1
|
Park SW, Bolker BM, Funk S, Metcalf CJE, Weitz JS, Grenfell BT, Dushoff J. The importance of the generation interval in investigating dynamics and control of new SARS-CoV-2 variants. J R Soc Interface 2022; 19:20220173. [PMID: 35702867 PMCID: PMC9198506 DOI: 10.1098/rsif.2022.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Inferring the relative strength (i.e. the ratio of reproduction numbers) and relative speed (i.e. the difference between growth rates) of new SARS-CoV-2 variants is critical to predicting and controlling the course of the current pandemic. Analyses of new variants have primarily focused on characterizing changes in the proportion of new variants, implicitly or explicitly assuming that the relative speed remains fixed over the course of an invasion. We use a generation-interval-based framework to challenge this assumption and illustrate how relative strength and speed change over time under two idealized interventions: a constant-strength intervention like idealized vaccination or social distancing, which reduces transmission rates by a constant proportion, and a constant-speed intervention like idealized contact tracing, which isolates infected individuals at a constant rate. In general, constant-strength interventions change the relative speed of a new variant, while constant-speed interventions change its relative strength. Differences in the generation-interval distributions between variants can exaggerate these changes and modify the effectiveness of interventions. Finally, neglecting differences in generation-interval distributions can bias estimates of relative strength.
Collapse
Affiliation(s)
- Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Benjamin M. Bolker
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Sebastian Funk
- Department for Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Joshua S. Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Singer BJ, Thompson RN, Bonsall MB. The effect of the definition of 'pandemic' on quantitative assessments of infectious disease outbreak risk. Sci Rep 2021; 11:2547. [PMID: 33510197 PMCID: PMC7844018 DOI: 10.1038/s41598-021-81814-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
In the early stages of an outbreak, the term 'pandemic' can be used to communicate about infectious disease risk, particularly by those who wish to encourage a large-scale public health response. However, the term lacks a widely accepted quantitative definition. We show that, under alternate quantitative definitions of 'pandemic', an epidemiological metapopulation model produces different estimates of the probability of a pandemic. Critically, we show that using different definitions alters the projected effects of key parameters-such as inter-regional travel rates, degree of pre-existing immunity, and heterogeneity in transmission rates between regions-on the risk of a pandemic. Our analysis provides a foundation for understanding the scientific importance of precise language when discussing pandemic risk, illustrating how alternative definitions affect the conclusions of modelling studies. This serves to highlight that those working on pandemic preparedness must remain alert to the variability in the use of the term 'pandemic', and provide specific quantitative definitions when undertaking one of the types of analysis that we show to be sensitive to the pandemic definition.
Collapse
Affiliation(s)
| | - Robin N Thompson
- Christ Church, University of Oxford, Oxford, UK
- Mathematical Institute, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Thompson RN, Gilligan CA, Cunniffe NJ. Will an outbreak exceed available resources for control? Estimating the risk from invading pathogens using practical definitions of a severe epidemic. J R Soc Interface 2020; 17:20200690. [PMID: 33171074 PMCID: PMC7729054 DOI: 10.1098/rsif.2020.0690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Forecasting whether or not initial reports of disease will be followed by a severe epidemic is an important component of disease management. Standard epidemic risk estimates involve assuming that infections occur according to a branching process and correspond to the probability that the outbreak persists beyond the initial stochastic phase. However, an alternative assessment is to predict whether or not initial cases will lead to a severe epidemic in which available control resources are exceeded. We show how this risk can be estimated by considering three practically relevant potential definitions of a severe epidemic; namely, an outbreak in which: (i) a large number of hosts are infected simultaneously; (ii) a large total number of infections occur; and (iii) the pathogen remains in the population for a long period. We show that the probability of a severe epidemic under these definitions often coincides with the standard branching process estimate for the major epidemic probability. However, these practically relevant risk assessments can also be different from the major epidemic probability, as well as from each other. This holds in different epidemiological systems, highlighting that careful consideration of how to classify a severe epidemic is vital for accurate epidemic risk quantification.
Collapse
Affiliation(s)
- R. N. Thompson
- Mathematical Institute, University of Oxford, Oxford, UK
- Christ Church, University of Oxford, Oxford, UK
| | - C. A. Gilligan
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - N. J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Miller JC. A primer on the use of probability generating functions in infectious disease modeling. Infect Dis Model 2018; 3:192-248. [PMID: 30839899 PMCID: PMC6326237 DOI: 10.1016/j.idm.2018.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 11/26/2022] Open
Abstract
We explore the application of probability generating functions (PGFs) to invasive processes, focusing on infectious disease introduced into large populations. Our goal is to acquaint the reader with applications of PGFs, moreso than to derive new results. PGFs help predict a number of properties about early outbreak behavior while the population is still effectively infinite, including the probability of an epidemic, the size distribution after some number of generations, and the cumulative size distribution of non-epidemic outbreaks. We show how PGFs can be used in both discrete-time and continuous-time settings, and discuss how to use these results to infer disease parameters from observed outbreaks. In the large population limit for susceptible-infected-recovered (SIR) epidemics PGFs lead to survival-function based models that are equivalent to the usual mass-action SIR models but with fewer ODEs. We use these to explore properties such as the final size of epidemics or even the dynamics once stochastic effects are negligible. We target this primer at biologists and public health researchers with mathematical modeling experience who want to learn how to apply PGFs to invasive diseases, but it could also be used in an applications-based mathematics course on PGFs. We include many exercises to help demonstrate concepts and to give practice applying the results. We summarize our main results in a few tables. Additionally we provide a small python package which performs many of the relevant calculations.
Collapse
|
5
|
Romero-Severson E, Meadors G, Volz E. A generating function approach to HIV transmission with dynamic contact rates. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2014; 9:121-135. [PMID: 27087760 PMCID: PMC4831738 DOI: 10.1051/mmnp/20149208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The basic reproduction number, R0, is often defined as the average number of infections generated by a newly infected individual in a fully susceptible population. The interpretation, meaning, and derivation of R0 are controversial. However, in the context of mean field models, R0 demarcates the epidemic threshold below which the infected population approaches zero in the limit of time. In this manner, R0 has been proposed as a method for understanding the relative impact of public health interventions with respect to disease eliminations from a theoretical perspective. The use of R0 is made more complex by both the strong dependency of R0 on the model form and the stochastic nature of transmission. A common assumption in models of HIV transmission that have closed form expressions for R0 is that a single individual's behavior is constant over time. In this paper we derive expressions for both R0 and probability of an epidemic in a finite population under the assumption that people periodically change their sexual behavior over time. We illustrate the use of generating functions as a general framework to model the effects of potentially complex assumptions on the number of transmissions generated by a newly infected person in a susceptible population. We find that the relationship between the probability of an epidemic and R0 is not straightforward, but, that as the rate of change in sexual behavior increases both R0 and the probability of an epidemic also decrease.
Collapse
Affiliation(s)
- E.O. Romero-Severson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| | - G.D. Meadors
- Department of Physics, University of Michigan, Ann Arbor, MI
| | - E.M. Volz
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
Glass K, Barnes B. Eliminating infectious diseases of livestock: A metapopulation model of infection control. Theor Popul Biol 2013; 85:63-72. [DOI: 10.1016/j.tpb.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
7
|
Roberts MG, Nishiura H. Early estimation of the reproduction number in the presence of imported cases: pandemic influenza H1N1-2009 in New Zealand. PLoS One 2011; 6:e17835. [PMID: 21637342 PMCID: PMC3102662 DOI: 10.1371/journal.pone.0017835] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/16/2011] [Indexed: 11/18/2022] Open
Abstract
We analyse data from the early epidemic of H1N1-2009 in New Zealand, and estimate the reproduction number . We employ a renewal process which accounts for imported cases, illustrate some technical pitfalls, and propose a novel estimation method to address these pitfalls. Explicitly accounting for the infection-age distribution of imported cases and for the delay in transmission dynamics due to international travel, was estimated to be (95% confidence interval: ). Hence we show that a previous study, which did not account for these factors, overestimated . Our approach also permitted us to examine the infection-age at which secondary transmission occurs as a function of calendar time, demonstrating the downward bias during the beginning of the epidemic. These technical issues may compromise the usefulness of a well-known estimator of - the inverse of the moment-generating function of the generation time given the intrinsic growth rate. Explicit modelling of the infection-age distribution among imported cases and the examination of the time dependency of the generation time play key roles in avoiding a biased estimate of , especially when one only has data covering a short time interval during the early growth phase of the epidemic.
Collapse
Affiliation(s)
- Michael George Roberts
- Centre for Mathematical Biology, Institute of Information and Mathematical Sciences, Massey University, Auckland, New Zealand.
| | | |
Collapse
|
8
|
Arino J, Bauch C, Brauer F, Driedger SM, Greer AL, Moghadas SM, Pizzi NJ, Sander B, Tuite A, van den Driessche P, Watmough J, Wu J, Yan P. Pandemic influenza: Modelling and public health perspectives. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2011; 8:1-20. [PMID: 21361397 DOI: 10.3934/mbe.2011.8.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We describe the application of mathematical models in the study of disease epidemics with particular focus on pandemic influenza. We outline the general mathematical approach and the complications arising from attempts to apply it for disease outbreak management in a real public health context.
Collapse
Affiliation(s)
- Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Outbreak properties of epidemic models: the roles of temporal forcing and stochasticity on pathogen invasion dynamics. J Theor Biol 2010; 271:1-9. [PMID: 21094169 DOI: 10.1016/j.jtbi.2010.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/07/2010] [Accepted: 11/08/2010] [Indexed: 11/21/2022]
Abstract
Despite temporally forced transmission driving many infectious diseases, analytical insight into its role when combined with stochastic disease processes and non-linear transmission has received little attention. During disease outbreaks, however, the absence of saturation effects early on in well-mixed populations mean that epidemic models may be linearised and we can calculate outbreak properties, including the effects of temporal forcing on fade-out, disease emergence and system dynamics, via analysis of the associated master equations. The approach is illustrated for the unforced and forced SIR and SEIR epidemic models. We demonstrate that in unforced models, initial conditions (and any uncertainty therein) play a stronger role in driving outbreak properties than the basic reproduction number R0, while the same properties are highly sensitive to small amplitude temporal forcing, particularly when R0 is small. Although illustrated for the SIR and SEIR models, the master equation framework may be applied to more realistic models, although analytical intractability scales rapidly with increasing system dimensionality. One application of these methods is obtaining a better understanding of the rate at which vector-borne and waterborne infectious diseases invade new regions given variability in environmental drivers, a particularly important question when addressing potential shifts in the global distribution and intensity of infectious diseases under climate change.
Collapse
|
10
|
Affiliation(s)
- Fred Brauer
- University of British Columbia, Vancouver, Canada
| |
Collapse
|