1
|
Warren WG, Osborn M, Duffy P, Yates A, O'Sullivan SE. Potential safety implications of fatty acid-binding protein inhibition. Toxicol Appl Pharmacol 2024; 491:117079. [PMID: 39218163 DOI: 10.1016/j.taap.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.
Collapse
Affiliation(s)
- William G Warren
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Paul Duffy
- Apconix Ltd., Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | |
Collapse
|
2
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Tomarchio R, Patamia V, Zagni C, Crocetti L, Cilibrizzi A, Floresta G, Rescifina A. Steered Molecular Dynamics Simulations Study on FABP4 Inhibitors. Molecules 2023; 28:molecules28062731. [PMID: 36985701 PMCID: PMC10058326 DOI: 10.3390/molecules28062731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Ordinary small molecule de novo drug design is time-consuming and expensive. Recently, computational tools were employed and proved their efficacy in accelerating the overall drug design process. Molecular dynamics (MD) simulations and a derivative of MD, steered molecular dynamics (SMD), turned out to be promising rational drug design tools. In this paper, we report the first application of SMD to evaluate the binding properties of small molecules toward FABP4, considering our recent interest in inhibiting fatty acid binding protein 4 (FABP4). FABP4 inhibitors (FABP4is) are small molecules of therapeutic interest, and ongoing clinical studies indicate that they are promising for treating cancer and other diseases such as metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Rosario Tomarchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Letizia Crocetti
- Department Neurofarba, Pharmaceutical and Nutraceutical Section, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Chen D, Zhou X, Yan P, Yang C, Li Y, Han L, Ren X. Lipid metabolism reprogramming in colorectal cancer. J Cell Biochem 2023; 124:3-16. [PMID: 36334309 DOI: 10.1002/jcb.30347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The hallmark feature of metabolic reprogramming is now considered to be widespread in many malignancies, including colorectal cancer (CRC). Of the gastrointestinal tumors, CRC is one of the most common with a high metastasis rate and long insidious period. The incidence and mortality of CRC has increased in recent years. Metabolic reprogramming also has a significant role in the development and progression of CRC, especially lipid metabolic reprogramming. Many studies have reported that lipid metabolism reprogramming is similar to the Warburg effect with typical features affecting tumor biology including proliferation, migration, local invasion, apoptosis, and other biological behaviors of cancer cells. Therefore, studying the role of lipid metabolism in the occurrence and development of CRC will increase our understanding of its pathogenesis, invasion, metastasis, and other processes and provide new directions for the treatment of CRC. In this paper, we mainly describe the molecular mechanism of lipid metabolism reprogramming and its important role in the occurrence and development of CRC. In addition, to provide reference for subsequent research and clinical diagnosis and treatment we also review the treatments of CRC that target lipid metabolism.
Collapse
Affiliation(s)
- Dan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Xuebing Zhou
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - PengYu Yan
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyu Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Yuan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Longzhe Han
- Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China.,Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| |
Collapse
|
5
|
Discerning asthma endotypes through comorbidity mapping. Nat Commun 2022; 13:6712. [PMID: 36344522 PMCID: PMC9640644 DOI: 10.1038/s41467-022-33628-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a heterogeneous, complex syndrome, and identifying asthma endotypes has been challenging. We hypothesize that distinct endotypes of asthma arise in disparate genetic variation and life-time environmental exposure backgrounds, and that disease comorbidity patterns serve as a surrogate for such genetic and exposure variations. Here, we computationally discover 22 distinct comorbid disease patterns among individuals with asthma (asthma comorbidity subgroups) using diagnosis records for >151 M US residents, and re-identify 11 of the 22 subgroups in the much smaller UK Biobank. GWASs to discern asthma risk loci for individuals within each subgroup and in all subgroups combined reveal 109 independent risk loci, of which 52 are replicated in multi-ancestry meta-analysis across different ethnicity subsamples in UK Biobank, US BioVU, and BioBank Japan. Fourteen loci confer asthma risk in multiple subgroups and in all subgroups combined. Importantly, another six loci confer asthma risk in only one subgroup. The strength of association between asthma and each of 44 health-related phenotypes also varies dramatically across subgroups. This work reveals subpopulations of asthma patients distinguished by comorbidity patterns, asthma risk loci, gene expression, and health-related phenotypes, and so reveals different asthma endotypes.
Collapse
|
6
|
Floresta G, Patamia V, Zagni C, Rescifina A. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. An update from 2017 to early 2022. Eur J Med Chem 2022; 240:114604. [PMID: 35849941 DOI: 10.1016/j.ejmech.2022.114604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022]
Abstract
The fatty acid binding protein 4 (FABP4) is a protein predominantly expressed in macrophages and adipose tissue, where it regulates fatty acids storage and lipolysis and is an essential mediator of inflammation. Small molecule inhibitors of FABP4 have attracted interest following the recent publications of beneficial pharmacological effects of these compounds for the treatment of metabolic syndrome and, more recently, for other pathologies. Since the synthesis of the BMS309403, one of the first selective and effective FABP4 inhibitors, hundreds of other inhibitors have been synthesized (i.e., derivatives of niacin, quinoxaline, aryl-quinoline, bicyclic pyridine, urea, aromatic compounds and other novel heterocyclic compounds). This review updates the recently reported (2017 to early 2022) molecules as adipocyte fatty acid binding protein 4 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Vincenzo Patamia
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Chiara Zagni
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
7
|
Yang H, Deng Q, Ni T, Liu Y, Lu L, Dai H, Wang H, Yang W. Targeted Inhibition of LPL/FABP4/CPT1 fatty acid metabolic axis can effectively prevent the progression of nonalcoholic steatohepatitis to liver cancer. Int J Biol Sci 2021; 17:4207-4222. [PMID: 34803493 PMCID: PMC8579444 DOI: 10.7150/ijbs.64714] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Rationale: Nonalcoholic steatohepatitis (NASH), as one of the key stages in the development of nonalcoholic fatty liver disease (NAFLD), can directly progress to HCC, but the underlying mechanism is not fully understood. Methods: Differentially expressed genes (DEGs) in each stage of disease development were studied through a GEO dataset deriving from a Stelic Animal Model (STAM), which can simulate the evolution of NAFLD/NASH to HCC in humans. GSVA analysis was performed to analyze the differentially expressed oncogenic signatures in each stage. A human NAFLD-related dataset from GEO database was utilized for gene expression verification and further validated in the protein level in STAM mice. Small molecule inhibitors were applied to STAM mice for investigating whether inhibition of the LPL/FABP4/CPT1 axis could prevent the occurrence of NASH-related HCC in vivo. Microsphere formation and clonal formation assays in vitro were applied to study if inhibition of the LPL/FABP4/CPT1 axis can reduce the viability of liver cancer stem cells (LCSCs). Results: We found that upregulation of the LPL/FABP4/CPT1 molecular axis, as a fatty acid metabolic reprogramming process, occurred specifically during the NASH phase. GSVA analysis showed widespread activation of a large number of oncogenic signals, which may contribute to malignant transformation during NASH. Furthermore, inhibition of the LPL/FABP4/CPT1 axis could effectively delay the tumor growth in STAM mice. Cell assays revealed inhibitors targeting this axis can significantly reduce the sphere-forming, proliferation, and clonality of LCSCs. Conclusion: These results suggest that activation of the LPL/FABP4/CPT1 axis is essential for LCSCs maintenance, which acts synergistically with a variety of up-regulated oncogenic signals that drive the hepatocyte-LCSCs transdifferentiation during NASH to HCC progression. Thus, targeting the LPL/FABP4/CPT1 axis may provide a potential direction for NASH-related HCC prevention.
Collapse
Affiliation(s)
- Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Qingmei Deng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Tun Ni
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yu Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030024, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
8
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
9
|
Network topology analysis of essential genes interactome of Helicobacter pylori to explore novel therapeutic targets. Microb Pathog 2021; 158:105059. [PMID: 34157412 DOI: 10.1016/j.micpath.2021.105059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022]
Abstract
The Helicobacter pylori chronic colonization produces a wide range of gastric diseases in the gastric mucosa by abetting inflammation. Amidst coevolution and reorganization of its metabolism with humans, it has become difficult still imperative to understand and prevent its growth. This study focus to explore functional insights into identification of hub proteins/genes by aggregating the behavior of genes connected in a protein-protein interaction (PPI) network. We have constructed a PPI network of 123 essential genes along with 1213 interactions in H. pylori 26695. The degree and other centrality measures analysis assist in identifying the important hub nodes, which are top-ranked proteins. A total of nine proteins (recA, guaA, dnaK, rpsB, rplQ, rpmA, rpmC, rpmF, and rpsE) were obtained with high degree (k), betweenness centrality (BC) value. Gene ontology analysis reveals 8, 5 and 3 GO terms correspond to biological processes, cellular components and molecular function respectively. Gene complexes of hypothetical proteins (HPs) were related to aminoacyl-tRNA biosynthesis, biosynthesis of secondary metabolites, bacterial secretion system and protein export. The MCODE analysis revealed that protein from module M1, M3 and M6 include the proteins which have highest degree and BC values. It is noteworthy to mention that the bifunctional GMP synthase/glutamine amidotransferase protein (guaA), molecular chaperon (dnaK), recombinase A (recA) constitute as hub proteins. As a result, these genes are considered as network hub nodes that might be used as therapeutic targets. Our analysis affords a detailed understanding of the molecular process and pathways regulated by the essential genes in H. pylori 26695.
Collapse
|
10
|
Ramalingam V, Hwang I. Zero valent zinc regulates adipocyte differentiation through calpain family protein and peroxisome proliferator-activated receptor gamma signaling in mouse 3T3-L1 cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Tian W, Zhang W, Zhang Y, Zhu T, Hua Y, Li H, Zhang Q, Xia M. FABP4 promotes invasion and metastasis of colon cancer by regulating fatty acid transport. Cancer Cell Int 2020; 20:512. [PMID: 33088219 PMCID: PMC7574203 DOI: 10.1186/s12935-020-01582-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background The prognosis of colon cancer is poor for metastasis, while the mechanism, especially adipocytes related, is not yet clear. The purpose of this study is to determine the effects of fatty acid binding protein 4 (FABP4), a transporter for lipids, on colon cancer progression. Methods The distribution of lipids and FABP4 was tested in the colon cancer tissues and adjacent normal tissues, and their relationship was also verified in vitro. Experiments about cellular invasion, migration and proliferation were performed to detect the impacts of FABP4 on the biological behaviors of colon cancer, and the positive results were checked in vivo. Meanwhile, the regulatory role of FABP4 in the energy and lipid metabolism was evaluated by the levels of triglyceride, ATP, LDH, glycerol and NEFA. At last, GO and KEGG analysis based on FABP4 overexpressed cells was performed, and the AKT pathway and epithelial-mesenchymal transition (EMT)-related proteins were determined by Western blot. Results Higher accumulation of lipids and stronger FABP4 transcription were observed in colon cancer tissues. Having been incubated with adipose tissue extract and overexpressed FABP4, colon cancer cells demonstrated enhanced lipid accumulation. In functional experiments, co-culture with adipose tissue extract significantly enhanced the invasion and migration of colon cancer cells, as well as the energy and lipid metabolism, and all these processes were reversed by FABP4 inhibitor. In addition, the metastasis of FABP4-overexpressed colon cancer cells was also significantly enhanced in vitro and in vivo. In terms of mechanism, the bioinformatics analysis showed that FABP4 was enriched in 11 pathways related to metabolic processes in FABP4 overexpressed cells. Finally, FABP4 overexpression improved EMT progression of colon cancer, as evidenced by the upregulation of Snail, MMP-2 and MMP-9, the downregulation of E-cadherin. The expression of p-Akt was also elevated. Conclusion FABP4 overexpression could increase FAs transport to enhance energy and lipid metabolism, and activate AKT pathway and EMT to promote the migration and invasion of colon cancer cells.
Collapse
Affiliation(s)
- Wenying Tian
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Wenjia Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Yan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Tianyue Zhu
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Yuting Hua
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Hui Li
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Qinglin Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Min Xia
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| |
Collapse
|
12
|
Miryala SK, Anbarasu A, Ramaiah S. Gene interaction network approach to elucidate the multidrug resistance mechanisms in the pathogenic bacterial strain Proteus mirabilis. J Cell Physiol 2020; 236:468-479. [PMID: 32542649 DOI: 10.1002/jcp.29874] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
Proteus mirabilis is one among the most frequently identified pathogen in patients with the urinary tract infection. The multidrug resistance exhibited by P. mirabilis renders the treatment ineffective, and new progressive strategies are needed to overcome the antibiotic resistance (AR). We have analyzed the evolutionary relationship of 29 P. mirabilis strains available in the National Center for Biotechnology Information-Genome database. The antimicrobial resistance genes of P. mirabilis along with the enriched pathways and the Gene Ontology terms are analyzed using gene networks to understand the molecular basis of AR. The genes rpoB, tufB, rpsl, fusA, and rpoA could be exploited as potential drug targets as they are involved in regulating the vital functions within the bacterium. The drug targets reported in the present study will aid researchers in developing new strategies to combat multidrug-resistant P. mirabilis.
Collapse
Affiliation(s)
- Sravan K Miryala
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
13
|
Kim JY, Kim MH, Lee HJ, Huh JW, Lee SR, Lee HS, Lee DS. Peroxiredoxin 4 inhibits insulin-induced adipogenesis through regulation of ER stress in 3T3-L1 cells. Mol Cell Biochem 2020; 468:97-109. [PMID: 32185676 DOI: 10.1007/s11010-020-03714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Obesity was originally considered a disease endemic to developed countries but has since emerged as a global health problem. Obesity is characterized by abnormal or excessive lipid accumulation (World Health Organization, WHO) resulting from pre-adipocyte differentiation (adipogenesis). The endoplasmic reticulum (ER) produces proteins and cholesterol and shuttles these compounds to their target sites. Many studies have implicated ER stress, indicative of ER dysfunction, in adipogenesis. Reactive oxygen species (ROS) are also known to be involved in pre-adipocyte differentiation. Prx4 specific to the ER lumen exhibits ROS scavenging activity, and we thereby focused on ER-specific Prx4 in tracking changes in adipocyte differentiation and lipid accumulation. Overexpression of Prx4 reduced ER stress and suppressed lipid accumulation by regulating adipogenic gene expression during adipogenesis. Our results demonstrate that Prx4 inhibits ER stress, lowers ROS levels, and attenuates pre-adipocyte differentiation. These findings suggested enhancing the activity of Prx4 may be helpful in the treatment of obesity; the data also support the development of new therapeutic approaches to obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Jae Yeop Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea.,Research Institute, E-Biogen Inc, Seoul, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea. .,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Debroy R, Miryala SK, Naha A, Anbarasu A, Ramaiah S. Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets. Microb Pathog 2020; 142:104096. [PMID: 32097747 DOI: 10.1016/j.micpath.2020.104096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023]
Abstract
Salmonella enterica subsp. enterica serovar Typhi, a human enteric pathogen causing typhoid fever, developed resistance to multiple antibiotics over the years. The current study was dedicated to understand the multi-drug resistance (MDR) mechanism of S. enterica serovar Typhi CT18 and to identify potential drug targets that could be exploited for new drug discovery. We have employed gene interaction network analysis for 44 genes which had 275 interactions. Clustering analysis resulted in three highly interconnecting clusters (C1-C3). Functional enrichment analysis revealed the presence of drug target alteration and three different multi-drug efflux pumps in the bacteria that were associated with antibiotic resistance. We found seven genes (arnA,B,C,D,E,F,T) conferring resistance to Cationic Anti-Microbial Polypeptide (CAMP) molecules by membrane Lipopolysaccharide (LPS) modification, while macB was observed to be an essential controlling hub of the network and played a crucial role in MacAB-TolC efflux pump. Further, we identified five genes (mdtH, mdtM, mdtG, emrD and mdfA) which were involved in Major Facilitator Superfamily (MFS) efflux system and acrAB contributed towards AcrAB-TolC efflux pump. All three efflux pumps were seen to be highly dependent on tolC gene. The five genes, namely tolC, macB, acrA, acrB and mdfA which were involved in multiple resistance pathways, can act as potential drug targets for successful treatment strategies. Therefore, this study has provided profound insights into the MDR mechanism in S. Typhi CT18. Our results will be useful for experimental biologists to explore new leads for S. enterica.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Aniket Naha
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
15
|
Miryala SK, Ramaiah S. Exploring the multi-drug resistance in Escherichia coli O157:H7 by gene interaction network: A systems biology approach. Genomics 2019; 111:958-965. [DOI: 10.1016/j.ygeno.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
|
16
|
Floresta G, Cilibrizzi A, Abbate V, Spampinato A, Zagni C, Rescifina A. 3D-QSAR assisted identification of FABP4 inhibitors: An effective scaffold hopping analysis/QSAR evaluation. Bioorg Chem 2018; 84:276-284. [PMID: 30529845 DOI: 10.1016/j.bioorg.2018.11.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 02/09/2023]
Abstract
Following on the recent publication of pharmacologically relevant effects, small molecule inhibitors of adipocyte fatty-acid binding protein 4 (FABP4) have attracted high interest. FABP4 is mainly expressed in macrophages and adipose tissue, where it regulates fatty acid storage and lipolysis, being also an important mediator of inflammation. In this regard, FABP4 recently demonstrated an interesting molecular target for the treatment of type 2 diabetes, other metabolic diseases and some type of cancers. In the past years, hundreds of effective FABP4 inhibitors have been synthesized. In this paper, a quantitative structure-activity relationship (QSAR) model has been produced, in order to predict the bioactivity of FABP4 inhibitors. The methodology has been combined with a scaffold-hopping approach, allowing to identify three new molecules that act as effective inhibitors of this protein. These molecules, synthesized and tested for their FABP4 inhibitor activity, showed IC50 values between 3.70 and 5.59 μM, with a high level of agreement with the predicted values.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy; Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK.
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK; King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Vincenzo Abbate
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Ambra Spampinato
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
17
|
Kim MH, Park SJ, Kim JH, Seong JB, Kim KM, Woo HA, Lee DS. Peroxiredoxin 5 regulates adipogenesis-attenuating oxidative stress in obese mouse models induced by a high-fat diet. Free Radic Biol Med 2018; 123:27-38. [PMID: 29777756 DOI: 10.1016/j.freeradbiomed.2018.05.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
Abstract
Elevated levels of reactive oxygen species (ROS) are a hallmark of obesity. Peroxiredoxin 5 (Prx5), which is a cysteine-dependent peroxidase enzyme, has an intensive ROS scavenging activity because it is located in the cytosol and mitochondria. Therefore, we focused on the role of Prx5 in regulating mitochondrial ROS and adipogenesis. We demonstrated that Prx5 expression was upregulated during adipogenesis and Prx5 overexpression suppressed adipogenesis by regulating cytosolic and mitochondrial ROS generation. Silencing Prx5 promoted preadipocytes to differentiate into adipocytes accumulating lipids by activating adipogenic protein expression. Prx5-deletion mice fed on a high-fat diet (HFD) exhibited significant increase in body weight, enormous fat pads, and adipocyte hypertrophy in comparison to wild type mice. Prx5 deletion also remarkably induced adipogenesis-related gene expression in white adipose tissue. These phenotypic changes in Prx5-deletion mice were accompanied with lipid metabolic disorders, such as excessive lipid accumulation in the liver, severe hepatic steatosis, and high levels of triglyceride in the serum. These results demonstrated that Prx5 deletion increased the susceptibility to HFD-induced obesity and several of its associated metabolic disorders. In conclusion, we suggest that Prx5 inhibits adipogenesis by modulating ROS generation and adipogenic gene expression, implying that Prx5 may serve as a potential strategy to prevent and treat obesity.
Collapse
Affiliation(s)
- Mi Hye Kim
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sun-Ji Park
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; Renal Division, School of Medicine, Washington University in St. Louis, MO, USA
| | - Jung-Hak Kim
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; Division of Endocrinology, Internal Medicine, University of California, Davis, CA, USA
| | - Jung Bae Seong
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Dong-Seok Lee
- School of Life science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
DEHP deregulates adipokine levels and impairs fatty acid storage in human SGBS-adipocytes. Sci Rep 2018; 8:3447. [PMID: 29472605 PMCID: PMC5823900 DOI: 10.1038/s41598-018-21800-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/12/2018] [Indexed: 12/17/2022] Open
Abstract
DEHP is a plasticizer which has been used in plastic products of everyday use for decades. Studies in mice and murine cell culture models identified DEHP as an endocrine disruptor that may also act as an obesogen. As this is of high concern in respect of the worldwide obesity epidemic, our aim is the translation of these findings into a human model system. On the basis of DOHaD, we investigated the influence of an environmentally relevant dose of DEHP [50 µg/ml] on adipogenesis in the human cell culture model SGBS. Pre-adipocytes were exposed to DEHP and differentiated into mature adipocytes. At different stages of differentiation, markers of adipogenesis like GLUT4, FABP4, LPL and PPARs, and of signaling pathways like AMPK/ACC2, JAK/STAT and MAPK were analyzed. Functional markers like adipokine secretion and triglyceride content as well as ROS production were measured in mature adipocytes. We found significantly lower expression levels of adipogenic markers, a reduction in lipid accumulation, higher leptin- and reduced adiponectin levels in the supernatant of treated adipocytes. Moreover, ROS production was significantly elevated after DEHP-exposure. In conclusion, DEHP led to lower grade of adipogenic differentiation in human SGBS-adipocytes under the chosen conditions.
Collapse
|
19
|
Miryala SK, Anbarasu A, Ramaiah S. Discerning molecular interactions: A comprehensive review on biomolecular interaction databases and network analysis tools. Gene 2017; 642:84-94. [PMID: 29129810 DOI: 10.1016/j.gene.2017.11.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022]
Abstract
Computational analysis of biomolecular interaction networks is now gaining a lot of importance to understand the functions of novel genes/proteins. Gene interaction (GI) network analysis and protein-protein interaction (PPI) network analysis play a major role in predicting the functionality of interacting genes or proteins and gives an insight into the functional relationships and evolutionary conservation of interactions among the genes. An interaction network is a graphical representation of gene/protein interactome, where each gene/protein is a node, and interaction between gene/protein is an edge. In this review, we discuss the popular open source databases that serve as data repositories to search and collect protein/gene interaction data, and also tools available for the generation of interaction network, visualization and network analysis. Also, various network analysis approaches like topological approach and clustering approach to study the network properties and functional enrichment server which illustrates the functions and pathway of the genes and proteins has been discussed. Hence the distinctive attribute mentioned in this review is not only to provide an overview of tools and web servers for gene and protein-protein interaction (PPI) network analysis but also to extract useful and meaningful information from the interaction networks.
Collapse
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
20
|
Ballester M, Puig-Oliveras A, Castelló A, Revilla M, Fernández AI, Folch JM. Association of genetic variants and expression levels of porcine FABP4 and FABP5 genes. Anim Genet 2017; 48:660-668. [PMID: 29076225 DOI: 10.1111/age.12620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
The FABP4 and FABP5 genes, coding for fatty acid transport proteins, have long been studied as positional candidate genes for SSC4 QTL affecting fat deposition and composition traits in pigs. Polymorphisms in these genes, FABP4:g.2634_2635insC and FABP5:g.3000T>G, have previously been associated with fatness traits in an Iberian by Landrace cross (IBMAP). The aim of the present work was to evaluate the functional implication of these genetic variants. For this purpose, FABP4 and FABP5 mRNA expression levels in 114 BC1_LD animals (25% Iberian × 75% Landrace) were analyzed using real-time quantitative PCR in backfat and muscle. FABP4 gene expression in backfat, but not in muscle, was associated with FABP4:g.2634_2635insC. In contrast, FABP5:g.3000T>G was not associated with gene expression levels. An expression-based genome-wide association study highlighted the FABP4:g.2634_2635insC polymorphism as the polymorphism most associated with FABP4 gene expression in backfat. Furthermore, other genomic regions associated in trans with the mRNA expression of FABP4 in backfat and FABP5 in muscle were also identified. Finally, two putative transcription binding sites for PPARG and NR4A2 may be affected by the FABP4:g.2634_2635insC polymorphism, modifying FABP4 gene expression. Our results reinforce FABP4 as a candidate gene for fatness traits on SSC4.
Collapse
Affiliation(s)
- M Ballester
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Genètica i Millora Animal, IRTA, Torre Marimon, 08140, Caldes de Montbui, Spain
| | - A Puig-Oliveras
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - A Castelló
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - M Revilla
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - A I Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
21
|
Floresta G, Pistarà V, Amata E, Dichiara M, Marrazzo A, Prezzavento O, Rescifina A. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. A comprehensive systematic review. Eur J Med Chem 2017; 138:854-873. [PMID: 28738306 DOI: 10.1016/j.ejmech.2017.07.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Small molecule inhibitors of adipocyte fatty acid binding protein 4 (FABP4) have attracted interest following the recent publications of beneficial pharmacological effects of these compounds. FABP4 is predominantly expressed in macrophages and adipose tissue where it regulates fatty acids (FAs) storage and lipolysis and is an important mediator of inflammation. In the past years, hundreds FABP4 inhibitors have been synthesized for effective atherosclerosis and diabetes treatments, including derivatives of niacin, quinoxaline, aryl-quinoline, bicyclic pyridine, urea, aromatic compounds and other novel heterocyclic compounds. This review provides an overview of the synthesized and discovered molecules as adipocyte fatty acid binding protein 4 inhibitors (FABP4is) since the synthesis of the putative FABP4i, BMS309403, highlighting the interactions of the different classes of inhibitors with the targets.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy; Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Maria Dichiara
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Orazio Prezzavento
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria, 95125 Catania, Italy.
| |
Collapse
|
22
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
23
|
Ectopical expression of FABP4 gene can induce bovine muscle-derived stem cells adipogenesis. Biochem Biophys Res Commun 2017; 482:352-358. [DOI: 10.1016/j.bbrc.2016.11.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/13/2023]
|
24
|
Abstract
Background Regulation mechanisms between miRNAs and genes are complicated. To accomplish a biological function, a miRNA may regulate multiple target genes, and similarly a target gene may be regulated by multiple miRNAs. Wet-lab knowledge of co-regulating miRNAs is limited. This work introduces a computational method to group miRNAs of similar functions to identify co-regulating miRNAsfrom a similarity matrix of miRNAs. Results We define a novel information content of gene ontology (GO) to measure similarity between two sets of GO graphs corresponding to the two sets of target genes of two miRNAs. This between-graph similarity is then transferred as a functional similarity between the two miRNAs. Our definition of the information content is based on the size of a GO term’s descendants, but adjusted by a weight derived from its depth level and the GO relationships at its path to the root node or to the most informative common ancestor (MICA). Further, a self-tuning technique and the eigenvalues of the normalized Laplacian matrix are applied to determine the optimal parameters for the spectral clustering of the similarity matrix of the miRNAs. Conclusions Experimental results demonstrate that our method has better clustering performance than the existing edge-based, node-based or hybrid methods. Our method has also demonstrated a novel usefulness for the function annotation of new miRNAs, as reported in the detailed case studies.
Collapse
|
25
|
Ponnusamy S, Tran QT, Harvey I, Smallwood HS, Thiyagarajan T, Banerjee S, Johnson DL, Dalton JT, Sullivan RD, Miller DD, Bridges D, Narayanan R. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue. FASEB J 2016; 31:266-281. [PMID: 27733447 DOI: 10.1096/fj.201600787rr] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/22/2016] [Indexed: 01/03/2023]
Abstract
Most satiety-inducing obesity therapeutics, despite modest efficacy, have safety concerns that underscore the need for effective peripherally acting drugs. An attractive therapeutic approach for obesity is to optimize/maximize energy expenditure by increasing energy-utilizing thermogenic brown adipose tissue. We used in vivo and in vitro models to determine the role of estrogen receptor β (ER-β) and its ligands on adipose biology. RNA sequencing and metabolomics were used to determine the mechanism of action of ER-β and its ligands. Estrogen receptor β (ER-β) and its selective ligand reprogrammed preadipocytes and precursor stem cells into brown adipose tissue and increased mitochondrial respiration. An ER-β-selective ligand increased markers of tricarboxylic acid-dependent and -independent energy biogenesis and oxygen consumption in mice without a concomitant increase in physical activity or food consumption, all culminating in significantly reduced weight gain and adiposity. The antiobesity effects of ER-β ligand were not observed in ER-β-knockout mice. Serum metabolite profiles of adult lean and juvenile mice were comparable, while that of adult obese mice was distinct, indicating a possible impact of obesity on age-dependent metabolism. This phenotype was partially reversed by ER-β-selective ligand. These data highlight a new role for ER-β in adipose biology and its potential to be a safer alternative peripheral therapeutic target for obesity.-Ponnusamy, S., Tran, Q. T., Harvey, I., Smallwood, H. S., Thiyagarajan, T., Banerjee, S., Johnson, D. L., Dalton, J. T., Sullivan, R. D., Miller, D. D., Bridges, D., Narayanan, R. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Quynh T Tran
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Innocence Harvey
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thirumagal Thiyagarajan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Souvik Banerjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Daniel L Johnson
- Molecular Informatics Core, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James T Dalton
- Preclinical Research and Development, GTx, Incorporated, Memphis, Tennessee, USA
| | - Ryan D Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA; and
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dave Bridges
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ramesh Narayanan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA; .,West Cancer Center, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Baek HK, Shim H, Lim H, Shim M, Kim CK, Park SK, Lee YS, Song KD, Kim SJ, Yi SS. Anti-adipogenic effect of Artemisia annua in diet-induced-obesity mice model. J Vet Sci 2016; 16:389-96. [PMID: 26243598 PMCID: PMC4701730 DOI: 10.4142/jvs.2015.16.4.389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/26/2015] [Accepted: 07/03/2015] [Indexed: 01/17/2023] Open
Abstract
Obesity has increased continuously in western countries during the last several decades and recently become a problem in developing countries. Currently, anti-obesity drugs originating from natural products are being investigated for their potential to overcome adverse effects associated with chemical drugs. Artemisinic acid, which was isolated from the well-known anti-malaria herb Artemisia annua (AA) L., was recently shown to possess anti-adipogenic effects in vitro. However, the anti-adipogenic effects of AA in animal models have not yet been investigated. Therefore, we conducted daily oral administration with AA water extract in a diet-induced obesity animal model and treated 3T3-L1 cells with AA to confirm the anti-adipogenic effects in the related protein expressions. We then evaluated the physiology, adipose tissue histology and mRNA expressions of many related genes. Inhibition of adipogenesis by the AA water extract was observed in vitro. In the animal model, weight gain was significantly lower in the AA treated group, but there were no changes in food intake volume or calories. Reductions in lipid droplet size and mRNA expression associated with adipogenesis were also observed in animal epididymal fat. This study is the first to report that AA has an anti-obese effects in vivo.
Collapse
Affiliation(s)
- Hye Kyung Baek
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Hyeji Shim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Hyunmook Lim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Minju Shim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Chul-Kyu Kim
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Sang-Kyu Park
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Ki-Duk Song
- Genomic Informatic Center, Han-kyong National University, Anseong 17579, Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan 31499, Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
27
|
Gao S, Li F, Li H, Huang Y, Liu Y, Chen Y. Effects and Molecular Mechanism of GST-Irisin on Lipolysis and Autocrine Function in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0147480. [PMID: 26799325 PMCID: PMC4723061 DOI: 10.1371/journal.pone.0147480] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 02/01/2023] Open
Abstract
Irisin, which was recently identified as a myokine and an adipokine, transforms white adipose tissue to brown adipose tissue and has increasingly caught the attention of the medical and scientific community. However, the signaling pathway of irisin and the molecular mechanisms responsible for the lipolysis effect remain unclear. In this study, we established an efficient system for the expression and purification of GST-irisin in Escherichia coli. The biological activity of GST-irisin was verified using the cell counting kit-8 assay and by detecting the mRNA expression of uncoupling protein 1. Our data showed that GST-irisin regulates mRNA levels of lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase and proteins such as the fatty acid-binding protein 4, leading to increased secretion of glycerol and decreased lipid accumulation in 3T3-L1 adipocytes. In addition, exogenous GST-irisin can increase its autocrine function in vitro by regulating the expression of fibronectin type III domain-containing protein 5. GST-irisin could regulate glucose uptake in 3T3-L1 adipocytes. Hence, we believe that recombinant GST-irisin could promote lipolysis and its secretion in vitro and can potentially prevent obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Shanshan Gao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fangmin Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Huimin Li
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012, China
| | - Yu Liu
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130041, China
- * E-mail: (YXC); (YL)
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, 130012, China
- * E-mail: (YXC); (YL)
| |
Collapse
|
28
|
Gene network analysis reveals the association of important functional partners involved in antibiotic resistance: A report on an important pathogenic bacterium Staphylococcus aureus. Gene 2015; 575:253-63. [PMID: 26342962 DOI: 10.1016/j.gene.2015.08.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/30/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus (S. aureus) is an emerging concern in hospital settings as it causes serious human infections. The multidrug resistance (MDR) in S. aureus is a complicated problem that is difficult to overcome due to the presence of numerous antibiotic resistance genes and it exhibit resistance to most of the currently available antibiotics. Presently, the resistance mechanisms of these genes/proteins are not completely understood. Therefore, identifying and understanding the functional relationship between the antibiotic resistant genes and their associated proteins might provide necessary information on resistance mechanisms and thereby help in designing successful drugs to combat the antibiotic resistance. In this study, we propose a model based on protein/gene network to identify genes/proteins associated with drug resistance in S. aureus. We filtered 50 functional partners in NorA, aacA-aphD (aac6ie), aad9ib (ant), aadd (knt), baca (uppP), bl2a_pc (blaZ), ble, ermA, SAV0052 (ermb), ermc, fosB, mecA (mecI), mecR (mecr1), mepA, msrA1, qacA, vraR (str), tet38 and tetM while 40 functional partners are identified in tet and aphA-3 (aph3iiia). The average shortest path length and betweenness centrality of functional partners in the clusters are calculated and they are functionally enriched with the Gene Ontology (GO) terms with a p-value cut-off ≤0.05. Interestingly, the constructed network reveals many associated antibiotic resistant genes and proteins and their role in resistance mechanisms. Thus, our results might provide a better understanding of the molecular mechanisms of action and their mode of drug resistance that will be useful for researchers exploring in the field of antibiotic resistance mechanisms.
Collapse
|
29
|
ProteINSIDE to Easily Investigate Proteomics Data from Ruminants: Application to Mine Proteome of Adipose and Muscle Tissues in Bovine Foetuses. PLoS One 2015; 10:e0128086. [PMID: 26000831 PMCID: PMC4441380 DOI: 10.1371/journal.pone.0128086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022] Open
Abstract
Genomics experiments are widely acknowledged to produce a huge amount of data to be analysed. The challenge is to extract meaningful biological context for proteins or genes which is currently difficult because of the lack of an integrative workflow that hinders the efficiency and the robustness of data mining performed by biologists working on ruminants. Thus, we designed ProteINSIDE, a free web service (www.proteinside.org) that (I) provides an overview of the biological information stored in public databases or provided by annotations according to the Gene Ontology, (II) predicts proteins that are secreted to search for proteins that mediate signalisation between cells or tissues, and (III) analyses protein-protein interactions to identify proteins contributing to a process or to visualize functional pathways. Using lists of proteins or genes as a unique input, ProteINSIDE is an original all-in-one tool that merges data from these searches to present a fast overview and integrative analysis of genomic and proteomic data from Bovine, Ovine, Caprine, Human, Rat, and Murine species. ProteINSIDE was bench tested with 1000 proteins identifiers from each species by comparison with DAVID, BioMyn, AgBase, PrediSi, and Phobius. Compared to DAVID or BioMyn, identifications and annotations provided by ProteINSIDE were similar from monogastric proteins but more numerous and relevant for ruminants proteins. ProteINSIDE, thanks to SignalP, listed less proteins potentially secreted with a signal peptide than PrediSi and Phobius, in agreement with the low false positive rate of SignalP. In addition ProteINSIDE is the only resource that predicts proteins secreted by cellular processes that do not involve a signal peptide. Lastly, we reported the usefulness of ProteINSIDE to bring new biological hypotheses of research from proteomics data: the biological meaning of the uptake of adiponectin by the foetal muscle and a role for autophagy during ontogenesis of adipose and muscle tissues.
Collapse
|