1
|
Perveen K, Bukhari NA, Alshaikh NA, Kondaveeti SB, Alsulami JA, Debnath S, Kumarasamy V. A novel front in sustainable microbial management: computational analysis of curcumin and mangiferin's synergistic action against Bacillus anthracis. Front Microbiol 2024; 15:1304234. [PMID: 38646635 PMCID: PMC11026599 DOI: 10.3389/fmicb.2024.1304234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background Microorganisms are crucial in our ecosystem, offering diverse functions and adaptability. The UNGA Science Summit has underscored the importance of understanding microbes in alignment with the UN Sustainable Development Goals. Bacillus anthracis poses significant challenges among various microorganisms due to its harmful effects on both soil and public health. Our study employed computational techniques to investigate the inhibitory effects of curcumin and mangiferin on Bacillus anthracis, with the aim of presenting a novel bio-based approach to microbial management. Methods Employing high-throughput screening, we identified potential binding sites on B. anthracis. Molecular docking revealed that curcumin and mangiferin, when synergistically combined, exhibited strong binding affinities at different sites on the bacterium. Our findings demonstrated a significant drop in binding free energy, indicating a stronger interaction when these compounds were used together. Findings Results of Molecular docking indicated binding energies of -8.45 kcal/mol for mangiferin, -7.68 kcal/mol for curcumin, and a notably higher binding energy of -19.47 kcal/mol for the combination of mangiferin and curcumin with CapD protein. Molecular dynamics simulations further validated these interactions, demonstrating increased stability and structural changes in the bacterium. Conclusion This study highlights the effectiveness of natural compounds like curcumin and mangiferin in microbial management, especially against challenging pathogens like B. anthracis. It emphasizes the potential of sustainable, nature-based solutions and calls for further empirical research to expand upon these findings.
Collapse
Affiliation(s)
- Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najla A. Alshaikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suresh Babu Kondaveeti
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed University), Pune, India
| | | | - Sandip Debnath
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan, West Bengal, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Otovat F, Bozorgmehr MR, Mahmoudi A, Morsali A. Porphyrin-based ligand interaction with G-quadruplex: Metal cation effects. J Mol Recognit 2023; 36:e3017. [PMID: 37025015 DOI: 10.1002/jmr.3017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
The G-quadruplex planar-ligand complex is used to detect heavy metal cations such as Ag+ , Cu2+ , Pb2+ , Hg2+ , organic molecules, nucleic acids, and proteins. The interaction of the three planar porphyrins (L1), 5,10,15,20-tetrakis (1-ethyl-1-λ4 -pyridine-4-yl) porphyrin (L2), and 5,10,15,20-tetrakis (1-methyl-1-λ4 -pyridine-4-yl) porphyrin (L3), coming from the porphyrin family, with G-quadruplex obtained from human DNA telomeres in the presence of lithium, sodium, potassium, rubidium, cesium, magnesium, and calcium ions was studied by molecular dynamics simulation. When G-quadruplex containing divalent ions of magnesium and calcium interacts with L1, L2, and L3 ligands, the hydrogen bonds of the lower G-quadruplex sheet are more affected by ligands and the distance between guanines in the lower tetrad increases. In the case of G-quadruplex interactions containing monovalent ions with ligands, the hydrogen bond between the sheets does not follow a specific trend. For example, in the presence of lithium ions, the upper and middle sheets are more affected by ligands, while they are less affected by ligands in the presence of sodium. The binding pocket and the binding energy of the three ligands to the G-quadruplex were also obtained in the various systems. The results show that ligands make the G-quadruplex more stable through the penetration between the sheets and the interaction with the loops. Among the ligands mentioned, the interaction level of the ligand L2 is greater than the others. Our calculations are consistent with the previous experimental observations so that it can help to understand the molecular mechanism of porphyrin interaction and its derivatives with the G-quadruplex.
Collapse
Affiliation(s)
- Fahimeh Otovat
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | | - Ali Mahmoudi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
3
|
Gupta S, Dasmahapatra AK. Enhanced stability of a disaggregated Aβ fibril on removal of ligand inhibits refibrillation: An all atom Molecular Dynamics simulation study. Int J Biol Macromol 2023; 240:124481. [PMID: 37076062 DOI: 10.1016/j.ijbiomac.2023.124481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The extraneuronally deposited senile plaques, composed of neurotoxic aggregates of Aβ fibril, define Alzheimer's disease (AD). Natural compounds have been tested for their destabilization potential on Aβ fibril, thereby curing AD. However, the resultant destabilized Aβ fibril, needs to be checked for its irreversibility to the native organized state after removal of the ligand. Herein, we assessed the stability of a destabilized fibril after the ligand (ellagic acid represented as REF) is removed from the complex. The study has been conducted via Molecular Dynamics (MD) simulation of 1 μs for both Aβ-Water (control) and Aβ-REF″ (test or REF removed) system. The increased value of RMSD, Rg, SASA, lower β-sheet content and reduced number of H-bonds explains enhanced destabilization observed in Aβ-REF″ system. The increased inter-chain distance demonstrates breaking of the residual contacts, testifying the drift of terminal chains from the pentamer. The increased SASA along with the ∆Gps(polar solvation energy) accounts for the reduced interaction amongst residues, and more with solvent molecules, governing irreversibility to native state. The higher Gibb's free energy of the misaligned structure of Aβ-REF″ ensures irreversibility to the organized structure due to its inability to cross such high energy barrier. The observed stability of the disaggregated structure, despite ligand elimination, establishes the effectiveness of the destabilization technique as a promising therapeutic approach towards treating AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Gupta S, Dasmahapatra AK. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:581-598. [PMID: 34856889 DOI: 10.1080/07391102.2021.2009915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The senile plaques of neurotoxic aggregates of Aβ protein, deposited extraneuronally, mark the pathological hallmark of Alzheimer's disease (AD). The natural compounds such as omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), which can access blood-brain barrier, are believed to be potential disruptors of preformed Aβ fibrils to cure AD with unknown mechanism. Herein, we present the destabilization potential of three ω-3 PUFAs, viz. Eicosapentaenoic acid (EPA), Docosahexaenoic acid (HXA), and α-linolenic acid (LNL) by molecular dynamics simulation. After an initial testing of 300 ns, EPA and HXA have been considered further for extended production run time, 500 ns. The increased value of root mean square deviation (RMSD), radius of gyration, and solvent-accessible surface area (SASA), the reduced number of H-bonds and β-sheet content, and disruption of salt bridges and hydrophobic contacts establish the binding of these ligands to Aβ fibril leading to destabilization. The polar head was found to interact with positively charged lysine (K28) residue in the fibril. However, the hydrophobicity of the long aliphatic tail competes with the intrinsic hydrophobic interactions of Aβ fibril. This amphiphilic nature of EPA and HXA led to the breaking of inherent hydrophobic contacts and formation of new bonds between the tail of PUFA and hydrophobic residues of Aβ fibril, leading to the destabilization of fibril. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results explain the binding of EPA and HXA to Aβ fibril by interacting with different residues. The destabilization potential of EPA and HXA establishes them as promising drug leads to cure AD, and encourages prospecting of other fatty acids for therapeutic intervention in AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
5
|
Li LP, Li HX, Zhou H, Li WY, Wang RL, Zhang YC, Ma Y. Exploring the mechanism of C473D mutation on CDC25B causing weak binding affinity with CDK2/CyclinA by molecular dynamics study. J Biomol Struct Dyn 2023; 41:12552-12564. [PMID: 36655391 DOI: 10.1080/07391102.2023.2166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
CDC25B belongs to the CDC25 family, and it plays an important part in regulating the activity of CDK/CyclinA. Studies have shown that CDC25B is closely related to cancer development. When CYS473 on CDC25B is mutated into ASP, the affinity between CDC25B and CDK2/CyclinA weakens, and their dissociation speed is greatly improved. However, the mechanism by which the CDC25BC473D mutant weakens its binding to CDK2/CyclinA is unclear. In order to study the effect of CDC25BC473D mutants on CDK2/CyclinA substrates, we constructed and verified the rationality of the CDC25BWT:CDK2/CyclinA system and CDC25BC473D:CDK2/CyclinA system and conducted molecular dynamics (MD) simulation analysis. In the post-analysis, the fluctuations of residues ARG488-SER499, LYS541-TRP550 on CDC25B and residues ASP206-ASP210 on CDK2 were massive in the mutant CDC25BC473D:CDK2/CyclinA system. And the interactions between residue ARG492 and residue GLU208, residue ARG544 and residue GLU42, residue ARG544 and TRP550 were weakened in the mutant CDC25BC473D:CDK2/CyclinA system. The results showed that when CYS473 on CDC25B was mutated into ASP473, the mutant CDC25BC473D:CDK2/CyclinA system was less stable than the wild-type CDC25BWT:CDK2/CyclinA system. Finally, active site CYS473 of CDC25B was speculated to be the key residue, which had great effects on the binding between CDC25BCYS473 and CDK2 in the CDC25BC473D:CDK2/CyclinA system. Consequently, overall analyses appeared in this study ultimately provided a useful understanding of the weak interactions between CDC25BCYS473D and CDK2/CyclinA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Li-Peng Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hao-Xin Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hui Zhou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Wei-Ya Li
- China Department of Pharmacy, Tianjin Medical University, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Run-Ling Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ying-Chi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Zackria AA, Pattabiraman R, Murthy TPK, Kumar SB, Mathew BB, Biju VG. Computational screening of natural compounds from Salvia plebeia R. Br. for inhibition of SARS-CoV-2 main protease. VEGETOS (BAREILLY, INDIA) 2022; 35:345-359. [PMID: 34690453 PMCID: PMC8523934 DOI: 10.1007/s42535-021-00304-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) has emerged to be the reason behind the COVID-19 pandemic. It was discovered in Wuhan, China and then began spreading around the world, impacting the health of millions. Efforts for treatment have been hampered as there are no antiviral drugs that are effective against this virus. In the present study, we have explored the phytochemical constituents of Salvia plebeia R. Br., in terms of its binding affinity by targeting COVID-19 main protease (Mpro) using computational analysis. Molecular docking analysis was performed using PyRx software. The ADMET and drug-likeness properties of the top 10 compounds showing binding affinity greater than or equal to - 8.0 kcal/mol were analysed using pkCSM and DruLiTo, respectively. Based on the docking studies, it was confirmed that Rutin and Plebeiosides B were the most potent inhibitors of the main protease of SARS-CoV-2 with the best binding affinities of - 9.1 kcal/mol and - 8.9 kcal/mol, respectively. Further, the two compounds were analysed by studying their biological activity using the PASS webserver. Molecular dynamics simulation analysis was performed for the selected protein-ligand complexes to confirm their stability at 300 ns. MM-PBSA provided the basis for analyzing the affinity of the phytochemicals towards Mpro by calculating the binding energy, and secondary structure analysis indicated the stability of protease structure when it is bound to Rutin and Plebeiosides B. Altogether, the study identifies Rutin and Plebeiosides B to be potent Mpro inhibitors of SARS-CoV-2. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42535-021-00304-z.
Collapse
Affiliation(s)
- Afraa Aqeel Zackria
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka 560054 India
| | - Ramya Pattabiraman
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka 560054 India
| | - T. P. Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka 560054 India
| | - S. Birendra Kumar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka 560054 India
| | - Blessy Baby Mathew
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, Karnataka 560078 India
| | - Vinai George Biju
- Department of Computer Science and Engineering, Christ (Deemed-to-be University), Bengaluru, Karnataka 560060 India
| |
Collapse
|
7
|
Zhou M, Yang J, Li Y. A model for phthalic acid esters' biodegradability and biotoxicity multi-effect pharmacophore and its application in molecular modification. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:361-378. [PMID: 33563085 DOI: 10.1080/10934529.2021.1881352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to investigate 13 phthalic acid esters (PAEs) with medium or long straight-alkyl-chain, branching or unsaturated side chains, because their structural characteristics make them difficult to biodegrade or highly toxic. A biodegradability and biotoxicity multi-effect pharmacophore model was built using comprehensive evaluation method. The results suggested that introducing hydrophobic groups to the side chains of the PAEs could improve the molecules' biodegradability and biotoxicity effects simultaneously. Thus, 40 target PAE (HEHP, DNOP, DUP) derivatives were designed. Two environmentally friendly PAE derivatives (HEHP-Anthryl and HEHP-Naphthyl) were screened via the test of environmental friendliness and functionality. In addition, the biodegradation and biotoxicity of derivatives were found to have improved as a result of the change in van der Waals forces between molecules and their corresponding proteins. Moreover, the environmental safety of the screened PAE derivatives was confirmed by predicting the toxicity of their intermediates and calculating the energy barrier values for biodegradation and metabolic pathways. This study could provide theoretical guidance for the practical development of environmentally friendly plasticizer.
Collapse
Affiliation(s)
- Mengying Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| |
Collapse
|
8
|
Wang J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. J Chem Inf Model 2020; 60:3277-3286. [PMID: 32315171 PMCID: PMC7197972 DOI: 10.1021/acs.jcim.0c00179] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/25/2022]
Abstract
The recent outbreak of novel coronavirus disease-19 (COVID-19) calls for and welcomes possible treatment strategies using drugs on the market. It is very efficient to apply computer-aided drug design techniques to quickly identify promising drug repurposing candidates, especially after the detailed 3D structures of key viral proteins are resolved. The virus causing COVID-19 is SARS-CoV-2. Taking advantage of a recently released crystal structure of SARS-CoV-2 main protease in complex with a covalently bonded inhibitor, N3 (Liu et al., 10.2210/pdb6LU7/pdb), I conducted virtual docking screening of approved drugs and drug candidates in clinical trials. For the top docking hits, I then performed molecular dynamics simulations followed by binding free energy calculations using an end point method called MM-PBSA-WSAS (molecular mechanics/Poisson-Boltzmann surface area/weighted solvent-accessible surface area; Wang, Chem. Rev. 2019, 119, 9478; Wang, Curr. Comput.-Aided Drug Des. 2006, 2, 287; Wang; ; Hou J. Chem. Inf. Model., 2012, 52, 1199). Several promising known drugs stand out as potential inhibitors of SARS-CoV-2 main protease, including carfilzomib, eravacycline, valrubicin, lopinavir, and elbasvir. Carfilzomib, an approved anticancer drug acting as a proteasome inhibitor, has the best MM-PBSA-WSAS binding free energy, -13.8 kcal/mol. The second-best repurposing drug candidate, eravacycline, is synthetic halogenated tetracycline class antibiotic. Streptomycin, another antibiotic and a charged molecule, also demonstrates some inhibitory effect, even though the predicted binding free energy of the charged form (-3.8 kcal/mol) is not nearly as low as that of the neutral form (-7.9 kcal/mol). One bioactive, PubChem 23727975, has a binding free energy of -12.9 kcal/mol. Detailed receptor-ligand interactions were analyzed and hot spots for the receptor-ligand binding were identified. I found that one hot spot residue, His41, is a conserved residue across many viruses including SARS-CoV, SARS-CoV-2, MERS-CoV, and hepatitis C virus (HCV). The findings of this study can facilitate rational drug design targeting the SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Bahaman AH, Wahab RA, Abdul Hamid AA, Abd Halim KB, Kaya Y. Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. J Biomol Struct Dyn 2020; 39:2628-2641. [DOI: 10.1080/07391102.2020.1751713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aina Hazimah Bahaman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| |
Collapse
|
10
|
Farshadfar C, Mollica A, Rafii F, Noorbakhsh A, Nikzad M, Seyedi SH, Abdi F, Verki SA, Mirzaie S. Novel potential inhibitor discovery against tyrosyl-tRNA synthetase from Staphylococcus aureus by virtual screening, molecular dynamics, MMPBSA and QMMM simulations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1726911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chiako Farshadfar
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research Jefferson, Jefferson, AR, USA
| | - Akbar Noorbakhsh
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Mozhgan Nikzad
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Seyed Hamid Seyedi
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Fatemeh Abdi
- Department of Medicine and Paramedical, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | | | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
11
|
Wang J. Fast Identification of Possible Drug Treatment of Coronavirus Disease -19 (COVID-19) Through Computational Drug Repurposing Study. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:11875446. [PMID: 32510523 PMCID: PMC7263765 DOI: 10.26434/chemrxiv.11875446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 02/21/2020] [Indexed: 01/20/2023]
Abstract
The recent outbreak of novel coronavirus disease -19 (COVID-19) calls for and welcomes possible treatment strategies using drugs on the market. It is very efficient to apply computer-aided drug design techniques to quickly identify promising drug repurposing candidates, especially after the detailed 3D-structures of key virous proteins are resolved. Taking the advantage of a recently released crystal structure of COVID-19 protease in complex with a covalently-bonded inhibitor, N3,1 I conducted virtual docking screening of approved drugs and drug candidates in clinical trials. For the top docking hits, I then performed molecular dynamics simulations followed by binding free energy calculations using an endpoint method called MM-PBSA-WSAS.2-4 Several promising known drugs stand out as potential inhibitors of COVID-19 protease, including Carfilzomib, Eravacycline, Valrubicin, Lopinavir and Elbasvir. Carfilzomib, an approved anti-cancer drug acting as a proteasome inhibitor, has the best MM-PBSA-WSAS binding free energy, -13.82 kcal/mol. Streptomycin, an antibiotic and a charged molecule, also demonstrates some inhibitory effect, even though the predicted binding free energy of the charged form (-3.82 kcal/mol) is not nearly as low as that of the neutral form (-7.92 kcal/mol). One bioactive, PubChem 23727975, has a binding free energy of -12.86 kcal/mol. Detailed receptor-ligand interactions were analyzed and hot spots for the receptor-ligand binding were identified. I found that one hotspot residue HIS41, is a conserved residue across many viruses including COVID-19, SARS, MERS, and HCV. The findings of this study can facilitate rational drug design targeting the COVID-19 protease.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Gupta S, Dasmahapatra AK. Destabilization potential of phenolics on Aβ fibrils: mechanistic insights from molecular dynamics simulation. Phys Chem Chem Phys 2020; 22:19643-19658. [DOI: 10.1039/d0cp02459g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ellagic acid from pomegranate and walnuts is found to destabilize Aβ fibrils. It can be a potential drug to treat AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
- Center for Nanotechnology
| |
Collapse
|
13
|
Bazoobandi M, Bozorgmehr MR, Mahmoudi A, Morsali A. The Effect of Temperature on the Interaction of Phenanthroline-based Ligands with G-quadruplex: In Silico Viewpoint. Comb Chem High Throughput Screen 2019; 22:546-554. [PMID: 31642773 DOI: 10.2174/1386207322666191022142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE The stability of the G-quadruplex structure can increase its activity in telomerase inhibiting cancer cells. In this study, a molecular dynamics simulation method was used to study the effect of three phenanthroline-based ligands on the structure of G-quadruplex at the temperatures of 20, 40, 60 and 80°C. MATERIALS AND METHODS RMSD values and frequency of calculated RMSD in the presence and absence of ligands show that ligands cause the relative stability of the G-quadruplex, particularly at low temperatures. The calculation of hydrogen bonds in Guanine-tetrads in three different quadruplex sheets shows that the effect of ligands on the sheets is not the same so that the bottom sheet of G-quadruplex is most affected by the ligands at high temperatures, and the Guaninetetrads in this sheet are far away. Conformation factor was calculated as a measure of ligands binding affinity for each of the G-quadruplex residues. RESULTS The results show that the studied ligands interact more with the G-quadruplex than loop areas, although with increasing temperature, the binding area also includes the G-quadruplex sheets. The contribution of each of the residues involved in the G-quadruplex binding area with ligands was also calculated. CONCLUSION The calculations performed are consistent with the previous experimental observations that can help to understand the molecular mechanism of the interaction of phenanthroline and its derivatives with quadruplex.
Collapse
Affiliation(s)
- Mohadeseh Bazoobandi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Hakimiyeh, Tehran, Iran
| | | | - Ali Mahmoudi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Hakimiyeh, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
14
|
Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem Rev 2019; 119:9478-9508. [DOI: 10.1021/acs.chemrev.9b00055] [Citation(s) in RCA: 578] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ercheng Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Liu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU−ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200122, China
- Department of Chemistry, New York University, New York, New York 10003, United States
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
Palatnik-de-Sousa CB. Nucleoside Hydrolase NH 36: A Vital Enzyme for the Leishmania Genus in the Development of T-Cell Epitope Cross-Protective Vaccines. Front Immunol 2019; 10:813. [PMID: 31040850 PMCID: PMC6477039 DOI: 10.3389/fimmu.2019.00813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/27/2019] [Indexed: 01/27/2023] Open
Abstract
NH36 is a vital enzyme of the DNA metabolism and a specific target for anti-Leishmania chemotherapy. We developed second-generation vaccines composed of the FML complex or its main native antigen, the NH36 nucleoside hydrolase of Leishmania (L.) donovani and saponin, and a DNA vaccine containing the NH36 gene. All these vaccines were effective in prophylaxis and treatment of mice and dog visceral leishmaniasis (VL). The FML-saponin vaccine became the first licensed veterinary vaccine against leishmaniasis (Leishmune®) which reduced the incidence of human and canine VL in endemic areas. The NH36, DNA or recombinant protein vaccines induced a Th1 CD4+IFN-γ+ mediated protection in mice. Efficacy against VL was mediated by a CD4+TNF-α T lymphocyte response against the NH36-F3 domain, while against tegumentary leishmaniasis (TL) a CD8+ T lymphocyte response to F1 was also required. These domains were 36-41 % more protective than NH36, and a recombinant F1F3 chimera was 21% stronger than the domains, promoting a 99.8% reduction of the parasite load. We also identified the most immunogenic NH36 domains and epitopes for PBMC of active human VL, cured or asymptomatic and DTH+ patients. Currently, the NH36 subunit recombinant vaccine is turning into a multi-epitope T cell synthetic vaccine against VL and TL.
Collapse
Affiliation(s)
- Clarisa Beatriz Palatnik-de-Sousa
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Faculty of Medicine, Institute for Research in Immunology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Jawad B, Poudel L, Podgornik R, Steinmetz NF, Ching WY. Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Phys Chem Chem Phys 2019; 21:3877-3893. [PMID: 30702122 DOI: 10.1039/c8cp06776g] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The intercalation process of binding doxorubicin (DOX) in DNA is studied by extensive MD simulations. Many molecular factors that control the binding affinity of DOX to DNA to form a stable complex are inspected and quantified by employing continuum solvation models for estimating the binding free energy. The modified MM-PB(GB)SA methodology provides a complete energetic profile of ΔGele, ΔGvDW, ΔGpolar, ΔGnon-polar, TΔStotal, ΔGdeform, ΔGcon, and ΔGion. To identify the sequence specificity of DOX, two different DNA sequences, d(CGATCG) or DNA1 and d(CGTACG) or DNA2, with one molecule (1 : 1 complex) or two molecule (2 : 1 complex) configurations of DOX were selected in this study. Our results show that the DNA deformation energy (ΔGdeform), the energy cost from translational and rotational entropic contributions (TΔStran+rot), the total electrostatic interactions (ΔGpolar-PB/GB + ΔGele) of incorporation, the intramolecular electrostatic interactions (ΔGele) and electrostatic polar solvation interactions (ΔGpolar-PB/GB) are all unfavorable to the binding of DOX to DNA. However, they are overcome by at least five favorable interactions: the van der Waals interactions (ΔGvDW), the non-polar solvation interaction (ΔGnon-polar), the vibrational entropic contribution (TΔSvib), and the standard concentration dependent free energies of DOX (ΔGcon) and the ionic solution (ΔGion). Specifically, the van der Waals interaction appears to be the major driving force to form a stable DOX-DNA complex. We also predict that DOX has stronger binding to DNA1 than DNA2. The DNA deformation penalty and entropy cost in the 2 : 1 complex are less than those in the 1 : 1 complex, thus they indicate that the 2 : 1 complex is more stable than the 1 : 1 complex. We have calculated the total binding free energy (BFE) (ΔGt-sim) using both MM-PBSA and MM-GBSA methods, which suggests a more stable DOX-DNA complex at lower ionic concentration. The calculated BFE from the modified MM-GBSA method for DOX-DNA1 and DOX-DNA2 in the 1 : 1 complex is -9.1 and -5.1 kcal mol-1 respectively. The same quantities from the modified MM-PBSA method are -12.74 and -8.35 kcal mol-1 respectively. The value of the total BFE ΔGt-sim in the 1 : 1 complex is in reasonable agreement with the experimental value of -7.7 ± 0.3 kcal mol-1.
Collapse
Affiliation(s)
- Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA.
| | | | | | | | | |
Collapse
|
17
|
Kendall LV, Owiny JR, Dohm ED, Knapek KJ, Lee ES, Kopanke JH, Fink M, Hansen SA, Ayers JD. Replacement, Refinement, and Reduction in Animal Studies With Biohazardous Agents. ILAR J 2019; 59:177-194. [DOI: 10.1093/ilar/ily021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Abstract
Animal models are critical to the advancement of our knowledge of infectious disease pathogenesis, diagnostics, therapeutics, and prevention strategies. The use of animal models requires thoughtful consideration for their well-being, as infections can significantly impact the general health of an animal and impair their welfare. Application of the 3Rs—replacement, refinement, and reduction—to animal models using biohazardous agents can improve the scientific merit and animal welfare. Replacement of animal models can use in vitro techniques such as cell culture systems, mathematical models, and engineered tissues or invertebrate animal hosts such as amoeba, worms, fruit flies, and cockroaches. Refinements can use a variety of techniques to more closely monitor the course of disease. These include the use of biomarkers, body temperature, behavioral observations, and clinical scoring systems. Reduction is possible using advanced technologies such as in vivo telemetry and imaging, allowing longitudinal assessment of animals during the course of disease. While there is no single method to universally replace, refine, or reduce animal models, the alternatives and techniques discussed are broadly applicable and they should be considered when infectious disease animal models are developed.
Collapse
Affiliation(s)
- Lon V Kendall
- Department of Microbiology, Immunology and Pathology, and Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - James R Owiny
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Erik D Dohm
- Animal Resources Program, University of Alabama, Birmingham, Alabama
| | - Katie J Knapek
- Comparative Medicine Training Program, Colorado State University, Fort Collins, Colorado
| | - Erin S Lee
- Animal Resource Center, University of Texas Medical Branch, Galveston, Texas
| | - Jennifer H Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael Fink
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Iowa, Iowa City, Iowa
| | - Jessica D Ayers
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
18
|
Shahbazmohammadi H, Sardari S, Lari A, Omidinia E. Engineering an efficient mutant of Eupenicillium terrenum fructosyl peptide oxidase for the specific determination of hemoglobin A1c. Appl Microbiol Biotechnol 2019; 103:1725-1735. [DOI: 10.1007/s00253-018-9529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
|
19
|
Zarezade V, Abolghasemi M, Rahim F, Veisi A, Behbahani M. In silico assessment of new progesterone receptor inhibitors using molecular dynamics: a new insight into breast cancer treatment. J Mol Model 2018; 24:337. [DOI: 10.1007/s00894-018-3858-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023]
|
20
|
Mohseni SS, Nasri F, Davari K, Mirzaie S, Moradzadegan A, Abdi F, Farzaneh F. Identification of novel inhibitor against endonuclease subunit of Influenza pH1N1 polymerase: A combined molecular docking, molecular dynamics, MMPBSA, QMMM and ADME studies to combat influenza A viruses. Comput Biol Chem 2018; 77:279-290. [PMID: 30396155 DOI: 10.1016/j.compbiolchem.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023]
Abstract
The influenza H1N1 virus is the causative agent of the flu pandemic in the world. Due to the shortage of effective means of control, it is remained the serious threats to public and avian health. To battle the surge of viral outbreaks, new treatments are crucially needed. The viral RNA polymerase, which is responsible for transcription and replication of the RNA genome, is comprised of subunits PA, PB1 and PB2. PA has endonuclease activity and is a well known target for inhibitor and drug design. In the current study, we employed molecular docking, molecular dynamics (MD), MMPBSA, QMMM and ADME studies to find and propose an inhibitor among 11,873 structures against PA. Our molecular docking, MD, MMPBSA and QMMM studies showed that ZINC15340668 has ideal characteristics as a potent PA inhibitor, and can be used in experimental phase and further development. Also, ADME prediction demonstrated that all physico-chemical parameters are within the acceptable range defined for human use. Molecular mechanism based study revealed that upon inhibitor binding; the flexibility of PA backbone is increased. This observation demonstrates the plasticity of PA active site, and it should be noticed in drug design against PA Influenza A viruses. In the final phase of the study, the efficiency of our proposed hit was tested computationally against mutant drug resistant I38T_PA. Our results exhibited that the hit inhibits the I38T_PA in different manner with high potency.
Collapse
Affiliation(s)
- Seyed Sajad Mohseni
- Department of Microbiology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Fariborz Nasri
- Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kambiz Davari
- Department of Microbiology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Atousa Moradzadegan
- Department of Experimental Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran.
| | - Fatemeh Abdi
- Department of Biochemsitry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farhad Farzaneh
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
21
|
Ardalan N, Mirzaie S, Sepahi AA, Khavari-Nejad RA. Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies. Med Hypotheses 2018; 112:7-17. [PMID: 29447943 DOI: 10.1016/j.mehy.2018.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/29/2017] [Accepted: 01/13/2018] [Indexed: 11/27/2022]
Abstract
L-Asparaginases (ASNase) belong to a family of amidohydrolases, have both asparaginase and glutaminase activity. Acute lymphocytic leukemia (ALL) is an outrageous disease worldwide. Bacterial ASNase has been used for the treatment of ALL. Glutaminase activity of enzyme causes some side effect and it is not essential for anticancer activity. The aim of this study was engineering of Escherichia coli asparaginase II to find a mutant with reduced glutaminase activity by molecular docking, molecular dynamics (MD) and QM-MM (Quantum mechanics molecular dynamics) simulations. Residues with low free energy of binding to Asn and high free binding energy to Gln were chosen for mutagenesis. Then, a mutant with higher glutaminase free binding energy was selected for further studies. Additionally, the MD simulation and QM-MM computation of wild type (WT) were employed and the selected mutated ASNase were analyzed and discussed. Our data showed that V27T is a good candidate to reduction the glutaminase activity, while has no remarkable effect on asparaginase activity of the enzyme. The simulation analysis revealed that V27T mutant is more stable than WT and mutant simulation was successful completely. QM-MM results confirmed the successfulness of our mutagenesis.
Collapse
Affiliation(s)
- Noeman Ardalan
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Science, North Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
22
|
Ghanbari Z, Housaindokht M, Bozorgmehr M, Izadyar M. Effects of synergistic and non-synergistic anions on the iron binding site from serum transferrin: A molecular dynamic simulation analysis. J Mol Graph Model 2017; 78:176-186. [DOI: 10.1016/j.jmgm.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/15/2022]
|