1
|
Assessing 3D vs. 2D habitat metrics in a Mediterranean ecosystem for a wiser wildlife management. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Gunner RM, Holton MD, Scantlebury DM, Hopkins P, Shepard ELC, Fell AJ, Garde B, Quintana F, Gómez-Laich A, Yoda K, Yamamoto T, English H, Ferreira S, Govender D, Viljoen P, Bruns A, van Schalkwyk OL, Cole NC, Tatayah V, Börger L, Redcliffe J, Bell SH, Marks NJ, Bennett NC, Tonini MH, Williams HJ, Duarte CM, van Rooyen MC, Bertelsen MF, Tambling CJ, Wilson RP. How often should dead-reckoned animal movement paths be corrected for drift? ANIMAL BIOTELEMETRY 2021; 9:43. [PMID: 34900262 PMCID: PMC7612089 DOI: 10.1186/s40317-021-00265-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/25/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, 'GPS') is typically used to verify an animal's location periodically. Straight lines are typically drawn between these 'Verified Positions' ('VPs') so the interpolation of space-use is limited by the temporal and spatial resolution of the system's measurement. As such, parameters such as route-taken and distance travelled can be poorly represented when using VP systems alone. Dead-reckoning has been suggested as a technique to improve the accuracy and resolution of reconstructed movement paths, whilst maximising battery life of VP systems. This typically involves deriving travel vectors from motion sensor systems and periodically correcting path dimensions for drift with simultaneously deployed VP systems. How often paths should be corrected for drift, however, has remained unclear. METHODS AND RESULTS Here, we review the utility of dead-reckoning across four contrasting model species using different forms of locomotion (the African lion Panthera leo, the red-tailed tropicbird Phaethon rubricauda, the Magellanic penguin Spheniscus magellanicus, and the imperial cormorant Leucocarbo atriceps). Simulations were performed to examine the extent of dead-reckoning error, relative to VPs, as a function of Verified Position correction (VP correction) rate and the effect of this on estimates of distance moved. Dead-reckoning error was greatest for animals travelling within air and water. We demonstrate how sources of measurement error can arise within VP-corrected dead-reckoned tracks and propose advancements to this procedure to maximise dead-reckoning accuracy. CONCLUSIONS We review the utility of VP-corrected dead-reckoning according to movement type and consider a range of ecological questions that would benefit from dead-reckoning, primarily concerning animal-barrier interactions and foraging strategies.
Collapse
Affiliation(s)
- Richard M. Gunner
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Mark D. Holton
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - David M. Scantlebury
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Phil Hopkins
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Emily L. C. Shepard
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Adam J. Fell
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Baptiste Garde
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Flavio Quintana
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET. Boulevard Brown, 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Agustina Gómez-Laich
- Departamento de Ecología, Genética y Evolución & Instituto de Ecología, Genética Y Evolución de Buenos Aires (IEGEBA), CONICET, Pabellón II Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Takashi Yamamoto
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Nakano, Tokyo, Japan
| | - Holly English
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sam Ferreira
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Danny Govender
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Pauli Viljoen
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Angela Bruns
- Veterinary Wildlife Services, South African National Parks, 97 Memorial Road, Old Testing Grounds, Kimberley 8301, South Africa
| | - O. Louis van Schalkwyk
- Department of Agriculture, Government of South Africa, Land Reform and Rural Development, Pretoria 001, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Nik C. Cole
- Durrell Wildlife Conservation Trust, Les Augrès Manor, Channel Islands, Trinity JE3 5BP, Jersey, UK
- Mauritian Wildlife Foundation, Grannum Road, Indian Ocean, Vacoas, Mauritius
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Indian Ocean, Vacoas, Mauritius
| | - Luca Börger
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
- Centre for Biomathematics, Swansea University, Swansea SA2 8PP, UK
| | - James Redcliffe
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Stephen H. Bell
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Nikki J. Marks
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Nigel C. Bennett
- Mammal Research Institute. Department of Zoology and Entomology, University of Pretoria, Pretoria 002., South Africa
| | - Mariano H. Tonini
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Grupo GEA, IPATEC-UNCO-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Hannah J. Williams
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
| | - Carlos M. Duarte
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Martin C. van Rooyen
- Mammal Research Institute. Department of Zoology and Entomology, University of Pretoria, Pretoria 002., South Africa
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - Craig J. Tambling
- Department of Zoology and Entomology, University of Fort Hare, Alice Campus, Ring Road, Alice 5700, South Africa
| | - Rory P. Wilson
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
3
|
Williams HJ, Safi K. Certainty and integration of options in animal movement. Trends Ecol Evol 2021; 36:990-999. [PMID: 34303526 DOI: 10.1016/j.tree.2021.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Physical energy defines the energy landscape and determines the species-specific cost of movement, thus influencing movement decisions. In unpredictable and dynamic environments, observing the locomotion of others increases individual certainty in the distribution of physical energy to increase movement efficiency. Beyond the physical energy landscape, social sampling increases certainty in all ecological landscapes that influence animal movement (including fear and resource landscapes), and individuals use energy to express each of these. We call for the development of an 'optimal movement theory' (OMT) that integrates the multidimensional reality of movement decisions by combining ecological landscapes according to a single expectation of energy cost-benefit, where social sampling provides up-to-date information under uncertain conditions. This mechanistic framework has implications for predicting individual movement patterns and for investigating the emergence of aggregations.
Collapse
Affiliation(s)
- Hannah J Williams
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany; University of Konstanz, Department of Biology, Universitätsstraße 10, 78464 Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany.
| | - Kamran Safi
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany; University of Konstanz, Department of Biology, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
4
|
Law WB, Hiscock P, Ostendorf B, Lewis M. Using satellite imagery to evaluate precontact Aboriginal foraging habitats in the Australian Western Desert. Sci Rep 2021; 11:10755. [PMID: 34035346 PMCID: PMC8149716 DOI: 10.1038/s41598-021-89642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Modern satellite imaging offers radical new insights of the challenges and opportunities confronting traditional Aboriginal ecology and land use in Australia's Western Desert. We model the likely dynamics of historic and precontact desert land use using Earth observation data to identify the distribution of suitable foraging habitats. Suitability was modelled for an ideal environmental scenario, based on satellite observations of maximal water abundance, vegetation greenness, and terrain ruggedness. Our model shows that the highest-ranked foraging habitats do not align with land systems or bioregions that have been used in previous reconstructions of Australian prehistory. We identify impoverished desert areas where unsuitable foraging conditions have likely persisted since early in the last glacial cycle, and in which occupation would always have been rare. These findings lead us to reconsider past patterns of land use and the predicted archaeological signature of earlier desert peoples.
Collapse
Affiliation(s)
- W. Boone Law
- grid.1010.00000 0004 1936 7304School of Biological Sciences and Environment Institute, University of Adelaide, Adelaide, SA 5005 Australia
| | - Peter Hiscock
- grid.438303.f0000 0004 0470 8815Geoscience and Archaeology, Australian Museum, 1 William Street, Sydney, NSW 2010 Australia
| | - Bertram Ostendorf
- grid.1010.00000 0004 1936 7304School of Biological Sciences and Environment Institute, University of Adelaide, Adelaide, SA 5005 Australia
| | - Megan Lewis
- grid.1010.00000 0004 1936 7304School of Biological Sciences and Environment Institute, University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
5
|
Masello JF, Barbosa A, Kato A, Mattern T, Medeiros R, Stockdale JE, Kümmel MN, Bustamante P, Belliure J, Benzal J, Colominas-Ciuró R, Menéndez-Blázquez J, Griep S, Goesmann A, Symondson WOC, Quillfeldt P. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. MOVEMENT ECOLOGY 2021; 9:24. [PMID: 34001240 PMCID: PMC8127181 DOI: 10.1186/s40462-021-00255-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Energy landscapes provide an approach to the mechanistic basis of spatial ecology and decision-making in animals. This is based on the quantification of the variation in the energy costs of movements through a given environment, as well as how these costs vary in time and for different animal populations. Organisms as diverse as fish, mammals, and birds will move in areas of the energy landscape that result in minimised costs and maximised energy gain. Recently, energy landscapes have been used to link energy gain and variable energy costs of foraging to breeding success, revealing their potential use for understanding demographic changes. METHODS Using GPS-temperature-depth and tri-axial accelerometer loggers, stable isotope and molecular analyses of the diet, and leucocyte counts, we studied the response of gentoo (Pygoscelis papua) and chinstrap (Pygoscelis antarcticus) penguins to different energy landscapes and resources. We compared species and gentoo penguin populations with contrasting population trends. RESULTS Between populations, gentoo penguins from Livingston Island (Antarctica), a site with positive population trends, foraged in energy landscape sectors that implied lower foraging costs per energy gained compared with those around New Island (Falkland/Malvinas Islands; sub-Antarctic), a breeding site with fluctuating energy costs of foraging, breeding success and populations. Between species, chinstrap penguins foraged in sectors of the energy landscape with lower foraging costs per bottom time, a proxy for energy gain. They also showed lower physiological stress, as revealed by leucocyte counts, and higher breeding success than gentoo penguins. In terms of diet, we found a flexible foraging ecology in gentoo penguins but a narrow foraging niche for chinstraps. CONCLUSIONS The lower foraging costs incurred by the gentoo penguins from Livingston, may favour a higher breeding success that would explain the species' positive population trend in the Antarctic Peninsula. The lower foraging costs in chinstrap penguins may also explain their higher breeding success, compared to gentoos from Antarctica but not their negative population trend. Altogether, our results suggest a link between energy landscapes and breeding success mediated by the physiological condition.
Collapse
Affiliation(s)
- Juan F Masello
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Andres Barbosa
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, 79360, Villiers en Bois, France
| | - Thomas Mattern
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
- New Zealand Penguin Initiative, PO Box 6319, Dunedin, 9022, New Zealand
| | - Renata Medeiros
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
- Cardiff School of Dentistry, Heath Park, Cardiff, CF14 4XY, UK
| | - Jennifer E Stockdale
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
| | - Marc N Kümmel
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 17000, La Rochelle, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - Josabel Belliure
- GLOCEE - Global Change Ecology and Evolution Group, Universidad de Alcalá, Madrid, Spain
| | - Jesús Benzal
- Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Roger Colominas-Ciuró
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Javier Menéndez-Blázquez
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Sven Griep
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - William O C Symondson
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
| | - Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| |
Collapse
|
6
|
Chimpanzees Use Least-Cost Routes to Out-of-Sight Goals. Curr Biol 2020; 30:4528-4533.e5. [PMID: 33007243 DOI: 10.1016/j.cub.2020.08.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023]
Abstract
While the ability of naturally ranging animals to recall the location of food resources and use straight-line routes between them has been demonstrated in several studies [1, 2], it is not known whether animals can use knowledge of their landscape to walk least-cost routes [3]. This ability is likely to be particularly important for animals living in highly variable energy landscapes, where movement costs are exacerbated [4, 5]. Here, we used least-cost modeling, which determines the most efficient route assuming full knowledge of the environment, to investigate whether chimpanzees (Pan troglodytes) living in a rugged, montane environment walk least-cost routes to out-of-sight goals. We compared the "costs" and geometry of observed movements with predicted least-cost routes and local knowledge (agent-based) and straight-line null models. The least-cost model performed better than the local knowledge and straight-line models across all parameters, and linear mixed modeling showed a strong relationship between the cost of observed chimpanzee travel and least-cost routes. Our study provides the first example of the ability to take least-cost routes to out-of-sight goals by chimpanzees and suggests they have spatial memory of their home range landscape. This ability may be a key trait that has enabled chimpanzees to maintain their energy balance in a low-resource environment. Our findings provide a further example of how the advanced cognitive complexity of hominins may have facilitated their adaptation to a variety of environmental conditions and lead us to hypothesize that landscape complexity may play a role in shaping cognition.
Collapse
|
7
|
Dunford CE, Marks NJ, Wilmers CC, Bryce CM, Nickel B, Wolfe LL, Scantlebury DM, Williams TM. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions ( Puma concolor). MOVEMENT ECOLOGY 2020; 8:34. [PMID: 32782806 PMCID: PMC7414561 DOI: 10.1186/s40462-020-00215-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/09/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Under current scenarios of climate change and habitat loss, many wild animals, especially large predators, are moving into novel energetically challenging environments. Consequently, changes in terrain associated with such moves may heighten energetic costs and effect the decline of populations in new localities. METHODS To examine locomotor costs of a large carnivorous mammal moving in mountainous habitats, the oxygen consumption of captive pumas (Puma concolor) was measured during treadmill locomotion on level and incline (6.8°) surfaces. These data were used to predict energetic costs of locomotor behaviours of free-ranging pumas equipped with GPS/accelerometer collars in California's Santa Cruz Mountains. RESULTS Incline walking resulted in a 42.0% ± 7.2 SEM increase in the costs of transport compared to level performance. Pumas negotiated steep terrain by traversing across hillsides (mean hill incline 17.2° ± 0.3 SEM; mean path incline 7.3° ± 0.1 SEM). Pumas also walked more slowly up steeper paths, thereby minimizing the energetic impact of vertical terrains. Estimated daily energy expenditure (DEE) based on GPS-derived speeds of free-ranging pumas was 18.3 MJ day- 1 ± 0.2 SEM. Calculations show that a 20 degree increase in mean steepness of the terrain would increase puma DEE by less than 1% as they only spend a small proportion (10%) of their day travelling. They also avoided elevated costs by utilizing slower speeds and shallower path angles. CONCLUSIONS While many factors influence survival in novel habitats, we illustrate the importance of behaviours which reduce locomotor costs when traversing new, energetically challenging environments, and demonstrate that these behaviours are utilised by pumas in the wild.
Collapse
Affiliation(s)
- Carolyn E. Dunford
- School of Biological Sciences, Institute of Global Food Security, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland
| | - Nikki J. Marks
- School of Biological Sciences, Institute of Global Food Security, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland
| | - Christopher C. Wilmers
- Center for Integrated Spatial Research, Environmental Studies Department, University of California- Santa Cruz, Santa Cruz, CA 95064 USA
| | | | - Barry Nickel
- Center for Integrated Spatial Research, Environmental Studies Department, University of California- Santa Cruz, Santa Cruz, CA 95064 USA
| | - Lisa L. Wolfe
- Colorado Division of Parks and Wildlife, Wildlife Health Program, 4330 Laporte Avenue, Fort Collins, CO 80521-2153 USA
| | - D. Michael Scantlebury
- School of Biological Sciences, Institute of Global Food Security, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland
| | - Terrie M. Williams
- Department of Ecology and Evolutionary Biology, Coastal Biology Building, 130 McAllister Way, University of California- Santa Cruz, Santa Cruz, CA 95060 USA
| |
Collapse
|
8
|
Green SJ, Boruff BJ, Grueter CC. From ridge tops to ravines: landscape drivers of chimpanzee ranging patterns. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Sage E, Bouten W, Hoekstra B, Camphuysen KCJ, Shamoun-Baranes J. Orographic lift shapes flight routes of gulls in virtually flat landscapes. Sci Rep 2019; 9:9659. [PMID: 31273241 PMCID: PMC6609688 DOI: 10.1038/s41598-019-46017-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/19/2019] [Indexed: 11/09/2022] Open
Abstract
Interactions between landscape and atmosphere result in a dynamic flight habitat which birds may use opportunistically to save energy during flight. However, their ability to utilise these dynamic landscapes and its influence on shaping movement paths is not well understood. We investigate the degree to which gulls utilise fine scale orographic lift created by wind deflected upwards over landscape features in a virtually flat landscape. Using accelerometer measurements and GPS tracking, soaring flight is identified and analysed with respect to orographic lift, modelled using high-resolution digital elevation models and wind measurements. The relationship between orographic lift and flight routes suggests gulls have advanced knowledge of their aerial surroundings and the benefits to be gained from them, even regarding small features such as tree lines. We show that in a landscape constantly influenced by anthropogenic change, the structure of our landscape has an aerial impact on flight route connectivity and costs.
Collapse
Affiliation(s)
- Elspeth Sage
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - Willem Bouten
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Bart Hoekstra
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Kees C J Camphuysen
- Department Coastal Systems, NIOZ Royal Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Judy Shamoun-Baranes
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|