1
|
Promden W, Chanvorachote P, Viriyabancha W, Sintupachee S, De-Eknamkul W. Maclura cochinchinensis (Lour.) Corner Heartwood Extracts Containing Resveratrol and Oxyresveratrol Inhibit Melanogenesis in B16F10 Melanoma Cells. Molecules 2024; 29:2473. [PMID: 38893349 PMCID: PMC11173867 DOI: 10.3390/molecules29112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to isolate and purify resveratrol and oxyresveratrol from the heartwoods of Maclura cochinchinensis, and to evaluate their inhibitory effects on melanogenesis in B16F10 murine melanoma cells. A methanol maceration process yielded a crude extract comprising 24.86% of the initial mass, which was subsequently analyzed through HPTLC, HPLC, and LC-MS/MS. These analyses revealed the presence of resveratrol and oxyresveratrol at concentrations of 4.32 mg/g and 33.6 mg/g in the extract, respectively. Initial purification employing food-grade silica gel column chromatography separated the extract into two fractions: FA, exhibiting potent inhibition of both tyrosinase activity and melanogenesis, and FM, showing no such inhibitory activity. Further purification processes led to the isolation of fractions Y11 and Gn12 with enhanced concentrations of resveratrol (94.9 and 110.21 mg/g, respectively) and fractions Gn15 and Gn16 with elevated levels of oxyresveratrol (321.93 and 274.59 mg/g, respectively), all of which significantly reduced melanin synthesis. These outcomes affirm the substantial presence of resveratrol and oxyresveratrol in the heartwood of M. cochinchinensis, indicating their promising role as natural agents for skin lightening.
Collapse
Affiliation(s)
- Worrawat Promden
- Division of General Science, Faculty of Education, Buriram Rajabhat University, Buriram 31000, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wittawat Viriyabancha
- Medicines Regulation Division, Food and Drug Administration, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Siriluk Sintupachee
- Program in Creative Innovation in Science and Technology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand;
- Specialized Research Unit for Insects and Herbs, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Wanchai De-Eknamkul
- Natural Product Biotechnology Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
2
|
Goli AS, Sato VH, Sato H, Chewchinda S, Leanpolchareanchai J, Nontakham J, Yahuafai J, Thilavech T, Meesawatsom P, Maitree M. Antihyperglycemic effects of Lysiphyllum strychnifolium leaf extract in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2023; 61:189-200. [PMID: 36625086 PMCID: PMC9848344 DOI: 10.1080/13880209.2022.2160771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Lysiphyllum strychnifolium (Craib) A. Schmitz (LS) (Fabaceae) has traditionally been used to treat diabetes mellitus. OBJECTIVE This study demonstrates the antidiabetic and antioxidant effects of aqueous extract of LS leaves in vivo and in vitro. MATERIALS AND METHODS The effects of aqueous LS leaf extract on glucose uptake, sodium-dependent glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) mRNA expression in Caco-2 cells, α-glucosidase, and lipid peroxidation were evaluated in vitro. The antidiabetic effects were evaluated using an oral glucose tolerance test (OGTT) and a 28-day consecutive administration to streptozotocin (STZ)-nicotinamide (NA)-induced type 2 diabetic mice. RESULTS The extract significantly inhibited glucose uptake (IC50: 236.2 ± 36.05 µg/mL) and downregulated SGLT1 and GLUT2 mRNA expression by approximately 90% in Caco-2 cells. Furthermore, it non-competitively inhibited α-glucosidase in a concentration-dependent manner with the IC50 and Ki of 6.52 ± 0.42 and 1.32 µg/mL, respectively. The extract at 1000 mg/kg significantly reduced fasting blood glucose levels in both the OGTT and 28-day consecutive administration models as compared with untreated STZ-NA-induced diabetic mice (p < 0.05). Significant improvements of serum insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and GLUT4 levels were observed. Furthermore, the extract markedly decreased oxidative stress markers by 37-53% reduction of superoxide dismutase 1 (SOD1) in muscle and malondialdehyde (MDA) in muscle and pancreas, which correlated with the reduction of MDA production in vitro (IC50: 24.80 ± 7.24 µg/mL). CONCLUSION The LS extract has potent antihyperglycemic activity to be used as alternative medicine to treat diabetes mellitus.
Collapse
Affiliation(s)
- Arman Syah Goli
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand
| | - Vilasinee Hirunpanich Sato
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand
- Center of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Hitoshi Sato
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, Japan
| | - Savita Chewchinda
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Thailand
| | | | - Jannarin Nontakham
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand
- Clinical Research Section, Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | - Jantana Yahuafai
- Clinical Research Section, Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Thailand
| | - Pongsatorn Meesawatsom
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand
- Center of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Metawee Maitree
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Thailand
| |
Collapse
|
3
|
Yang J, Zuo J, Deng Y, Zhang L, Yu H, Zhang C, Li Z, Li H. Antidiabetic activity of Tartary buckwheat protein-derived peptide AFYRW and its effects on protein glycosylation of pancreas in mice. Amino Acids 2023; 55:1063-1071. [PMID: 37341830 DOI: 10.1007/s00726-023-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Diabetes Mellitus (DM) is one of the most important public health problems, and new antidiabetic drugs with fewer side effects are urgently needed. Here, we measured the antidiabetic effects of an antioxidant peptide (Ala-Phe-Tyr-Arg-Trp, AFYRW) from Tartary Buckwheat Albumin (TBA) in a high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mouse model. The data showed that AFYRW suppressed hepatocyte steatosis and triglycerides while ameliorating insulin resistance in mice. Successively, the influence of AFYRW on aberrant protein glycosylation in diabetic mice was further investigated by lectin microarrays. The results suggested AFYRW could restore the expression of GalNAc, GalNAcα1-3Gal and GalNAcα1-3Galβ1-3/4Glc recognized by PTL-I, Siaα2-3Galβ1-4Glc(NAc)/Glc, Siaα2-3Gal, Siaα2-3 and Siaα2-3GalNAc recognized by MAL-II, terminating in GalNAcα/β1-3/6Gal recognized by WFA and αGalNAc, αGal, anti-A and B recognized by GSI-I to normal levels in the pancreas of HFD-STZ-induced diabetic mice. This work may provide new targets for the future discovery of potential biomarkers to evaluate the efficacy of food-derived antidiabetic drugs based on precise alterations of glycopatterns in DM.
Collapse
Affiliation(s)
- Jiajun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Jie Zuo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yan Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Lilin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China.
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
4
|
Jansakun C, Chulrik W, Hata J, Utaipan T, Pabuprapap W, Supaweera N, Mueangson O, Suksamrarn A, Chunglok W. Trihydroxyxanthones from the heartwood of Maclura cochinchinensis modulate M1/M2 macrophage polarisation and enhance surface TLR4. Inflammopharmacology 2023; 31:529-541. [PMID: 36580158 DOI: 10.1007/s10787-022-01121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/25/2022] [Indexed: 12/30/2022]
Abstract
The anti-inflammatory actions of phytochemicals have attracted much attention due to the current state of numerous inflammatory disorders. Thai traditional medicine uses Maclura cochinchinensis (Lour.) Corner to treat chronic fever and various inflammatory diseases, as well as to maintain normal lymphatic function. Five flavonoids and five xanthones were isolated from the heartwood of M. cochinchinensis and we investigated the anti-inflammatory properties of the isolated compounds. All isolated compounds possessed an anti-inflammatory effect by decreasing prostaglandin E2 (PGE2) synthesis in lipopolysaccharide (LPS)-activated murine macrophages with varying degrees of potency. The greatest decrease in M1 inflammatory mediators, nitric oxide, PGE2, and proinflammatory cytokines was observed with 1,3,7-trihydroxyxanthone and 1,3,5-trihydroxyxanthone treatment of LPS-activated macrophages. The anti-inflammatory mechanism of the two xanthones is mediated by the suppression of inducible nitric oxide synthase, cyclooxygenase-2, and phosphatidylinositol 3-kinase/protein kinase B expression and the upregulation of M2 anti-inflammatory signalling proteins phosphorylated signal transducer and activator of transcription 6 and peroxisome proliferator-activated receptors-γ. 1,3,7-Trihydroxyxanthone exhibits superior induction of anti-inflammatory M2 mediator of LPS-activated macrophages by upregulating arginase1 expression. Following the resolution of inflammation, the two xanthones enhanced surface TLR4 expression compared to LPS-stimulated cells, possibly preserving macrophage function. Our research highlights the role of the two xanthones in modulating the M1/M2 macrophage polarisation to reduce inflammation and retain surface TLR4 once inflammation has been resolved. These findings support the use of xanthones for their anti-inflammatory effects in treating inflammatory dysregulation.
Collapse
Affiliation(s)
- Chutima Jansakun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Wanatsanan Chulrik
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Janejira Hata
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Tanyarath Utaipan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Nassareen Supaweera
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Onchuma Mueangson
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Food Technology and Innovation Center of Excellence, Research and Innovation Institute of Excellence , Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
5
|
Lakornwong W, Kanokmedhakul K, Masranoi J, Tontapha S, Yahuafai J, Laphookhieo S, Suthiphasilp V, Kanokmedhakul S. Cytotoxic and antibacterial xanthones from the roots of Maclura cochinchinensis. Nat Prod Res 2022; 36:6021-6030. [DOI: 10.1080/14786419.2022.2062351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Waranya Lakornwong
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jariya Masranoi
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sarawut Tontapha
- Institute of Nanomaterials Research and Innovation for Energy, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jantana Yahuafai
- Clinical Research Section, Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | - Surat Laphookhieo
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Virayu Suthiphasilp
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Khalid M, Alqarni MH, Alsayari A, Foudah AI, Aljarba TM, Mukim M, Alamri MA, Abullais SS, Wahab S. Anti-Diabetic Activity of Bioactive Compound Extracted from Spondias mangifera Fruit: In-Vitro and Molecular Docking Approaches. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040562. [PMID: 35214895 PMCID: PMC8880729 DOI: 10.3390/plants11040562] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 05/19/2023]
Abstract
Spondias mangifera is a drupaceous fruit popular for its flavour and health advantages. There is little scientific knowledge about S. mangifera, despite its widespread usage in traditional medicine, in the North-Eastern region of India. Inhibiting the key carbohydrate hydrolysing enzymes is one of the strategies for managing diabetes. Therefore, this study studied the antioxidant and anti-diabetic properties of different fraction S. mangifera fruit extract (SMFFs) from Indian geographical origin by in vitro experimental assays and silico docking simulation studies. The ADMET prediction for active substances was also investigated using the AdmetSAR database. Based on the binding affinity/molecular interactions between phytocompounds and target enzymes, in silico investigations were done to confirm the in vitro enzymatic inhibitory capability. β-sitosterol in EtOH-F was analysed using RP-HPLC with RP-C18 column as stationary phase and photo diode array detector. The percentage of β-sitosterol was found to be 1.21% ± 0.17% of total weight of extract (w/w). S. mangifera fruit ethanolic extract had a significant inhibitory concentration of 50% against free radicals produced by ABTS (89.71 ± 2.73%) and lipid peroxidation assay (88.26 ± 2.17%) tests. Similarly, the in vitro antidiabetic test findings indicated that S. mangifera inhibited alpha-amylase (73.42 ± 2.01%) and alpha-glucosidase (79.23 ± 1.98%) enzymes dose-dependently. The maximum glycosylated Hb percentage inhibitory activity shown in the ethanolic fraction was (83.97 ± 2.88%) at 500 µg/mL. The glucose uptake of the ethanolic fraction by the yeast cell showed significant (p < 0.05) at 500 µg/mL when compared with metformin (91.37 ± 1.59%), whereas the other fraction did not show the uptake of glucose by the yeast cell at the same concentration. In the docking study, the main phytoconstituents of S. mangifera fruit, such as oleanolic acid, beta-sitosterol, and beta amyrin, show strong affinity for pancreatic α-amylase. These results imply that S. mangifera has α-amylase and α-glucosidase inhibitory properties and may be used as antidiabetic with antioxidant characteristics.
Collapse
Affiliation(s)
- Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
- Correspondence:
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (S.W.)
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Tariq M. Aljarba
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Mohammad Mukim
- Department of Pharmacology, Kota College of Pharmacy, Kota 324005, Rajasthan, India;
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (S.W.)
| |
Collapse
|