1
|
Johnson DM, Katul G, Domec J. Catastrophic hydraulic failure and tipping points in plants. PLANT, CELL & ENVIRONMENT 2022; 45:2231-2266. [PMID: 35394656 PMCID: PMC9544843 DOI: 10.1111/pce.14327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/12/2023]
Abstract
Water inside plants forms a continuous chain from water in soils to the water evaporating from leaf surfaces. Failures in this chain result in reduced transpiration and photosynthesis and are caused by soil drying and/or cavitation-induced xylem embolism. Xylem embolism and plant hydraulic failure share several analogies to 'catastrophe theory' in dynamical systems. These catastrophes are often represented in the physiological and ecological literature as tipping points when control variables exogenous (e.g., soil water potential) or endogenous (e.g., leaf water potential) to the plant are allowed to vary on time scales much longer than time scales associated with cavitation events. Here, plant hydraulics viewed from the perspective of catastrophes at multiple spatial scales is considered with attention to bubble expansion within a xylem conduit, organ-scale vulnerability to embolism, and whole-plant biomass as a proxy for transpiration and hydraulic function. The hydraulic safety-efficiency tradeoff, hydraulic segmentation and maximum plant transpiration are examined using this framework. Underlying mechanisms for hydraulic failure at fine scales such as pit membranes and cell-wall mechanics, intermediate scales such as xylem network properties and at larger scales such as soil-tree hydraulic pathways are discussed. Understudied areas in plant hydraulics are also flagged where progress is urgently needed.
Collapse
Affiliation(s)
- Daniel M. Johnson
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - Gabriel Katul
- Department of Civil and Environmental EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
| | - Jean‐Christophe Domec
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
- Department of ForestryBordeaux Sciences Agro, UMR INRAE‐ISPA 1391GradignanFrance
| |
Collapse
|
2
|
Mrad A, Johnson DM, Love DM, Domec JC. The roles of conduit redundancy and connectivity in xylem hydraulic functions. THE NEW PHYTOLOGIST 2021; 231:996-1007. [PMID: 33908055 DOI: 10.1111/nph.17429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Wood anatomical traits shape a xylem segment's hydraulic efficiency and resistance to embolism spread due to declining water potential. It has been known for decades that variations in conduit connectivity play a role in altering xylem hydraulics. However, evaluating the precise effect of conduit connectivity has been elusive. The objective here is to establish an analytical linkage between conduit connectivity and grouping and tissue-scale hydraulics. It is hypothesized that an increase in conduit connectivity brings improved resistance to embolism spread due to increased hydraulic pathway redundancy. However, an increase in conduit connectivity could also reduce resistance due to increased speed of embolism spread with respect to pressure. We elaborate on this trade-off using graph theory, percolation theory and computational modeling of xylem. The results are validated using anatomical measurements of Acer branch xylem. Considering only species with vessels, increases in connectivity improve resistance to embolism spread without negatively affecting hydraulic conductivity. The often measured grouping index fails to capture the totality of the effect of conduit connectivity on xylem hydraulics. Variations in xylem network characteristics, such as conduit connectivity, might explain why hypothesized trends among woody species, such as the 'safety-efficiency' trade-off hypothesis, are weaker than expected.
Collapse
Affiliation(s)
- Assaad Mrad
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697, USA
- Department of Engineering, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - David M Love
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, Gradignan Cedex, 33175, France
| |
Collapse
|
3
|
Mrad A, Domec JC, Huang CW, Lens F, Katul G. A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. PLANT, CELL & ENVIRONMENT 2018; 41:2718-2730. [PMID: 30071137 DOI: 10.1111/pce.13415] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 05/06/2023]
Abstract
Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.
Collapse
Affiliation(s)
- Assaad Mrad
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
| | - Cheng-Wei Huang
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131-0001
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Gabriel Katul
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
4
|
Shen F, Cheng Y, Zhang L, Gao R, Shao X. Experimental study of the types of cavitation by air seeding using light microscopy. TREE PHYSIOLOGY 2015; 35:1325-1332. [PMID: 26338303 DOI: 10.1093/treephys/tpv060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/28/2015] [Indexed: 06/05/2023]
Abstract
Recently, three types of cavitation: (i) expanding gradually; (ii) expanding-exploding, becoming a long-shaped bubble-lengthening by degrees; (iii) suddenly exploding and fully filling the conduit instantly, were proposed. Directed by this theory, experiments were performed using light microscopy to study the natural drying processes of xylem sections of Platycladus orientalis (L.) Franco. Three different phenomena of gas filling process in conduits were captured by replaying recorded videos. The first phenomenon is that a bubble emerging in a conduit expands and elongates gradually to fill the conduit. The second phenomenon is that a bubble emerging in a conduit expands gradually, and then suddenly becomes long-shaped, and extends continuously. The third phenomenon is that a bubble instantly fully fills a conduit. This paper suggests in these experiments that after losing the bulk water of a section, as the water stress of that section became more severe, the water pressures of different conduits of the section were not necessarily the same, and as time went on, the water pressures decreased constantly. Considering some practical factors, the three phenomena captured in our experiment are explained by our theory.
Collapse
Affiliation(s)
- Fanyi Shen
- College of Science, Beijing Forestry University, Beijing 100083, PR China
| | - Yanxia Cheng
- College of Science, Beijing Forestry University, Beijing 100083, PR China
| | - Li Zhang
- College of Science, Beijing Forestry University, Beijing 100083, PR China
| | - Rongfu Gao
- College of Biology, Beijing Forestry University, Beijing 100083, PR China
| | - Xuemeng Shao
- College of Science, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
5
|
Ponomarenko A, Vincent O, Pietriga A, Cochard H, Badel É, Marmottant P. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood. J R Soc Interface 2015; 11:rsif.2014.0480. [PMID: 25056212 DOI: 10.1098/rsif.2014.0480] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Under drought conditions, the xylem of trees that conducts ascending sap produces ultrasonic emissions whose exact origin is not clear. We introduce a new method to record simultaneously both acoustic events and optical observation of the xylem conduits within slices of wood that were embedded in a transparent material setting a hydric stress. In this article, we resolved the rapid development of all cavitation bubbles and demonstrated that each ultrasound emission was linked to the nucleation of one single bubble, whose acoustic energy is an increasing function of the size of the conduit where nucleation occurred and also of the hydric stress. We modelled these observations by the fact that water columns in conduits store elastic energy and release it into acoustic waves when they are broken by cavitation bubbles. Water columns are thus elastic, and not rigid, 'wires of water' set under tension by hydric stresses. Cavitation bubbles are at the origin of an embolism, whose development was followed in our experiments. Such an embolism of sap circulation can result in a fatal condition for living trees. These findings provide new insights for the non-destructive monitoring of embolisms within trees, and suggest a new approach to study porous media under hydric stress.
Collapse
Affiliation(s)
- A Ponomarenko
- Laboratoire Interdisciplinaire de Physique, LIPhy, CNRS et Université de Grenoble, Grenoble Cedex, France
| | - O Vincent
- Laboratoire Interdisciplinaire de Physique, LIPhy, CNRS et Université de Grenoble, Grenoble Cedex, France
| | - A Pietriga
- Laboratoire Interdisciplinaire de Physique, LIPhy, CNRS et Université de Grenoble, Grenoble Cedex, France
| | - H Cochard
- INRA, UMR 547 PIAF, 63100 Clermont-Ferrand, France Clermont Université, Université Blaise Pascal, UMR 547 PIAF, 63177, Aubière, France
| | - É Badel
- INRA, UMR 547 PIAF, 63100 Clermont-Ferrand, France Clermont Université, Université Blaise Pascal, UMR 547 PIAF, 63177, Aubière, France
| | - P Marmottant
- Laboratoire Interdisciplinaire de Physique, LIPhy, CNRS et Université de Grenoble, Grenoble Cedex, France
| |
Collapse
|
6
|
|
7
|
Shen F, Wang Y, Cheng Y, Zhang L. Three types of cavitation caused by air seeding. TREE PHYSIOLOGY 2012; 32:1413-1419. [PMID: 23100258 DOI: 10.1093/treephys/tps089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
There are different opinions of the dynamics of an air bubble entering a xylem conduit. In this paper, we present a thorough mechanical analysis and conclude that there are three types of cavitation caused by air seeding. After an air seed enters a conduit at high xylem pressure P'(1), along with the drop of the water potential, it will expand gradually to a long-shaped bubble and extend continually. This is the first type of air seeding, or the type of expanding gradually. When the xylem pressure is moderate, right after an air seed enters a conduit, it will expand first. Then, as soon as the pressure reaches a threshold the bubble will blow up to form a bubble in long shape, accompanied by acoustic (or ultra-acoustic) emission. It will extend further as xylem pressure decreases continually. This is the second type of air seeding, or the type of expanding-exploding, becoming a long-shaped bubble-lengthening by degrees. In the range of P'(1) ≤ - 3P(o) (P(o) is atmospheric pressure), soon after an air seed is sucked into a conduit it will explode immediately and the conduit will be full of the gas of the bubble instantly. This is the third type of air seeding, or the type of sudden exploding and filling conduit instantly. The third type is the frequent event in daily life of plant.
Collapse
Affiliation(s)
- Fanyi Shen
- College of Science, Beijing Forestry University, Beijing, China.
| | | | | | | |
Collapse
|
8
|
Hölttä T, Juurola E, Lindfors L, Porcar-Castell A. Cavitation induced by a surfactant leads to a transient release of water stress and subsequent 'run away' embolism in Scots pine (Pinus sylvestris) seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1057-67. [PMID: 22039297 PMCID: PMC3254696 DOI: 10.1093/jxb/err349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cavitation decreases the hydraulic conductance of the xylem and has, therefore, detrimental effects on plant water balance. However, cavitation is also hypothesized to relieve water stress temporarily by releasing water from embolizing conduits to the transpiration stream. Stomatal closure in response to decreasing water potentials in order to avoid excessive cavitation has been well documented in numerous previous studies. However, it has remained unclear whether the stomata sense cavitation events themselves or whether they act in response to a decrease in leaf water potential to a level at which cavitation is initiated. The effects of massive cavitation on leaf water potential, transpiration, and stomatal behaviour were studied by feeding a surfactant into the transpiration stream of Scots pine (Pinus sylvestris) seedlings. The stomatal response to cavitation in connection with the capacitive effect was also studied. A major transient increase in leaf water potential was found due to cavitation in the seedlings. As cavitation was induced by lowering the surface tension, the two mechanisms could be uncoupled, as the usual relation between xylem water potential and the onset of cavitation did not hold. Our results indicate that the seedlings responded more to leaf water potential and less to cavitation itself, as stomatal closure was insufficient to prevent the seedlings from being driven to 'run-away' cavitation in a manner of hours.
Collapse
Affiliation(s)
- Teemu Hölttä
- University of Helsinki, Department of Forest Sciences, PO Box 27, 00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
9
|
Christensen-Dalsgaard KK, Tyree MT, Mussone PG. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species. TREE PHYSIOLOGY 2011; 31:361-368. [PMID: 21470981 DOI: 10.1093/treephys/tpr018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus aucuparia over 3 months. We measured the instantaneous surface tension and followed changes over a period of 0.5-5 h using the pendant drop technique. In all three species the instantaneous surface tension was equal to or within a few percent of that of pure water. Further, in B. papyrifera and S. aucuparia the change over time following drop establishment, although significant, was very small. In P. tremuloides, however, there was a steep decline in surface tension over time that leveled off towards values 21-27% lower than that of pure water. This indicated the presence of surfactants. The values were lower for thinner distal branch segments than for proximal ones closer to the trunk. In some species it appears valid to assume that the surface tension of xylem sap is equal to that of water. However, in branch segments of P. tremuloides close to the terminal bud and hence potentially in other species as well, it may be necessary to take into account the presence of surfactants that reduce the surface tension over time.
Collapse
|
10
|
Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. PLANT PHYSIOLOGY 2010; 154:1088-95. [PMID: 20841451 PMCID: PMC2971590 DOI: 10.1104/pp.110.162396] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/08/2010] [Indexed: 05/17/2023]
Abstract
Water moves through plants under tension and in a thermodynamically metastable state, leaving the nonliving vessels that transport this water vulnerable to blockage by gas embolisms. Failure to reestablish flow in embolized vessels can lead to systemic loss of hydraulic conductivity and ultimately death. Most plants have developed a mechanism to restore vessel functionality by refilling embolized vessels, but the details of this process in vessel networks under tension have remained unclear for decades. Here we present, to our knowledge, the first in vivo visualization and quantification of the refilling process for any species using high-resolution x-ray computed tomography. Successful vessel refilling in grapevine (Vitis vinifera) was dependent on water influx from surrounding living tissue at a rate of 6 × 10(-4) μm s(-1), with individual droplets expanding over time, filling vessels, and forcing the dissolution of entrapped gas. Both filling and draining processes could be observed in the same vessel, indicating that successful refilling requires hydraulic isolation from tensions that would otherwise prevent embolism repair. Our study demonstrates that despite the presence of tensions in the bulk xylem, plants are able to restore hydraulic conductivity in the xylem.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth A. Shackel
- Department of Viticulture and Enology (C.R.B., A.J.M., M.A.M.) and Department of Plant Sciences (K.A.S.), University of California, Davis, California 95616; United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, California 95616 (A.J.M.); and Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (B.C.)
| |
Collapse
|
11
|
Beikircher B, Ameglio T, Cochard H, Mayr S. Limitation of the Cavitron technique by conifer pit aspiration. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3385-3393. [PMID: 20551085 DOI: 10.1093/jxb/erq159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Cavitron technique facilitates time and material saving for vulnerability analysis. The use of rotors with small diameters leads to high water pressure gradients (DeltaP) across samples, which may cause pit aspiration in conifers. In this study, the effect of pit aspiration on Cavitron measurements was analysed and a modified 'conifer method' was tested which avoids critical (i.e. pit aspiration inducing) DeltaP. Four conifer species were used (Juniperus communis, Picea abies, Pinus sylvestris, and Larix decidua) for vulnerability analysis based on the standard Cavitron technique and the conifer method. In addition, DeltaP thresholds for pit aspiration were determined and water extraction curves were constructed. Vulnerability curves obtained with the standard method showed generally a less negative P for the induction of embolism than curves of the conifer method. Differences were species-specific with the smallest effects in Juniperus. Larix showed the most pronounced shifts in P(50) (pressure at 50% loss of conductivity) between the standard (-1.5 MPa) and the conifer (-3.5 MPa) methods. Pit aspiration occurred at the lowest DeltaP in Larix and at the highest in Juniperus. Accordingly, at a spinning velocity inducing P(50), DeltaP caused only a 4% loss of conductivity induced by pit aspiration in Juniperus, but about 60% in Larix. Water extraction curves were similar to vulnerability curves indicating that spinning itself did not affect pits. Conifer pit aspiration can have major influences on Cavitron measurements and lead to an overestimation of vulnerability thresholds when a small rotor is used. Thus, the conifer method presented here enables correct vulnerability analysis by avoiding artificial conductivity losses.
Collapse
Affiliation(s)
- B Beikircher
- Institute of Botany, University of Innsbruck, Sternwartestrabetae 15, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
12
|
Hölttä T, Cochard H, Nikinmaa E, Mencuccini M. Capacitive effect of cavitation in xylem conduits: results from a dynamic model. PLANT, CELL & ENVIRONMENT 2009; 32:10-21. [PMID: 19076529 DOI: 10.1111/j.1365-3040.2008.01894.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Embolisms decrease plant hydraulic conductance and therefore reduce the ability of the xylem to transport water to leaves provided that embolized conduits are not refilled. However, as a xylem conduit is filled with gas during cavitation, water is freed to the transpiration stream and this transiently increases xylem water potential. This capacitive effect of embolism formation on plant function has not been explicitly quantified in the past. A dynamic model is presented that models xylem water potential, xylem sap flow and cavitation, taking into account both the decreasing hydraulic conductance and the water release effect of xylem embolism. The significance of the capacitive effect increases in relation to the decreasing hydraulic conductance effect when transpiration rate is low in relation to the total amount of water in xylem conduits. This ratio is typically large in large trees and during drought.
Collapse
Affiliation(s)
- Teemu Hölttä
- Department of Forest Ecology, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|