1
|
Freingruber V, Painter KJ, Ptashnyk M, Schumacher LJ. A biased random walk approach for modeling the collective chemotaxis of neural crest cells. J Math Biol 2024; 88:32. [PMID: 38407620 PMCID: PMC10896796 DOI: 10.1007/s00285-024-02047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Collective cell migration is a multicellular phenomenon that arises in various biological contexts, including cancer and embryo development. 'Collectiveness' can be promoted by cell-cell interactions such as co-attraction and contact inhibition of locomotion. These mechanisms act on cell polarity, pivotal for directed cell motility, through influencing the intracellular dynamics of small GTPases such as Rac1. To model these dynamics we introduce a biased random walk model, where the bias depends on the internal state of Rac1, and the Rac1 state is influenced by cell-cell interactions and chemoattractive cues. In an extensive simulation study we demonstrate and explain the scope and applicability of the introduced model in various scenarios. The use of a biased random walk model allows for the derivation of a corresponding partial differential equation for the cell density while still maintaining a certain level of intracellular detail from the individual based setting.
Collapse
Affiliation(s)
- Viktoria Freingruber
- Department of Mathematics, The Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK.
- The Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, Scotland, UK.
| | - Kevin J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Viale Pier Andrea Mattioli, 39, Turin, 10125, Italy
| | - Mariya Ptashnyk
- Department of Mathematics, The Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Linus J Schumacher
- The Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, Scotland, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh, EH164UU, Scotland, UK
| |
Collapse
|
2
|
Clark KB. Neural Field Continuum Limits and the Structure-Function Partitioning of Cognitive-Emotional Brain Networks. BIOLOGY 2023; 12:352. [PMID: 36979044 PMCID: PMC10045557 DOI: 10.3390/biology12030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
In The cognitive-emotional brain, Pessoa overlooks continuum effects on nonlinear brain network connectivity by eschewing neural field theories and physiologically derived constructs representative of neuronal plasticity. The absence of this content, which is so very important for understanding the dynamic structure-function embedding and partitioning of brains, diminishes the rich competitive and cooperative nature of neural networks and trivializes Pessoa's arguments, and similar arguments by other authors, on the phylogenetic and operational significance of an optimally integrated brain filled with variable-strength neural connections. Riemannian neuromanifolds, containing limit-imposing metaplastic Hebbian- and antiHebbian-type control variables, simulate scalable network behavior that is difficult to capture from the simpler graph-theoretic analysis preferred by Pessoa and other neuroscientists. Field theories suggest the partitioning and performance benefits of embedded cognitive-emotional networks that optimally evolve between exotic classical and quantum computational phases, where matrix singularities and condensations produce degenerate structure-function homogeneities unrealistic of healthy brains. Some network partitioning, as opposed to unconstrained embeddedness, is thus required for effective execution of cognitive-emotional network functions and, in our new era of neuroscience, should be considered a critical aspect of proper brain organization and operation.
Collapse
Affiliation(s)
- Kevin B. Clark
- Cures Within Reach, Chicago, IL 60602, USA;
- Felidae Conservation Fund, Mill Valley, CA 94941, USA
- Campus and Domain Champions Program, Multi-Tier Assistance, Training, and Computational Help (MATCH) Track, National Science Foundation’s Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS), https://access-ci.org/
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Network for Life Detection (NfoLD), NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Multi-Omics and Systems Biology & Artificial Intelligence and Machine Learning Analysis Working Groups, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- Frontier Development Lab, NASA Ames Research Center, Mountain View, CA 94035, USA & SETI Institute, Mountain View, CA 94043, USA
- Peace Innovation Institute, The Hague 2511, Netherlands & Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016, USA
| |
Collapse
|
3
|
Shellard A, Mayor R. Rules of collective migration: from the wildebeest to the neural crest. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190387. [PMID: 32713298 PMCID: PMC7423382 DOI: 10.1098/rstb.2019.0387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective migration, the movement of groups in which individuals affect the behaviour of one another, occurs at practically every scale, from bacteria up to whole species' populations. Universal principles of collective movement can be applied at all levels. In this review, we will describe the rules governing collective motility, with a specific focus on the neural crest, an embryonic stem cell population that undergoes extensive collective migration during development. We will discuss how the underlying principles of individual cell behaviour, and those that emerge from a supracellular scale, can explain collective migration. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
4
|
Colombi A, Scianna M, Painter KJ, Preziosi L. Modelling chase-and-run migration in heterogeneous populations. J Math Biol 2019; 80:423-456. [PMID: 31468116 PMCID: PMC7012813 DOI: 10.1007/s00285-019-01421-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Cell migration is crucial for many physiological and pathological processes. During embryogenesis, neural crest cells undergo coordinated epithelial to mesenchymal transformations and migrate towards various forming organs. Here we develop a computational model to understand how mutual interactions between migrating neural crest cells (NCs) and the surrounding population of placode cells (PCs) generate coordinated migration. According to experimental findings, we implement a minimal set of hypotheses, based on a coupling between chemotactic movement of NCs in response to a placode-secreted chemoattractant (Sdf1) and repulsion induced from contact inhibition of locomotion (CIL), triggered by heterotypic NC–PC contacts. This basic set of assumptions is able to semi-quantitatively recapitulate experimental observations of the characteristic multispecies phenomenon of “chase-and-run”, where the colony of NCs chases an evasive PC aggregate. The model further reproduces a number of in vitro manipulations, including full or partial disruption of NC chemotactic migration and selected mechanisms coordinating the CIL phenomenon. Finally, we provide various predictions based on altering other key components of the model mechanisms.
Collapse
Affiliation(s)
- A Colombi
- Department of Mathematical Sciences "G. L. Lagrange" - Excellence Department 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - M Scianna
- Department of Mathematical Sciences "G. L. Lagrange" - Excellence Department 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - K J Painter
- Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK.
| | - L Preziosi
- Department of Mathematical Sciences "G. L. Lagrange" - Excellence Department 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| |
Collapse
|
5
|
Sipahi R, Zupanc GKH. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. J Theor Biol 2019; 445:151-165. [PMID: 29477556 DOI: 10.1016/j.jtbi.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/05/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems.
Collapse
Affiliation(s)
- Rifat Sipahi
- Complex Dynamic Systems and Control Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
6
|
Addressing Interdisciplinary Difficulties in Developmental Biology/Mathematical Collaborations: A Neural Crest Example. Methods Mol Biol 2019. [PMID: 30977062 DOI: 10.1007/978-1-4939-9412-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mathematical modeling can allow insight into the biological processes that can be difficult to access by conventional biological means alone. Such projects are becoming increasingly attractive with the appearance of faster and more powerful quantitative techniques in both biological data acquisition and data storage, manipulation, and presentation. However, as is frequent in interdisciplinary research, the main hurdles are not within the mindset and techniques of each discipline but are usually encountered in attempting to meld the different disciplines together. Based upon our experience in applying mathematical methods to investigate how neural crest cells interact to form the enteric nervous system, we present our views on how to pursue biomathematical modeling projects, what difficulties to expect, and how to overcome, or at least survive, these hurdles. The main advice being: persevere.
Collapse
|
7
|
Schumacher LJ. Neural crest migration with continuous cell states. J Theor Biol 2019; 481:84-90. [PMID: 30707976 DOI: 10.1016/j.jtbi.2019.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
Models of cranial neural crest cell migration in cell-induced (or self-generated) gradients have included a division of labour into leader and follower migratory states, which undergo chemotaxis and contact guidance, respectively. Despite validated utility of these models through experimental perturbation of migration in the chick embryo and gene expression analysis showing relevant heterogeneity at the single cell level, an often raised question has been whether the discrete cell states are necessary, or if a continuum of cell behaviours offers a functionally equivalent description. Here we argue that this picture is supported by recent single-cell transcriptome data. Motivated by this, we implement two versions of a continuous-state model: (1) signal choice and (2) signal combination. We find that the cell population migrates further than in the discrete-state model and than in experimental observations. We further show that the signal combination model, but not the signal choice model, can be successfully adjusted to experimentally plausible regimes by reducing the chemoattractant consumption parameter. Thus we show an equivalently plausible, experimentally motivated, model of neural crest cell migration.
Collapse
Affiliation(s)
- Linus J Schumacher
- MCR Centre for Regenerative Medicine, University of Edinburgh, United Kingdom.
| |
Collapse
|
8
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
9
|
Schumacher LJ, Kulesa PM, McLennan R, Baker RE, Maini PK. Multidisciplinary approaches to understanding collective cell migration in developmental biology. Open Biol 2017; 6:rsob.160056. [PMID: 27278647 PMCID: PMC4929938 DOI: 10.1098/rsob.160056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell–cell interactions, cell–environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions.
Collapse
Affiliation(s)
- Linus J Schumacher
- Mathematics, University of Oxford, Oxford, UK Department of Life Sciences and Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 60114, USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 60114, USA
| | | | | |
Collapse
|
10
|
Stramer B, Mayor R. Mechanisms and in vivo functions of contact inhibition of locomotion. Nat Rev Mol Cell Biol 2016; 18:43-55. [PMID: 27677859 DOI: 10.1038/nrm.2016.118] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes its trajectory upon collision with another cell. CIL was initially characterized more than half a century ago and became a widely studied model system to understand how cells migrate and dynamically interact. Although CIL fell from interest for several decades, the scientific community has recently rediscovered this process. We are now beginning to understand the precise steps of this complex behaviour and to elucidate its regulatory components, including receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just in vitro phenomenology; we now know from several different in vivo models that CIL is essential for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and collective cell migration. In addition, changes in CIL responses have been associated with other physiological processes, such as cancer cell dissemination during metastasis.
Collapse
Affiliation(s)
- Brian Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
George L, Dunkel H, Hunnicutt BJ, Filla M, Little C, Lansford R, Lefcort F. In vivo time-lapse imaging reveals extensive neural crest and endothelial cell interactions during neural crest migration and formation of the dorsal root and sympathetic ganglia. Dev Biol 2016; 413:70-85. [PMID: 26988118 PMCID: PMC4834247 DOI: 10.1016/j.ydbio.2016.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/11/2016] [Accepted: 02/27/2016] [Indexed: 11/21/2022]
Abstract
During amniote embryogenesis the nervous and vascular systems interact in a process that significantly affects the respective morphogenesis of each network by forming a "neurovascular" link. The importance of neurovascular cross-talk in the central nervous system has recently come into focus with the growing awareness that these two systems interact extensively both during development, in the stem-cell niche, and in neurodegenerative conditions such as Alzheimer's Disease and Amyotrophic Lateral Sclerosis. With respect to the peripheral nervous system, however, there have been no live, real-time investigations of the potential relationship between these two developing systems. To address this deficit, we used multispectral 4D time-lapse imaging in a transgenic quail model in which endothelial cells (ECs) express a yellow fluorescent marker, while neural crest cells (NCCs) express an electroporated red fluorescent marker. We monitored EC and NCC migration in real-time during formation of the peripheral nervous system. Our time-lapse recordings indicate that NCCs and ECs are physically juxtaposed and dynamically interact at multiple locations along their trajectories. These interactions are stereotypical and occur at precise anatomical locations along the NCC migratory pathway. NCCs migrate alongside the posterior surface of developing intersomitic vessels, but fail to cross these continuous streams of motile ECs. NCCs change their morphology and migration trajectory when they encounter gaps in the developing vasculature. Within the nascent dorsal root ganglion, proximity to ECs causes filopodial retraction which curtails forward persistence of NCC motility. Overall, our time-lapse recordings support the conclusion that primary vascular networks substantially influence the distribution and migratory behavior of NCCs and the patterned formation of dorsal root and sympathetic ganglia.
Collapse
Affiliation(s)
- Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, United States; Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, United States.
| | - Haley Dunkel
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, United States
| | - Barbara J Hunnicutt
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, United States
| | - Michael Filla
- University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Charles Little
- University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
12
|
Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin. Dev Biol 2016; 414:85-99. [PMID: 27041467 PMCID: PMC4937886 DOI: 10.1016/j.ydbio.2016.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.
Collapse
|
13
|
Cox BN, Snead ML. Cells as strain-cued automata. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2016; 87:177-226. [PMID: 31178602 PMCID: PMC6550492 DOI: 10.1016/j.jmps.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in homogeneous populations and network formation by invaders, morphological outcomes are governed by the ratio of the rates of two competing time dependent processes, one a migration velocity and the other a relaxation velocity related to the propagation of strain information. Relaxation velocities are approximately constant for different species and organs, whereas cell migration rates vary by three orders of magnitude. We conjecture that developmental processes use rapid cell migration to achieve certain outcomes, and slow migration to achieve others. We infer from analysis of host relaxation during network formation that a transition exists in the mechanical response of a host cell from animate to inanimate behavior when its strain changes at a rate that exceeds 10-4-10-3s-1. The transition has previously been observed in experiments conducted in vitro.
Collapse
Affiliation(s)
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Stathopoulou A, Natarajan D, Nikolopoulou P, Patmanidi AL, Lygerou Z, Pachnis V, Taraviras S. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis. Dev Biol 2015; 409:392-405. [PMID: 26658318 DOI: 10.1016/j.ydbio.2015.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022]
Abstract
Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells.
Collapse
Affiliation(s)
| | - Dipa Natarajan
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | | | | | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
15
|
Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, Newgreen D. The neural crest: a versatile organ system. ACTA ACUST UNITED AC 2014; 102:275-98. [PMID: 25227568 DOI: 10.1002/bdrc.21081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy.
Collapse
|
16
|
Directional collective cell migration emerges as a property of cell interactions. PLoS One 2014; 9:e104969. [PMID: 25181349 PMCID: PMC4152153 DOI: 10.1371/journal.pone.0104969] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Collective cell migration is a fundamental process, occurring during embryogenesis and cancer metastasis. Neural crest cells exhibit such coordinated migration, where aberrant motion can lead to fatality or dysfunction of the embryo. Migration involves at least two complementary mechanisms: contact inhibition of locomotion (a repulsive interaction corresponding to a directional change of migration upon contact with a reciprocating cell), and co-attraction (a mutual chemoattraction mechanism). Here, we develop and employ a parameterized discrete element model of neural crest cells, to investigate how these mechanisms contribute to long-range directional migration during development. Motion is characterized using a coherence parameter and the time taken to reach, collectively, a target location. The simulated cell group is shown to switch from a diffusive to a persistent state as the response-rate to co-attraction is increased. Furthermore, the model predicts that when co-attraction is inhibited, neural crest cells can migrate into restrictive regions. Indeed, inhibition of co-attraction in vivo and in vitro leads to cell invasion into restrictive areas, confirming the prediction of the model. This suggests that the interplay between the complementary mechanisms may contribute to guidance of the neural crest. We conclude that directional migration is a system property and does not require action of external chemoattractants.
Collapse
|
17
|
Ridenour DA, McLennan R, Teddy JM, Semerad CL, Haug JS, Kulesa PM. The neural crest cell cycle is related to phases of migration in the head. Development 2014; 141:1095-103. [PMID: 24550117 DOI: 10.1242/dev.098855] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Embryonic cells that migrate long distances must critically balance cell division in order to maintain stream dynamics and population of peripheral targets. Yet details of individual cell division events and how cell cycle is related to phases of migration remain unclear. Here, we examined these questions using the chick cranial neural crest (NC). In vivo time-lapse imaging revealed that a typical migrating NC cell division event lasted ~1 hour and included four stereotypical steps. Cell tracking showed that dividing NC cells maintained position relative to non-dividing neighbors. NC cell division orientation and the time and distance to first division after neural tube exit were stochastic. To address how cell cycle is related to phases of migration, we used FACs analysis to identify significant spatiotemporal differences in NC cell cycle profiles. Two-photon photoconversion of single and small numbers of mKikGR-labeled NC cells confirmed that lead NC cells exhibited a nearly fourfold faster doubling time after populating the branchial arches. By contrast, Ki-67 staining showed that one out of every five later emerging NC cells exited the cell cycle after reaching proximal head targets. The relatively quiescent mitotic activity during NC cell migration to the branchial arches was altered when premigratory cells were reduced in number by tissue ablation. Together, our results provide the first comprehensive details of the pattern and dynamics of cell division events during cranial NC cell migration.
Collapse
Affiliation(s)
- Dennis A Ridenour
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
18
|
Cheeseman BL, Zhang D, Binder BJ, Newgreen DF, Landman KA. Cell lineage tracing in the developing enteric nervous system: superstars revealed by experiment and simulation. J R Soc Interface 2014; 11:20130815. [PMID: 24501272 PMCID: PMC3928926 DOI: 10.1098/rsif.2013.0815] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell lineage tracing is a powerful tool for understanding how proliferation and differentiation of individual cells contribute to population behaviour. In the developing enteric nervous system (ENS), enteric neural crest (ENC) cells move and undergo massive population expansion by cell division within self-growing mesenchymal tissue. We show that single ENC cells labelled to follow clonality in the intestine reveal extraordinary and unpredictable variation in number and position of descendant cells, even though ENS development is highly predictable at the population level. We use an agent-based model to simulate ENC colonization and obtain agent lineage tracing data, which we analyse using econometric data analysis tools. In all realizations, a small proportion of identical initial agents accounts for a substantial proportion of the total final agent population. We term these individuals superstars. Their existence is consistent across individual realizations and is robust to changes in model parameters. This inequality of outcome is amplified at elevated proliferation rate. The experiments and model suggest that stochastic competition for resources is an important concept when understanding biological processes which feature high levels of cell proliferation. The results have implications for cell-fate processes in the ENS.
Collapse
Affiliation(s)
- Bevan L Cheeseman
- Department of Mathematics and Statistics, University of Melbourne, , Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
19
|
Delalande JM, Natarajan D, Vernay B, Finlay M, Ruhrberg C, Thapar N, Burns AJ. Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Dev Biol 2013; 385:220-9. [PMID: 24262984 PMCID: PMC3928993 DOI: 10.1016/j.ydbio.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
The vasculature and nervous system share striking similarities in their networked, tree-like architecture and in the way they are super-imposed in mature organs. It has previously been suggested that the intestinal microvasculature network directs the migration of enteric neural crest cells (ENCC) along the gut to promote the formation of the enteric nervous system (ENS). To investigate the inter-relationship of migrating ENCC, ENS formation and gut vascular development we combined fate-mapping of ENCC with immunolabelling and intravascular dye injection to visualise nascent blood vessel networks. We found that the enteric and vascular networks initially had very distinct patterns of development. In the foregut, ENCC migrated through areas devoid of established vascular networks. In vessel-rich areas, such as the midgut and hindgut, the distribution of migrating ENCC did not support the idea that these cells followed a pre-established vascular network. Moreover, when gut vascular development was impaired, either genetically in Vegfa(120/120) or Tie2-Cre;Nrp1(fl/-) mice or using an in vitro Wnt1-Cre;Rosa26(Yfp/+) mouse model of ENS development, ENCC still colonised the entire length of the gut, including the terminal hindgut. These results demonstrate that blood vessel networks are not necessary to guide migrating ENCC during ENS development. Conversely, in miRet(51) mice, which lack ENS in the hindgut, the vascular network in this region appeared to be normal suggesting that in early development both networks form independently of each other.
Collapse
Affiliation(s)
- Jean-Marie Delalande
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Dipa Natarajan
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Bertrand Vernay
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Malcolm Finlay
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Nikhil Thapar
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Alan J Burns
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; Department of Clinical Genetics, The Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Newgreen DF, Dufour S, Howard MJ, Landman KA. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev Biol 2013; 382:305-19. [PMID: 23838398 PMCID: PMC4694584 DOI: 10.1016/j.ydbio.2013.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
Abstract
We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins.
Collapse
Affiliation(s)
- Donald F Newgreen
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia.
| | | | | | | |
Collapse
|
21
|
Gisser JM, Cohen AR, Yin H, Gariepy CE. A novel bidirectional interaction between endothelin-3 and retinoic acid in rat enteric nervous system precursors. PLoS One 2013; 8:e74311. [PMID: 24040226 PMCID: PMC3767828 DOI: 10.1371/journal.pone.0074311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/02/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung's aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. METHODS Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. RESULTS Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. CONCLUSIONS A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations.
Collapse
Affiliation(s)
- Jonathan M. Gisser
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| | - Ariella R. Cohen
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Han Yin
- The Biostatistics Shared Resources, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Cheryl E. Gariepy
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
22
|
Wynn ML, Rupp P, Trainor PA, Schnell S, Kulesa PM. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals. Phys Biol 2013; 10:035003. [PMID: 23735560 PMCID: PMC3756809 DOI: 10.1088/1478-3975/10/3/035003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns.
Collapse
Affiliation(s)
- Michelle L Wynn
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
23
|
Larue L, de Vuyst F, Delmas V. Modeling melanoblast development. Cell Mol Life Sci 2013; 70:1067-79. [PMID: 22915137 PMCID: PMC11113344 DOI: 10.1007/s00018-012-1112-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/17/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
Melanoblasts are a particular type of cell that displays extensive cellular proliferation during development to contribute to the skin. There are only a few melanoblast founders, initially located just dorsal to the neural tube, and they sequentially colonize the dermis, epidermis, and hair follicles. In each compartment, melanoblasts are exposed to a wide variety of developmental cues that regulate their expansion. The colonization of the dermis and epidermis by melanoblasts involves substantial proliferation to generate thousands of cells or more from a few founders within a week of development. This review addresses the cellular and molecular events occurring during melanoblast development. We focus on intrinsic and extrinsic factors that control melanoblast proliferation. We also present a robust mathematical model for estimating the doubling-time of dermal and epidermal melanoblasts for all coat color phenotypes from black to white.
Collapse
Affiliation(s)
- Lionel Larue
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405, Orsay, France.
| | | | | |
Collapse
|
24
|
Garijo N, Manzano R, Osta R, Perez M. Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells. J Theor Biol 2012; 314:1-9. [DOI: 10.1016/j.jtbi.2012.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/10/2012] [Accepted: 08/02/2012] [Indexed: 10/27/2022]
|
25
|
Theveneau E, Mayor R. Can mesenchymal cells undergo collective cell migration? The case of the neural crest. Cell Adh Migr 2012; 5:490-8. [PMID: 22274714 DOI: 10.4161/cam.5.6.18623] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step towards malignancy. Migratory cells are often categorized into two groups: mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on Neural Crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that other mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
26
|
Broders-Bondon F, Paul-Gilloteaux P, Carlier C, Radice GL, Dufour S. N-cadherin and β1-integrins cooperate during the development of the enteric nervous system. Dev Biol 2012; 364:178-91. [PMID: 22342243 DOI: 10.1016/j.ydbio.2012.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
Abstract
Cell adhesion controls various embryonic morphogenetic processes, including the development of the enteric nervous system (ENS). Ablation of β1-integrin (β1-/-) expression in enteric neural crest cells (ENCC) in mice leads to major alterations in the ENS structure caused by reduced migration and increased aggregation properties of ENCC during gut colonization, which gives rise to a Hirschsprung's disease-like phenotype. In the present study, we examined the role of N-cadherin in ENS development and the interplay with β1 integrins during this process. The Ht-PA-Cre mouse model was used to target gene disruption of N-cadherin and β1 integrin in migratory NCC and to produce single- and double-conditional mutants for these two types of adhesion receptors. Double mutation of N-cadherin and β1 integrin led to embryonic lethality with severe defects in ENS development. N-cadherin-null (Ncad-/-) ENCC exhibited a delayed colonization in the developing gut at E12.5, although this was to a lesser extent than in β1-/- mutants. This delay of Ncad-/- ENCC migration was recovered at later stages of development. The double Ncad-/-; β1-/- mutant ENCC failed to colonize the distal part of the gut and there was more severe aganglionosis in the proximal hindgut than in the single mutants for N-cadherin or β1-integrin. This was due to an altered speed of locomotion and directionality in the gut wall. The abnormal aggregation defect of ENCC and the disorganized ganglia network in the β1-/- mutant was not observed in the double mutant. This indicates that N-cadherin enhances the effect of the β1-integrin mutation and demonstrates cooperation between these two adhesion receptors during ENS ontogenesis. In conclusion, our data reveal that N-cadherin is not essential for ENS development but it does modulate the modes of ENCC migration and acts in concert with β1-integrin to control the proper development of the ENS.
Collapse
|
27
|
Wynn ML, Kulesa PM, Schnell S. Computational modelling of cell chain migration reveals mechanisms that sustain follow-the-leader behaviour. J R Soc Interface 2012; 9:1576-88. [PMID: 22219399 PMCID: PMC3367809 DOI: 10.1098/rsif.2011.0726] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Follow-the-leader chain migration is a striking cell migratory behaviour observed during vertebrate development, adult neurogenesis and cancer metastasis. Although cell–cell contact and extracellular matrix (ECM) cues have been proposed to promote this phenomenon, mechanisms that underlie chain migration persistence remain unclear. Here, we developed a quantitative agent-based modelling framework to test mechanistic hypotheses of chain migration persistence. We defined chain migration and its persistence based on evidence from the highly migratory neural crest model system, where cells within a chain extend and retract filopodia in short-lived cell contacts and move together as a collective. In our agent-based simulations, we began with a set of agents arranged as a chain and systematically probed the influence of model parameters to identify factors critical to the maintenance of the chain migration pattern. We discovered that chain migration persistence requires a high degree of directional bias in both lead and follower cells towards the target. Chain migration persistence was also promoted when lead cells maintained cell contact with followers, but not vice-versa. Finally, providing a path of least resistance in the ECM was not sufficient alone to drive chain persistence. Our results indicate that chain migration persistence depends on the interplay of directional cell movement and biased cell–cell contact.
Collapse
Affiliation(s)
- Michelle L Wynn
- Department of Molecular and Integrative Physiology and Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
28
|
Landman KA, Binder BJ, Newgreen DF. Modeling Development and Disease in Our “Second” Brain. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-3-642-33350-7_42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|