvation, but not with microtubule depolymerization by nocodazole. We show that cortical forces generated by non-muscle myosin II deform the cell from its rounded shape in the frequency regime from 0.1 to 10 Hz. The amplitudes of these forces were strongly reduced by blebbistatin and serum starvation, but were unaffected by depolymerization of microtubules. Force fluctuations show a spectrum that is characteristic for an elastic network activated by random sustained stresses with abrupt transitions.
Collapse
Affiliation(s)
- Florian Schlosser
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Florian Rehfeldt
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Christoph F Schmidt
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
32
|
Delabre U, Feld K, Crespo E, Whyte G, Sykes C, Seifert U, Guck J. Deformation of phospholipid vesicles in an optical stretcher. SOFT MATTER 2015; 11:6075-88. [PMID: 26135540 DOI: 10.1039/c5sm00562k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelengths, optically induced mechanical stresses and temperature increase can be tuned fairly independently with a single setup. The phase transition temperature of vesicles can be clearly identified by an increase in deformation. In the case of no heating effects, a minimal model for drop deformation in an optical stretcher and a more specific model for vesicle deformation that takes explicitly into account the angular dependence of the optical stress are presented to account for the experimental results. Elastic constants are extracted from the fitting procedures, which agree with literature data. This study demonstrates the utility of optical stretching, which is easily combined with microfluidic delivery, for the future serial, high-throughput study of the mechanical and thermodynamic properties of phospholipid vesicles.
Collapse
Affiliation(s)
- Ulysse Delabre
- Univ. Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine, UMR 5798, F-33400 Talence, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Characterization of Dynamic Behaviour of MCF7 and MCF10A Cells in Ultrasonic Field Using Modal and Harmonic Analyses. PLoS One 2015; 10:e0134999. [PMID: 26241649 PMCID: PMC4524665 DOI: 10.1371/journal.pone.0134999] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 12/25/2022] Open
Abstract
Treatment options specifically targeting tumour cells are urgently needed in order to reduce the side effects accompanied by chemo- or radiotherapy. Differences in subcellular structure between tumour and normal cells determine their specific elasticity. These structural differences can be utilised by low-frequency ultrasound in order to specifically induce cytotoxicity of tumour cells. For further evaluation, we combined in silico FEM (finite element method) analyses and in vitro assays to bolster the significance of low-frequency ultrasound for tumour treatment. FEM simulations were able to calculate the first resonance frequency of MCF7 breast tumour cells at 21 kHz in contrast to 34 kHz for the MCF10A normal breast cells, which was due to the higher elasticity and larger size of MCF7 cells. For experimental validation of the in silico-determined resonance frequencies, equipment for ultrasonic irradiation with distinct frequencies was constructed. Differences for both cell lines in their response to low-frequent ultrasonic treatment were corroborated in 2D and in 3D cell culture assays. Treatment with ~ 24.5 kHz induced the death of MCF7 cells and MDA-MB-231 metastases cells possessing a similar elasticity; frequencies of > 29 kHz resulted in cytotoxicity of MCF10A. Fractionated treatments by ultrasonic irradiation of suspension myeloid HL60 cells resulted in a significant decrease of viable cells, mostly significant after threefold irradiation in intervals of 3 h. Most importantly in regard to a clinical application, combined ultrasonic treatment and chemotherapy with paclitaxel showed a significantly increased killing of MCF7 cells compared to both monotherapies. In summary, we were able to determine for the first time for different tumour cell lines a specific frequency of low-intensity ultrasound for induction of cell ablation. The cytotoxic effect of ultrasonic irradiation could be increased by either fractionated treatment or in combination with chemotherapy. Thus, our results will open new perspectives in tumour treatment.
Collapse
|
34
|
Chan CJ, Ekpenyong AE, Golfier S, Li W, Chalut KJ, Otto O, Elgeti J, Guck J, Lautenschläger F. Myosin II Activity Softens Cells in Suspension. Biophys J 2015; 108:1856-69. [PMID: 25902426 PMCID: PMC4407259 DOI: 10.1016/j.bpj.2015.03.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023] Open
Abstract
The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells.
Collapse
Affiliation(s)
- Chii J Chan
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Andrew E Ekpenyong
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Wenhong Li
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Kevin J Chalut
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Stem Cell Institute, Cambridge, United Kingdom
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jens Elgeti
- Institute of Complex Systems, Forschungszentrum Jülich, Jülich, Germany
| | - Jochen Guck
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Franziska Lautenschläger
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Department of Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
35
|
Biophysical characterization of bladder cancer cells with different metastatic potential. Cell Biochem Biophys 2014; 68:241-6. [PMID: 23793959 DOI: 10.1007/s12013-013-9702-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Specific membrane capacitance (SMC) and Young's modulus are two important parameters characterizing the biophysical properties of a cell. In this work, the SMC and Young's modulus of two cell lines, RT4 and T24, corresponding to well differentiated (low grade) and poorly differentiated (high grade) urothelial cell carcinoma (UCC), respectively, were quantified using microfluidic and AFM measurements. Quantitative differences in SMC and Young's modulus values of the high-grade and low-grade UCC cells are, for the first time, reported.
Collapse
|
36
|
Chan CJ, Whyte G, Boyde L, Salbreux G, Guck J. Impact of heating on passive and active biomechanics of suspended cells. Interface Focus 2014; 4:20130069. [PMID: 24748957 PMCID: PMC3982451 DOI: 10.1098/rsfs.2013.0069] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A cell is a complex material whose mechanical properties are essential for its normal functions. Heating can have a dramatic effect on these mechanical properties, similar to its impact on the dynamics of artificial polymer networks. We investigated such mechanical changes by the use of a microfluidic optical stretcher, which allowed us to probe cell mechanics when the cells were subjected to different heating conditions at different time scales. We find that HL60/S4 myeloid precursor cells become mechanically more compliant and fluid-like when subjected to either a sudden laser-induced temperature increase or prolonged exposure to higher ambient temperature. Above a critical temperature of 52 ± 1°C, we observed active cell contraction, which was strongly correlated with calcium influx through temperature-sensitive transient receptor potential vanilloid 2 (TRPV2) ion channels, followed by a subsequent expansion in cell volume. The change from passive to active cellular response can be effectively described by a mechanical model incorporating both active stress and viscoelastic components. Our work highlights the role of TRPV2 in regulating the thermomechanical response of cells. It also offers insights into how cortical tension and osmotic pressure govern cell mechanics and regulate cell-shape changes in response to heat and mechanical stress.
Collapse
Affiliation(s)
- C. J. Chan
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - G. Whyte
- Department of Physics and Institute of Medical Biotechnology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - L. Boyde
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - G. Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - J. Guck
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
37
|
Unterberger MJ, Holzapfel GA. Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales. Biomech Model Mechanobiol 2014; 13:1155-74. [PMID: 24700235 DOI: 10.1007/s10237-014-0578-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.
Collapse
Affiliation(s)
- Michael J Unterberger
- Institute of Biomechanics, Graz University of Technology, Kronesgasse 5-I, 8010 , Graz, Austria
| | | |
Collapse
|
38
|
Castillo M, Ebensperger R, Wirtz D, Walczak M, Hurtado DE, Celedon A. Local mechanical response of cells to the controlled rotation of magnetic nanorods. J Biomed Mater Res B Appl Biomater 2014; 102:1779-85. [PMID: 24700696 DOI: 10.1002/jbm.b.33167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 11/08/2022]
Abstract
The mechanical response of the cytoplasm was investigated by the intracellular implantation of magnetic nanorods and exposure to low-frequency rotatory magnetic fields. Nanorods (Pt-Ni, ∼200 nm diameter) fabricated by electrodeposition in templates of porous alumina with lengths of approximately 2 and 5 µm were inserted into NIH/3T3 fibroblasts and manipulated with a rotational magnetic field. Nanorod rotation was observed only for torques greater than 3.0 × 10(-16) Nm, suggesting a Bingham-type behavior of the cytoplasm. Higher torques produced considerable deformation of the intracellular material. The cell nucleus and cell membrane were significantly deformed by nanorods actuated by 4.5 × 10(-15) Nm torques. Our results demonstrate that nanorods under magnetic fields are an effective tool to mechanically probe the intracellular environment. We envision that our findings may contribute to the noninvasive and direct mechanical characterization of the cytoplasm.
Collapse
Affiliation(s)
- Matias Castillo
- Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Macul, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
39
|
Barreto S, Perrault CM, Lacroix D. Structural finite element analysis to explain cell mechanics variability. J Mech Behav Biomed Mater 2013; 38:219-31. [PMID: 24389336 DOI: 10.1016/j.jmbbm.2013.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 11/16/2022]
Abstract
The ability to model the mechanical responses of different cell types presents many opportunities to tissue engineering research to further identify changes from physiological conditions to disease. Using a previously validated finite element cell model we aim to show how variation of the material properties of the intracellular components affects cell response after compression and shearing. A parametric study was performed to understand the key mechanical features from different cell types, focussing on specific cytoskeleton components and prestress. Results show that actin cortex does not have a mechanical role in resisting shearing loading conditions. The sensitivity analysis predicted that cell force to compression and shearing is highly affected by changes in cortex thickness, cortex Young's modulus and rigidity of the remaining cytoplasm. Variation of prestress affects mainly the response of cells under shear loads and the model defines a relationship between cell force and prestress depending on the specific loading conditions, which is in good agreement with in vitro experiments. The results are used to make predictions that can relate mechanical properties with cell phenotype to be used as guidelines for individual cytoskeletal structures for future modelling efforts of the structure-function relationships of living cells.
Collapse
Affiliation(s)
- Sara Barreto
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Cecile M Perrault
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
40
|
Taubenberger AV, Hutmacher DW, Muller DJ. Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:40-55. [PMID: 23688177 DOI: 10.1089/ten.teb.2013.0125] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cell adhesion receptors play a central role in sensing and integrating signals provided by the cellular environment. Thus, understanding adhesive interactions at the cell-biomaterial interface is essential to improve the design of implants that should emulate certain characteristics of the cell's natural environment. Numerous cell adhesion assays have been developed; among these, atomic force microscopy-based single-cell force spectroscopy (AFM-SCFS) provides a versatile tool to quantify cell adhesion at physiological conditions. Here we discuss how AFM-SCFS can be used to quantify the adhesion of living cells to biomaterials and give examples of using AFM-SCFS in tissue engineering and regenerative medicine. We anticipate that in the near future, AFM-SCFS will be established in the biomaterial field as an important technique to quantify cell-biomaterial interactions and thereby will contribute to the optimization of implants, scaffolds, and medical devices.
Collapse
Affiliation(s)
- Anna V Taubenberger
- 1 Biotechnological Center, Dresden University of Technology , Dresden, Germany
| | | | | |
Collapse
|
41
|
Huber F, Schnauß J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J. Emergent complexity of the cytoskeleton: from single filaments to tissue. ADVANCES IN PHYSICS 2013; 62:1-112. [PMID: 24748680 PMCID: PMC3985726 DOI: 10.1080/00018732.2013.771509] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 01/11/2013] [Indexed: 05/17/2023]
Abstract
Despite their overwhelming complexity, living cells display a high degree of internal mechanical and functional organization which can largely be attributed to the intracellular biopolymer scaffold, the cytoskeleton. Being a very complex system far from thermodynamic equilibrium, the cytoskeleton's ability to organize is at the same time challenging and fascinating. The extensive amounts of frequently interacting cellular building blocks and their inherent multifunctionality permits highly adaptive behavior and obstructs a purely reductionist approach. Nevertheless (and despite the field's relative novelty), the physics approach has already proved to be extremely successful in revealing very fundamental concepts of cytoskeleton organization and behavior. This review aims at introducing the physics of the cytoskeleton ranging from single biopolymer filaments to multicellular organisms. Throughout this wide range of phenomena, the focus is set on the intertwined nature of the different physical scales (levels of complexity) that give rise to numerous emergent properties by means of self-organization or self-assembly.
Collapse
Affiliation(s)
- F. Huber
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - J. Schnauß
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - S. Rönicke
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - P. Rauch
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - K. Müller
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - C. Fütterer
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - J. Käs
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
Chalut KJ, Höpfler M, Lautenschläger F, Boyde L, Chan CJ, Ekpenyong A, Martinez-Arias A, Guck J. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys J 2012. [PMID: 23200040 DOI: 10.1016/j.bpj.2012.10.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The interplay between epigenetic modification and chromatin compaction is implicated in the regulation of gene expression, and it comprises one of the most fascinating frontiers in cell biology. Although a complete picture is still lacking, it is generally accepted that the differentiation of embryonic stem (ES) cells is accompanied by a selective condensation into heterochromatin with concomitant gene silencing, leaving access only to lineage-specific genes in the euchromatin. ES cells have been reported to have less condensed chromatin, as they are capable of differentiating into any cell type. However, pluripotency itself-even prior to differentiation-is a split state comprising a naïve state and a state in which ES cells prime for differentiation. Here, we show that naïve ES cells decondense their chromatin in the course of downregulating the pluripotency marker Nanog before they initiate lineage commitment. We used fluorescence recovery after photobleaching, and histone modification analysis paired with a novel, to our knowledge, optical stretching method, to show that ES cells in the naïve state have a significantly stiffer nucleus that is coupled to a globally more condensed chromatin state. We link this biophysical phenotype to coinciding epigenetic differences, including histone methylation, and show a strong correlation of chromatin condensation and nuclear stiffness with the expression of Nanog. Besides having implications for transcriptional regulation and embryonic cell sorting and suggesting a putative mechanosensing mechanism, the physical differences point to a system-level regulatory role of chromatin in maintaining pluripotency in embryonic development.
Collapse
Affiliation(s)
- Kevin J Chalut
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Soh S, Kandere-Grzybowska K, Mahmud G, Huda S, Patashinski AZ, Grzybowski BA. Tomography and static-mechanical properties of adherent cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:5719-5726. [PMID: 22886834 DOI: 10.1002/adma.201200492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/02/2012] [Indexed: 06/01/2023]
Abstract
A tomography approach is used to reconstruct 3D cell shapes and, simultaneously, the shapes/positions of the nuclei within these cells. Subjecting the cells to well-defined microconfinements of various diameters allow for relating the steady-state shapes of cells to their static-mechanical properties. The observed shapes show striking regularities between different cell types and all fit to a model that takes into account the cell membrane, cortical actin, and the nucleus.
Collapse
Affiliation(s)
- Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
44
|
MacQueen LA, Thibault M, Buschmann MD, Wertheimer MR. Electromechanical deformation of mammalian cells in suspension depends on their cortical actin thicknesses. J Biomech 2012; 45:2797-803. [DOI: 10.1016/j.jbiomech.2012.08.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/07/2023]
|
45
|
Matthews H, Delabre U, Rohn J, Guck J, Kunda P, Baum B. Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression. Dev Cell 2012; 23:371-83. [PMID: 22898780 PMCID: PMC3763371 DOI: 10.1016/j.devcel.2012.06.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/04/2012] [Accepted: 06/05/2012] [Indexed: 12/17/2022]
Abstract
As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division.
Collapse
Affiliation(s)
- Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Ulysse Delabre
- Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
- PCC Curie, Institut Curie/CNRS/Université Paris 6 - UMR 168, 26 rue d'Ulm, 75248 Paris, France
| | - Jennifer L. Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Jochen Guck
- Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Patricia Kunda
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| |
Collapse
|
46
|
Salbreux G, Charras G, Paluch E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 2012; 22:536-45. [PMID: 22871642 DOI: 10.1016/j.tcb.2012.07.001] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 12/11/2022]
Abstract
The cortex is a thin, crosslinked actin network lying immediately beneath the plasma membrane of animal cells. Myosin motors exert contractile forces in the meshwork. Because the cortex is attached to the cell membrane, it plays a central role in cell shape control. The proteic constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. The cortex has recently attracted increasing attention and its functions in cellular processes such as cytokinesis, cell migration, and embryogenesis are progressively being dissected. In this review, we summarize current knowledge on the structural organization, composition, and mechanics of the actin cortex, focusing on the link between molecular processes and macroscopic physical properties. We also highlight consequences of cortex dysfunction in disease.
Collapse
Affiliation(s)
- Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.
| | | | | |
Collapse
|
47
|
Katira P, Zaman MH, Bonnecaze RT. How changes in cell mechanical properties induce cancerous behavior. PHYSICAL REVIEW LETTERS 2012; 108:028103. [PMID: 22324713 DOI: 10.1103/physrevlett.108.028103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Indexed: 05/20/2023]
Abstract
Tumor growth and metastasis are ultimately mechanical processes involving cell migration and uncontrolled division. Using a 3D discrete model of cells, we show that increased compliance as observed for cancer cells causes them to grow at a much faster rate compared to surrounding healthy cells. We also show how changes in intercellular binding influence tumor malignancy and metastatic potential. These findings suggest that changes in the mechanical properties of cancer cells is the proximate cause of uncontrolled division and migration and various biochemical factors drive cancer progression via this mechanism.
Collapse
Affiliation(s)
- Parag Katira
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
48
|
Gyger M, Rose D, Stange R, Kiessling T, Zink M, Fabry B, Käs JA. Calcium imaging in the optical stretcher. OPTICS EXPRESS 2011; 19:19212-19222. [PMID: 21996863 DOI: 10.1364/oe.19.019212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Microfluidic Optical Stretcher (MOS) has previously been shown to be a versatile tool to measure mechanical properties of single suspended cells. In this study we combine optical stretching and fluorescent calcium imaging. A cell line transfected with a heat sensitive cation channel was used as a model system to show the versatility of the setup. The cells were loaded with the Ca(2+) dye Fluo-4 and imaged with confocal laser scanning microscopy while being stretched. During optical stretching heat is transferred to the cell causing a pronounced Ca(2+) influx through the cation channel. The technique opens new perspectives for investigating the role of Ca(2+) in regulating cell mechanical behavior.
Collapse
Affiliation(s)
- Markus Gyger
- Institut für Experimentelle Physik I, Abteilung für Physik der Weichen Materie, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Streichfuss M, Erbs F, Uhrig K, Kurre R, Clemen AEM, Böhm CHJ, Haraszti T, Spatz JP. Measuring forces between two single actin filaments during bundle formation. NANO LETTERS 2011; 11:3676-3680. [PMID: 21838252 DOI: 10.1021/nl201630y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bundles of filamentous actin are dominant cytoskeletal structures, which play a crucial role in various cellular processes. As yet quantifying the fundamental interaction between two individual actin filaments forming the smallest possible bundle has not been realized. Applying holographic optical tweezers integrated with a microfluidic platform, we were able to measure the forces between two actin filaments during bundle formation. Quantitative analysis yields forces up to 0.2 pN depending on the concentration of bundling agents.
Collapse
Affiliation(s)
- Martin Streichfuss
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|