1
|
Kenney RM, Lee MC, Boyce MW, Sitte ZR, Lockett MR. Cellular Invasion Assay for the Real-Time Tracking of Individual Cells in Spheroid or Tumor-like Mimics. Anal Chem 2023; 95:3054-3061. [PMID: 36701161 PMCID: PMC10007898 DOI: 10.1021/acs.analchem.2c05201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cellular invasion is the gateway to metastasis, with cells moving from a primary tumor into neighboring regions of healthy tissue. Invasion assays provide a tractable experimental platform to quantitatively assess cellular movement in the presence of potential chemokines or inhibitors. Many such assays involve cellular movement from high cell densities to cell-free regions. To improve the physiological relevance of such assays, we developed an assay format to track cellular movement throughout a uniform density of cells. This assay format imparts diffusion-dominated environments along the channel, resulting in oxygen and nutrient gradients found in spheroids or poorly vascularized tumors. By incorporating oxygen- and pH-sensing films, we quantified spatial and temporal changes in the extracellular environment while simultaneously tracking the movement of a subset of cells engineered to express fluorescent proteins constitutively. Our results show the successful invasion into neighboring tissues likely arises from a small population with a highly invasive phenotype. These highly invasive cells continued to move throughout the 48 h experiment, suggesting they have stem-like or persister properties. Surprisingly, the distance these persister cells invaded was unaffected by the density of cells in the channel or the presence or absence of an oxygen gradient. While these datasets cannot determine if the invasive cells are inherent to the population or if diffusion-dominated environments promote them, they highlight the need for further study.
Collapse
Affiliation(s)
- Rachael M. Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
| | - Maggie C. Lee
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
| | - Matthew W. Boyce
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
| | - Zachary R. Sitte
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
| | - Matthew R. Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599-7295
| |
Collapse
|
2
|
Sun H, Lin M, Zamani A, Goldsmith JR, Boggs AE, Li M, Lee CN, Chen X, Li X, Li T, Dorrity BL, Li N, Lou Y, Shi S, Wang W, Chen YH. The TIPE Molecular Pilot That Directs Lymphocyte Migration in Health and Inflammation. Sci Rep 2020; 10:6617. [PMID: 32313148 PMCID: PMC7170861 DOI: 10.1038/s41598-020-63629-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lymphocytes are some of the most motile cells of vertebrates, constantly navigating through various organ systems. Their specific positioning in the body is delicately controlled by site-specific directional cues such as chemokines. While it has long been suspected that an intrinsic molecular pilot, akin to a ship's pilot, guides lymphocyte navigation, the nature of this pilot is unknown. Here we show that the TIPE (TNF-α-induced protein 8-like) family of proteins pilot lymphocytes by steering them toward chemokines. TIPE proteins are carriers of lipid second messengers. They mediate chemokine-induced local generation of phosphoinositide second messengers, but inhibit global activation of the small GTPase Rac. TIPE-deficient T lymphocytes are completely pilot-less: they are unable to migrate toward chemokines despite their normal ability to move randomly. As a consequence, TIPE-deficient mice have a marked defect in positioning their T lymphocytes to various tissues, both at the steady-state and during inflammation. Thus, TIPE proteins pilot lymphocytes during migration and may be targeted for the treatment of lymphocyte-related disorders.
Collapse
Affiliation(s)
- Honghong Sun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mei Lin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Zamani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason R Goldsmith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda E Boggs
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chin-Nien Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xu Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ting Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brigid L Dorrity
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunwei Lou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Songlin Shi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Chemotaxis Model for Breast Cancer Cells Based on Signal/Noise Ratio. Biophys J 2018; 115:2034-2043. [PMID: 30366624 DOI: 10.1016/j.bpj.2018.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022] Open
Abstract
Chemotaxis, a biased migration of cells under a chemical gradient, plays a significant role in diverse biological phenomena including cancer metastasis. Stromal cells release signaling proteins to induce chemotaxis, which leads to organ-specific metastasis. Epidermal growth factor (EGF) is an example of the chemical attractants, and its gradient stimulates metastasis of breast cancer cells. Hence, the interactions between EGF and breast cancer cells have long been a subject of interest for oncologists and clinicians. However, most current approaches do not systematically separate the effects of gradient and absolute concentration of EGF on chemotaxis of breast cancer cells. In this work, we develop a theoretical model based on signal/noise ratio to represent stochastic properties and report our microfluidic experiments to verify the analytical predictions from the model. The results demonstrate that even under the same EGF concentration gradients (0-50 or 0-150 ng/mL), breast cancer cells reveal a more evident chemotaxis pattern when the absolute EGF concentrations are low. Moreover, we found that reducing the number of EGF receptors (EGFRs) with addition of EGFR antibody (1 ng/mL) can promote chemotaxis at an EGF gradient of 0-1 ng/mL as shown by chemotaxis index (0.121 ± 0.037, reduced EGFRs vs. 0.003 ± 0.041, control). This counterintuitive finding suggests that EGFR-targeted therapy may stimulate metastasis of breast cancer because the partial suppression of the receptors makes the number of receptors close to the optimal one for chemotaxis. This analysis should be considered in anticancer drug design.
Collapse
|
4
|
Chen J, Hua Y, Jiang Y, Zhou X, Zhang L. Rotational Diffusion of Soft Vesicles Filled by Chiral Active Particles. Sci Rep 2017; 7:15006. [PMID: 29101398 PMCID: PMC5670181 DOI: 10.1038/s41598-017-15095-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
We investigate the dynamics of two-dimensional soft vesicles filled with chiral active particles by employing the overdamped Langevin dynamics simulation. The unidirectional rotation is observed for soft vesicles, and the rotational angular velocity of vesicles depends mainly on the area fraction (ρ) and angular velocity (ω) of chiral active particles. There exists an optimal parameter for ω at which the rotational angular velocity of vesicle takes its maximal value. Meanwhile, at low concentration the continuity of curvature is destroyed seriously by chiral active particles, especially for large ω, and at high concentration the chiral active particles cover the vesicle almost uniformly. In addition, the center-of-mass mean square displacement for vesicles is accompanied by oscillations at short timescales, and the oscillation period of diffusion for vesicles is consistent with the rotation period of chiral active particles. The diffusion coefficient of vesicle decreases monotonously with increasing the angular velocity ω of chiral active particles. Our investigation can provide a few designs for nanofabricated devices that can be driven in a unidirectional rotation by chiral active particles or could be used as drug-delivery agent.
Collapse
Affiliation(s)
- Jiamin Chen
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yunfeng Hua
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yangwei Jiang
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolin Zhou
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
5
|
Szatmary AC, Nossal R, Parent CA, Majumdar R. Modeling neutrophil migration in dynamic chemoattractant gradients: assessing the role of exosomes during signal relay. Mol Biol Cell 2017; 28:3457-3470. [PMID: 28954858 PMCID: PMC5687044 DOI: 10.1091/mbc.e17-05-0298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 01/07/2023] Open
Abstract
Cells chemotaxing in decaying gradients of primary chemoattractants maintain their
chemotactic response by releasing secondary chemoattractants. Steep, local gradients
of secondary chemoattractants can be reached with molecules of higher hydrophobicity,
whereas temporal stability can be achieved by packaging in extracellular
vesicles. Migrating cells often exhibit signal relay, a process in which cells migrating in
response to a chemotactic gradient release a secondary chemoattractant to enhance
directional migration. In neutrophils, signal relay toward the primary
chemoattractant N-formylmethionyl-leucyl-phenylalanine (fMLP) is mediated by
leukotriene B4 (LTB4). Recent evidence suggests that the
release of LTB4 from cells occurs through packaging in exosomes. Here we
present a mathematical model of neutrophil signal relay that focuses on
LTB4 and its exosome-mediated secretion. We describe neutrophil
chemotaxis in response to a combination of a defined gradient of fMLP and an evolving
gradient of LTB4, generated by cells in response to fMLP. Our model
enables us to determine the gradient of LTB4 arising either through
directed secretion from cells or through time-varying release from exosomes. We
predict that the secondary release of LTB4 increases recruitment range and
show that the exosomes provide a time delay mechanism that regulates the development
of LTB4 gradients. Additionally, we show that under decaying primary
gradients, secondary gradients are more stable when secreted through exosomes as
compared with direct secretion. Our chemotactic model, calibrated from observed
responses of cells to gradients, thereby provides insight into chemotactic signal
relay in neutrophils during inflammation.
Collapse
Affiliation(s)
- Alex C Szatmary
- Division of Basic and Translational Biophysics, National Institute of Child Health and Human Development, Rockville, MD 20847
| | - Ralph Nossal
- Division of Basic and Translational Biophysics, National Institute of Child Health and Human Development, Rockville, MD 20847
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|