1
|
Lee SJ, Williams KM, Sarantopoulos S, Kitko CL, Cutler C, Pidala J, Hill GR, DeFilipp Z, Greinix HT, Wolff D, Paczesny S, Cuvelier GDE, Schultz KR, Pavletic SZ. NIH Chronic Graft-versus-Host Disease Consensus Conference 2025 Update. Transplant Cell Ther 2025:S2666-6367(25)01202-3. [PMID: 40409691 DOI: 10.1016/j.jtct.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
In 2020, the third NIH Consensus Development Project on Criteria for Chronic Graft-versus-Host Disease (GVHD) Clinical Trials was held with the goals of identifying gaps in understanding, prevention and treatment of chronic graft-versus-host disease (GVHD) and making actionable recommendations that would advance the field. An interim meeting was held in October 2024 to review progress on the 2020 recommendations. Each group was charged with reviewing their previous recommendations, assessing whether the field is on track to eventually achieve the goals, and considering whether recommendations should be modified in light of new data or insufficient progress. This manuscript summarizes the Working Groups' reports and helps define the research agenda for future studies in chronic GVHD. Overall, modest progress has been made on most initiatives. Some studies in progress will address key recommendations and results are eagerly anticipated.
Collapse
Affiliation(s)
- Stephanie J Lee
- Clinical Research Division and Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA.
| | - Kirsten M Williams
- Aflac Blood and Cancer Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta GA
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | - Corey Cutler
- Division of Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, MA
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute. Tampa, FL
| | - Geoffrey R Hill
- Clinical Research Division and Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | | | - Daniel Wolff
- Dept. of Internal Medicine III, University Hospital Regensburg, Germany
| | - Sophie Paczesny
- Hollings Cancer Center, Department of Immunology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Geoffrey D E Cuvelier
- Pediatric Oncology and Transplantation, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Kirk R Schultz
- BC Children's Hospital Research Institute and University of BC, Vancouver, BC Canada
| | - Steven Z Pavletic
- National Cancer Institute, Center for Cancer Research, Immune Deficiency Cellular Therapy Program, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
2
|
Nakao S, Tsukamoto S, Takeda Y, Ohwada C, Ri C, Izumi S, Kamata Y, Matsui S, Shibamiya A, Ishii A, Takaishi K, Takahashi K, Shiko Y, Oshima-Hasegawa N, Muto T, Mimura N, Yokote K, Nakaseko C, Sakaida E. Clinical impact of airflow obstruction after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2024; 120:501-511. [PMID: 39190255 DOI: 10.1007/s12185-024-03831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Criteria for airflow obstruction (AFO) at one year after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in pulmonary function tests (PFTs) are more stringent than the bronchiolitis obliterans syndrome (BOS) criteria of the National Institutes of Health. This single-center, retrospective cohort study evaluated the clinical impact of the AFO criteria at any time after transplantation. In 132 patients who underwent allo-HSCT from 2006 to 2016, the 2-year cumulative incidence of AFO was 35.0%, and the median time to diagnosis of AFO was 101 days after transplantation (range 35-716 days). Overall chronic graft-versus-host disease (cGVHD) incidence was significantly higher in patients with AFO than in those without AFO (80.4% vs. 47.7%, P < 0.01); notably, 37.0% of patients with AFO developed cGVHD after AFO diagnosis. AFO patients developed BOS with a 5-year cumulative incidence of 49.1% after AFO onset. The 5-year cumulative incidence of non-relapse mortality in the AFO group was higher than that in the non-AFO group (24.7% vs. 7.1%, P < 0.01). These results suggest that closely monitoring PFTs within two years after allo-HSCT, regardless of cGVHD status, is important for early detection of AFO and prevention of progression to BOS. (192words).
Collapse
Affiliation(s)
- Sanshiro Nakao
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shokichi Tsukamoto
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Takeda
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Chikako Ohwada
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Chihiro Ri
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
| | - Shintaro Izumi
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
| | - Yuri Kamata
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
| | - Shinichiro Matsui
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
| | - Asuka Shibamiya
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
| | - Arata Ishii
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
| | - Koji Takaishi
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
| | - Kohei Takahashi
- Biostatistics Section, Clinical Research Centre, Chiba University Hospital, Chiba, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Centre, Chiba University Hospital, Chiba, Japan
| | - Nagisa Oshima-Hasegawa
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Tomoya Muto
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
| | - Naoya Mimura
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Chiaki Nakaseko
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8677, Japan.
- Blood and Marrow Transplant Center, Chiba University Hospital, Chiba, Japan.
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
3
|
Lai YK, Sharifi H, Hsu JL. How I diagnose and treat organizing pneumonia in hematopoietic cell transplant recipients. Blood 2024; 144:1048-1060. [PMID: 38864640 PMCID: PMC11862820 DOI: 10.1182/blood.2023023249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
ABSTRACT Organizing pneumonia (OP) is a known noninfectious pulmonary complication following allogeneic hematopoietic cell transplant (HCT) and represents a significant risk factor for nonrelapse mortality in HCT recipients. Unlike bronchiolitis obliterans syndrome, it is not universally acknowledged as a distinctive pulmonary manifestation of chronic graft-versus-host disease (cGVHD) and, therefore, its diagnostic criteria and management approach are lacking. Given its shared similar clinical features and radiological and histologic findings to OP in the non-HCT population, the diagnostic approach and treatment strategy for OP in HCT recipients is largely adapted from the non-HCT population. In this article, we aim to enhance the understanding of OP within the context of cGVHD following HCT and distinguish its clinical features and treatment strategy from non-HCT counterparts, thereby reinforcing its recognition as a pulmonary manifestation of graft-versus-host disease. We will propose the diagnostic criteria and outline our approach in diagnosis and treatment strategy, highlighting the potential challenges that may arise in each process. Finally, we will discuss knowledge gaps in this field and identify the area of need for future research.
Collapse
Affiliation(s)
- Yu Kuang Lai
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Husham Sharifi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
4
|
Harris AC, Ganjaei K, Vilela C, Geyer A. Late-Onset Noninfectious Pulmonary Complications after Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2024; 30:S585-S596. [PMID: 39370238 DOI: 10.1016/j.jtct.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Andrew C Harris
- Pediatric Transplantation and Cellular Therapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kimia Ganjaei
- Pulmonary Service. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Camila Vilela
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Geyer
- Division of Pulmonary, Critical Care and Sleep Medicine, Lenox Hill Hospital, Northwell Health, New York, New York.
| |
Collapse
|
5
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GMT, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International recommendations for screening and preventative practices for long-term survivors of transplantation and cellular therapy: a 2023 update. Bone Marrow Transplant 2024; 59:717-741. [PMID: 38413823 PMCID: PMC11809468 DOI: 10.1038/s41409-023-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the volume of HCT performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long-term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pre-, peri- and post-transplant exposures and other underlying risk-factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and updated in 2012. To review contemporary literature and update the recommendations while considering the changing practice of HCT and cellular therapy, an international group of experts was again convened. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed but cGVHD management is not covered in detail. These guidelines emphasize special needs of patients with distinct underlying HCT indications or comorbidities (e.g., hemoglobinopathies, older adults) but do not replace more detailed group, disease, or condition specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, MA, USA
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, AZ, USA
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, CA, USA
| | - Peggy Burkhard
- National Bone Marrow Transplant Link, Southfield, MI, USA
| | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, Halifax, NS, Canada
- QEII Health Sciences Center, Halifax, NS, Canada
| | - Gregory M T Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, Sydney, NSW, Australia
- St Vincent's Clinical School Sydney, University of New South Wales, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, WA, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, WI, USA
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, UK
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Public Health and Primary Care, ACCENT VV, KU Leuven-University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Susan K Stewart
- Blood & Marrow Transplant Information Network, Highland Park, IL, 60035, USA
| | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, TN, USA
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Westrupp N, Berry CD, Cole T, Shanthikumar S, Welsh L. Detection of Bronchiolitis Obliterans Syndrome Using Nitrogen Multiple Breath Washout in Children Posthemopoietic Stem Cell Transplant. Transplant Cell Ther 2024; 30:524.e1-524.e9. [PMID: 38360272 DOI: 10.1016/j.jtct.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Bronchiolitis obliterans syndrome (BOS) is a severe complication following hemopoietic stem cell transplantation (HSCT) and is often undetected until there is significant deterioration in pulmonary function. Lung clearance index (LCI2.5) derived from the nitrogen multiple breath washout (N2MBW) test may be more feasible and sensitive than spirometry, which is currently used for surveillance and detection of BOS. We aimed to examine the feasibility of performing surveillance N2MBW in children post-HSCT, and in an exploratory analysis, determine if LCI2.5 led to earlier detection of BOS when compared to spirometric indices. Participants aged 5 to 17 years were recruited prior to receiving HSCT into a prospective, single-center, feasibility study at the Royal Children's Hospital, Melbourne. N2MBW and spirometry were performed within the month prior to transplant and repeated at 3, 6, 9, and 12 months post-transplant. Data were also collected on the presence of graft-versus-host (GVHD) disease in any organ, including the lungs. Twenty-one (12 male) children with a mean age of 13.4 (range 9.2 to 17.1) years at recruitment participated in this study. Prior to HSCT, all participants had normal LCI2.5, while 16 (76%) demonstrated normal forced expiratory volume in 1 second (FEV1). Ninety-nine percent of N2MBW tests were technically acceptable, compared with 66% of spirometry tests. Three participants developed BOS, while 2 participants died of other respiratory complications. At 6 and 12 months post-transplant, the BOS group had increases in LCI2.5 ranging from 3 to 5 units and mean reductions in FEV1 % predicted of 40% to 53% relative to pre HSCT values, respectively. In those who developed BOS, post-HSCT LCI2.5 values were significantly worse when compared with the no BOS group (P < .001). Relative changes in LCI2.5 and FEV1 were both predictive of BOS at 6 months post HSCT. This study demonstrates that N2MBW is a more feasible test compared with spirometry in children post HSCT. However, in an exploratory analysis, LCI2.5 did not lead to earlier detection of BOS, when compared to spirometry.
Collapse
Affiliation(s)
- Nicole Westrupp
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Victoria, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Cassidy Du Berry
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Theresa Cole
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia; Children's Cancer Centre, Royal Children's Hospital, Parkville, Victoria, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Shivanthan Shanthikumar
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Liam Welsh
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GM, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International Recommendations for Screening and Preventative Practices for Long-Term Survivors of Transplantation and Cellular Therapy: A 2023 Update. Transplant Cell Ther 2024; 30:349-385. [PMID: 38413247 PMCID: PMC11181337 DOI: 10.1016/j.jtct.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the number of HCTs performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pretransplantation, peritransplantation, and post-transplantation exposures and other underlying risk factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and then updated in 2012. An international group of experts was convened to review the contemporary literature and update the recommendations while considering the changing practices of HCT and cellular therapy. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed, but cGVHD management is not covered in detail. These guidelines emphasize the special needs of patients with distinct underlying HCT indications or comorbidities (eg, hemoglobinopathies, older adults) but do not replace more detailed group-, disease-, or condition-specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Neel S Bhatt
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, Massachusetts
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, Arizona
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, California
| | | | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Gregory Mt Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, St Vincent's Clinical School Sydney, University of New South Wales, School of Medicine Sydney, University of Notre Dame Australia, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, PathWest Laboratory Medicine WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Department of Public Health and Primary Care, ACCENT VV, KU Leuven, University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, Tennessee
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Dickey JS, Dickey BF, Alousi AM, Champlin RE, Sheshadri A. Early and rapid development of bronchiolitis obliterans syndrome after allogeneic hematopoietic cell transplantation. Respir Med Case Rep 2024; 49:102001. [PMID: 38745870 PMCID: PMC11091444 DOI: 10.1016/j.rmcr.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 05/16/2024] Open
Abstract
Bronchiolitis obliterans (BO) is a form of graft-versus-host disease (GVHD) in the lung and manifests as moderate to severe airflow obstruction after hematopoietic stem cell transplantation (HCT). New-onset airflow obstruction on spirometry is considered diagnostic of bronchiolitis obliterans syndrome (BOS). BOS affects about 5% of all HCT recipients. In general, BO is thought of as a late complication of HCT, usually occurring after day 100 post-transplantation. However, the onset of airflow obstruction can be rapid and is most often irreversible even with treatment. We describe a patient who rapidly developed severe airflow obstruction less than one month after transplantation following the development of upper airway symptoms. Despite aggressive immunosuppression, the patient had no improvement in airflow obstruction. We hypothesize that early screening and treatment may help prevent BOS after HCT.
Collapse
Affiliation(s)
| | - Burton F. Dickey
- The University of Texas MD Anderson Cancer Center, Department of Pulmonary Medicine, Houston, TX, USA
| | - Amin M. Alousi
- The University of Texas MD Anderson Cancer Center, Department of Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA
| | - Richard E. Champlin
- The University of Texas MD Anderson Cancer Center, Department of Stem Cell Transplantation and Cellular Therapy, Houston, TX, USA
| | - Ajay Sheshadri
- The University of Texas MD Anderson Cancer Center, Department of Pulmonary Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Bos S, Murray J, Marchetti M, Cheng GS, Bergeron A, Wolff D, Sander C, Sharma A, Badawy SM, Peric Z, Piekarska A, Pidala J, Raj K, Penack O, Kulkarni S, Beestrum M, Linke A, Rutter M, Coleman C, Tonia T, Schoemans H, Stolz D, Vos R. ERS/EBMT clinical practice guidelines on treatment of pulmonary chronic graft- versus-host disease in adults. Eur Respir J 2024; 63:2301727. [PMID: 38485149 DOI: 10.1183/13993003.01727-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/21/2024] [Indexed: 04/02/2024]
Abstract
Chronic graft-versus-host disease (cGvHD) is a common complication after allogeneic haematopoietic stem cell transplantation, characterised by a broad disease spectrum that can affect virtually any organ. Although pulmonary cGvHD is a less common manifestation, it is of great concern due to its severity and poor prognosis. Optimal management of patients with pulmonary cGvHD is complicated and no standardised approach is available. The purpose of this joint European Respiratory Society (ERS) and European Society for Blood and Marrow Transplantation task force was to develop evidence-based recommendations regarding the treatment of pulmonary cGvHD phenotype bronchiolitis obliterans syndrome in adults. A multidisciplinary group representing specialists in haematology, respiratory medicine and methodology, as well as patient advocates, formulated eight PICO (patient, intervention, comparison, outcome) and two narrative questions. Following the ERS standardised methodology, we conducted systematic reviews to address these questions and used the Grading of Recommendations Assessment, Development and Evaluation approach to develop recommendations. The resulting guideline addresses common therapeutic options (inhalation therapy, fluticasone-azithromycin-montelukast, imatinib, ibrutinib, ruxolitinib, belumosudil, extracorporeal photopheresis and lung transplantation), as well as other aspects of general management, such as lung functional and radiological follow-up and pulmonary rehabilitation, for adults with pulmonary cGvHD phenotype bronchiolitis obliterans syndrome. These recommendations include important advancements that could be incorporated in the management of adults with pulmonary cGvHD, primarily aimed at improving and standardising treatment and improving outcomes.
Collapse
Affiliation(s)
- Saskia Bos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John Murray
- Dept of Haematology and Transplant Unit, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Monia Marchetti
- Dept of Haematology, Azienda Ospedaliera Nazionale SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Guang-Shing Cheng
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Washington, Seattle, WA, USA
| | - Anne Bergeron
- Dept of Pulmonology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Daniel Wolff
- Dept of Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensberg, Germany
| | - Clare Sander
- Dept of Respiratory Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Akshay Sharma
- Dept of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherif M Badawy
- Dept of Pediatrics, Division of Haematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zinaida Peric
- Dept of Haematology, University Hospital Zagreb, Zagreb, Croatia
- TCWP (Transplant Complications Working Party) of the EBMT
| | - Agnieszka Piekarska
- Dept of Haematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Joseph Pidala
- Dept of Medical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kavita Raj
- Dept of Haematology, University College London Hospital NHS Foundation Trust, London, UK
| | - Olaf Penack
- TCWP (Transplant Complications Working Party) of the EBMT
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept of Hematology, Oncology and Tumorimmunology, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Samar Kulkarni
- Dept of Haematology and Transplant Unit, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Molly Beestrum
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Matthew Rutter
- ERS Patient Advocacy Committee
- Dept of Respiratory Physiology, Addenbrooke's Hospital, Cambridge, UK
| | | | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Hélène Schoemans
- Dept of Haematology, University Hospitals Leuven, Leuven, Belgium
- Dept of Public Health and Primary Care, ACCENT VV, KU Leuven - University of Leuven, Leuven, Belgium
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Contributed equally as senior author
| | - Robin Vos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Contributed equally as senior author
| |
Collapse
|
10
|
Althobiani MA, Ranjan Y, Jacob J, Orini M, Dobson RJB, Porter JC, Hurst JR, Folarin AA. Evaluating a Remote Monitoring Program for Respiratory Diseases: Prospective Observational Study. JMIR Form Res 2023; 7:e51507. [PMID: 37999935 DOI: 10.2196/51507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Patients with chronic respiratory diseases and those in the postdischarge period following hospitalization because of COVID-19 are particularly vulnerable, and little is known about the changes in their symptoms and physiological parameters. Continuous remote monitoring of physiological parameters and symptom changes offers the potential for timely intervention, improved patient outcomes, and reduced health care costs. OBJECTIVE This study investigated whether a real-time multimodal program using commercially available wearable technology, home-based Bluetooth-enabled spirometers, finger pulse oximeters, and smartphone apps is feasible and acceptable for patients with chronic respiratory diseases, as well as the value of low-burden, long-term passive data collection. METHODS In a 3-arm prospective observational cohort feasibility study, we recruited 60 patients from the Royal Free Hospital and University College Hospital. These patients had been diagnosed with interstitial lung disease, chronic obstructive pulmonary disease, or post-COVID-19 condition (n=20 per group) and were followed for 180 days. This study used a comprehensive remote monitoring system designed to provide real-time and relevant data for both patients and clinicians. Data were collected using REDCap (Research Electronic Data Capture; Vanderbilt University) periodic surveys, Remote Assessment of Disease and Relapses-base active app questionnaires, wearables, finger pulse oximeters, smartphone apps, and Bluetooth home-based spirometry. The feasibility of remote monitoring was measured through adherence to the protocol, engagement during the follow-up period, retention rate, acceptability, and data integrity. RESULTS Lowest-burden passive data collection methods, via wearables, demonstrated superior adherence, engagement, and retention compared with active data collection methods, with an average wearable use of 18.66 (SD 4.69) hours daily (77.8% of the day), 123.91 (SD 33.73) hours weekly (72.6% of the week), and 463.82 (SD 156.70) hours monthly (64.4% of the month). Highest-burden spirometry tasks and high-burden active app tasks had the lowest adherence, engagement, and retention, followed by low-burden questionnaires. Spirometry and active questionnaires had the lowest retention at 0.5 survival probability, indicating that they were the most burdensome. Adherence to and quality of home spirometry were analyzed; of the 7200 sessions requested, 4248 (59%) were performed. Of these, 90.3% (3836/4248) were of acceptable quality according to American Thoracic Society grading. Inclusion of protocol holidays improved retention measures. The technologies used were generally well received. CONCLUSIONS Our findings provide evidence supporting the feasibility and acceptability of remote monitoring for capturing both subjective and objective data from various sources for respiratory diseases. The high engagement level observed with passively collected data suggests the potential of wearables for long-term, user-friendly remote monitoring in respiratory disease management. The unique piloting of certain features such as protocol holidays, alert notifications for missing data, and flexible support from the study team provides a reference for future studies in this field. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.2196/28873.
Collapse
Affiliation(s)
- Malik A Althobiani
- Respiratory Medicine, University College London, London, United Kingdom
- Interstitial Lung Disease Service, University College London Hospital, London, United Kingdom
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yatharth Ranjan
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joseph Jacob
- Respiratory Medicine, University College London, London, United Kingdom
- Satsuma Lab, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Richard James Butler Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health and Care Research, Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
- National Institute for Health and Care Research, Biomedical Research Centre at University College London Hospitals, National Institute for Health Foundation Trust, London, United Kingdom
| | - Joanna C Porter
- Respiratory Medicine, University College London, London, United Kingdom
- Interstitial Lung Disease Service, University College London Hospital, London, United Kingdom
| | - John R Hurst
- Respiratory Medicine, University College London, London, United Kingdom
| | - Amos A Folarin
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health and Care Research, Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
- National Institute for Health and Care Research, Biomedical Research Centre at University College London Hospitals, National Institute for Health Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Anand R, McLeese R, Busby J, Stewart J, Clarke M, Man WDC, Bradley J. Unsupervised home spirometry versus supervised clinic spirometry for respiratory disease: a systematic methodology review and meta-analysis. Eur Respir Rev 2023; 32:220248. [PMID: 37673426 PMCID: PMC10481332 DOI: 10.1183/16000617.0248-2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/31/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The number of patients completing unsupervised home spirometry has recently increased due to more widely available portable technology and the COVID-19 pandemic, despite a lack of solid evidence to support it. This systematic methodology review and meta-analysis explores quantitative differences in unsupervised spirometry compared with spirometry completed under professional supervision. METHODS We searched four databases to find studies that directly compared unsupervised home spirometry with supervised clinic spirometry using a quantitative comparison (e.g. Bland-Altman). There were no restrictions on clinical condition. The primary outcome was measurement differences in common lung function parameters (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC)), which were pooled to calculate overall mean differences with associated limits of agreement (LoA) and confidence intervals (CI). We used the I2 statistic to assess heterogeneity, the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool to assess risk of bias and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess evidence certainty for the meta-analyses. The review has been registered with PROSPERO (CRD42021272816). RESULTS 3607 records were identified and screened, with 155 full texts assessed for eligibility. We included 28 studies that quantitatively compared spirometry measurements, 17 of which reported a Bland-Altman analysis for FEV1 and FVC. Overall, unsupervised spirometry produced lower values than supervised spirometry for both FEV1 with wide variability (mean difference -107 mL; LoA= -509, 296; I2=95.8%; p<0.001; very low certainty) and FVC (mean difference -184 mL, LoA= -1028, 660; I2=96%; p<0.001; very low certainty). CONCLUSIONS Analysis under the conditions of the included studies indicated that unsupervised spirometry is not interchangeable with supervised spirometry for individual patients owing to variability and underestimation.
Collapse
Affiliation(s)
- Rohan Anand
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Rebecca McLeese
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - John Busby
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jonathan Stewart
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mike Clarke
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - William D-C Man
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Judy Bradley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
12
|
Gandhi AP, Lee CJ. Telemedicine in Hematopoietic Cell Transplantation and Chimeric Antigen Receptor-T Cell Therapy. Cancers (Basel) 2023; 15:4108. [PMID: 37627136 PMCID: PMC10452361 DOI: 10.3390/cancers15164108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Telemedicine has played an important role in delivering healthcare for primary care, chronic disease patients, and those with solid organ malignancies. However, its application in subspecialties such as hematologic malignancies, hematopoietic cell transplantation (HCT), or chimeric antigen receptor-T cell (CAR-T) therapy is not widespread since physical examination is a vital component in delivering care. During the COVID-19 pandemic, we widely used telemedicine, since protecting our immunocompromised patients became our top priority. The employment of HCT and CAR-T therapies continues to grow for high-risk hematologic malignancies, particularly in older and frail patients who must visit specialty centers for treatment access. Generally, HCT and CAR-T therapy care is highly complex, necessitating commitment from patients, caregivers, and a multidisciplinary team at specialty academic centers. All healthcare systems adapted to the crisis and implemented rapid changes during the COVID-19 public health emergency (PHE). Telemedicine, a vital modality for delivering healthcare in underserved areas, experienced rapid expansion, regardless of the geographic region, during the COVID-19 PHE. The data emerging from practices implemented during the PHE are propelling the field of telemedicine forward, particularly for specialties with complex medical treatments such as HCT and CAR-T therapy. In this review, we examine the current data on telemedicine in HCT and cellular therapy care models for the acute and long-term care of our patients.
Collapse
Affiliation(s)
- Arpita P. Gandhi
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine J. Lee
- Fred Hutch Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA
| |
Collapse
|
13
|
Ostrin EJ, Rider NL, Alousi AM, Irajizad E, Li L, Peng Q, Kim ST, Bashoura L, Arain MH, Noor LZ, Patel N, Mehta R, Popat UR, Hosing C, Jenq RR, Rondon G, Hanash SM, Paczesny S, Shpall EJ, Champlin RE, Dickey BF, Sheshadri A. A Nasal Inflammatory Cytokine Signature Is Associated with Early Graft-versus-Host Disease of the Lung after Allogeneic Hematopoietic Cell Transplantation: Proof of Concept. Immunohorizons 2023; 7:421-430. [PMID: 37289498 PMCID: PMC10491477 DOI: 10.4049/immunohorizons.2300031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Respiratory inflammation in bronchiolitis obliterans syndrome (BOS) after hematopoietic cell transplantation (HCT) is poorly understood. Clinical criteria for early-stage BOS (stage 0p) often capture HCT recipients without BOS. Measuring respiratory tract inflammation may help identify BOS, particularly early BOS. We conducted a prospective observational study in HCT recipients with new-onset BOS (n = 14), BOS stage 0p (n = 10), and recipients without lung impairment with (n = 3) or without (n = 8) chronic graft-versus-host disease and measured nasal inflammation using nasosorption at enrollment and then every 3 mo for 1 y. We divided BOS stage 0p into impairment that did not return to baseline values (preBOS, n = 6), or transient impairment (n = 4). We tested eluted nasal mucosal lining fluid from nasosorption matrices for inflammatory chemokines and cytokines using multiplex magnetic bead immunoassays. We analyzed between-group differences using the Kruskal-Wallis method, adjusting for multiple comparisons. We found increased nasal inflammation in preBOS and therefore directly compared patients with preBOS to those with transient impairment, as this would be of greatest diagnostic relevance. After adjusting for multiple corrections, we found significant increases in growth factors (FGF2, TGF-α, GM-CSF, VEGF), macrophage activation (CCL4, TNF-α, IL-6), neutrophil activation (CXCL2, IL-8), T cell activation (CD40 ligand, IL-2, IL-12p70, IL-15), type 2 inflammation (eotaxin, IL-4, IL-13), type 17 inflammation (IL-17A), dendritic maturation (FLT3 ligand, IL-7), and counterregulatory molecules (PD-L1, IL-1 receptor antagonist, IL-10) in preBOS patients compared to transient impairment. These differences waned over time. In conclusion, a transient multifaceted nasal inflammatory response is associated with preBOS. Our findings require validation in larger longitudinal cohorts.
Collapse
Affiliation(s)
- Edwin J. Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas L. Rider
- Division of Clinical Informatics, Liberty University College of Osteopathic Medicine, Lynchburg, VA
| | - Amin M. Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qian Peng
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sang T. Kim
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lara Bashoura
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muhammad H. Arain
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Laila Z. Noor
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nikul Patel
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rohtesh Mehta
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Uday R. Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert R. Jenq
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Alkhunaizi M, Patel B, Bueno L, Bhan N, Ahmed T, Arain MH, Saliba R, Rondon G, Dickey BF, Bashoura L, Ost DE, Li L, Wang S, Shpall E, Champlin RE, Mehta R, Popat UR, Hosing C, Alousi AM, Sheshadri A. Risk Factors for Bronchiolitis Obliterans Syndrome after Initial Detection of Pulmonary Impairment after Hematopoietic Cell Transplantation. Transplant Cell Ther 2023; 29:204.e1-204.e7. [PMID: 36503180 PMCID: PMC9992123 DOI: 10.1016/j.jtct.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Pulmonary chronic graft-versus-host-disease (cGVHD), or bronchiolitis obliterans syndrome (BOS), is a highly morbid complication of hematopoietic cell transplantation (HCT). The clinical significance of a single instance of pulmonary decline not meeting the criteria for BOS is unclear. We conducted a retrospective analysis in a cohort of patients who had an initial post-HCT decline in the absolute value of forced expiratory volume in 1 second (FEV1) of ≥10% or mid-expiratory flow rate of ≥25% but not meeting the criteria for BOS (pre-BOS). We examined the impact of clinical variables in patients with pre-BOS on the risk for subsequent BOS. Pre-BOS developed in 1325 of 3170 patients (42%), of whom 72 (5%) later developed BOS. Eighty-four patients developed BOS without detection of pre-BOS by routine screening. Among patients with pre-BOS, after adjusting for other significant variables, airflow obstruction (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.1 to 3.7; P = .02), percent-predicted FEV1 on decline (HR, .98; 95% CI, .97 to 1.0; P = .02), active cGVHD (HR, 7.7; 95% CI, 3.1 to 19.3; P < .001), peripheral blood stem cell source (HR, 3.8; 95% CI, 1.7 to 8.6; P = .001), and myeloablative conditioning (HR, 2.0; 95% CI, 1.1 to 3.5; P = .02) were associated with subsequent BOS. The absence of airflow obstruction and cGVHD had a negative predictive value of 100% at 6 months for subsequent BOS, but the positive predictive value of both factors was low (cGVHD, 3%; any obstruction, 4%; combined, 6%). Several clinical factors at the time of pre-BOS, particularly active cGVHD and airflow obstruction, increase the risk for subsequent BOS. These factors merit consideration to be included in screening practices to improve the detection of BOS, with the caveat that the predictive utility of these factors is limited by the overall low incidence of BOS among patients with pre-BOS.
Collapse
Affiliation(s)
| | - Badar Patel
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Luis Bueno
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Neel Bhan
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Tahreem Ahmed
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muhammad H Arain
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rima Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lara Bashoura
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David E Ost
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shikun Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rohtesh Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uday R Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amin M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
Home Spirometry in Children with Cystic Fibrosis. Bioengineering (Basel) 2023; 10:bioengineering10020242. [PMID: 36829736 PMCID: PMC9952128 DOI: 10.3390/bioengineering10020242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
We report the implementation of a pediatric home spirometry program at our institution. A respiratory therapist provided either a virtual or an in-person initiation visit that included a coached spirometry session. Families were instructed to perform daily uncoached spirometry sessions for 5 days. The program's quality assurance component was deemed not to be human research by the local IRB. In total, 52 subjects completed an initiation visit (34 with at least 3 additional uncoached spirometry sessions). The clinic spirometry and coached (same-day) sessions and uncoached (same-week) sessions were completed by 12 and 17 subjects, respectively. The median (99% CI) coefficients of variation for FEV1% of the uncoached maneuvers were 3.5% (2.9-5.9%). The median (IQR) FEV1% and FEV1 (mL) absolute differences between coached and uncoached home spirometry were -2% (-4 and +3%) and -25 mL (-93 and +93 mL), respectively. The median (IQR) absolute differences in FEV1% and FEV1 (mL) between coached or uncoached home spirometry and clinic spirometry were -6% (-10 and -2%) and -155 mL (-275 and -88 mL), and -4% (-10 and +5%), and -110 mL (-280 and +9 mL), respectively. Differences in absolute FEV1 (L) and FEV1% were found among different modalities of spirometry performed by people with cystic fibrosis. Understanding the variability of uncoached home spirometry and the differences among coached and uncoached home spirometry, hospital and coached home spirometry, and hospital and uncoached home spirometry for any given individual is crucial to effectively utilize this tool in clinical care.
Collapse
|
16
|
Van Opstal J, Zhao AT, Kaplan SJ, Sung AD, Schoemans H. eHealth-Generated Patient Data in an Outpatient Setting after Hematopoietic Stem Cell Transplantation: A Scoping Review. Transplant Cell Ther 2022; 28:463-471. [PMID: 35589058 DOI: 10.1016/j.jtct.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Hematopoietic stem cell transplantation (HCT) has the potential to cure malignant and nonmalignant diseases but remains associated with a wide range of complications, necessitating dedicated lifelong follow-up. While patients are monitored closely during the peri-HCT period, leaving the hospital setting after HCT introduces new challenges. This scoping review explores the current use of patient-generated eHealth data in the outpatient setting. A systematic search of the PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature, American Psychological Association PsycINFO, and International Health Technology Assessment databases in July 2021 identified the 22 studies (13 full text articles and 9 abstracts) included in this review. The large majority were small to medium-sized (n = 15; 68.2%) pilot or feasibility studies (n = 18; 81.8%) that were published between 2016 and 2021 (n = 16; 72.7%). Collection of patient-reported outcomes was the most frequently reported eHealth intervention (n = 14; 63.6%), followed by vital sign monitoring (n = 5; 22.7%) and home-based spirometry (n = 3; 13.6%), mostly in the early post-transplantation setting. eHealth interventions had favorable feasibility and acceptability profiles; however, we found little data on the efficacy, long-term monitoring, data security, and cost-effectiveness of eHealth interventions. Larger randomized studies are warranted to draw formal conclusions about the impact of eHealth on HCT outcomes and the best ways to incorporate eHealth in clinical practice.
Collapse
Affiliation(s)
- Jolien Van Opstal
- Faculty of Medicine, KU Leuven, Leuven, Belgium; Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina
| | - Aaron T Zhao
- Trinity College of Arts and Sciences, Duke University, Durham, North Carolina
| | - Samantha J Kaplan
- Medical Center Library & Archives, Duke University School of Medicine, Durham, North Carolina
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina
| | - Hélène Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, ACCENT VV, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
COVID19 in hematological patients and telemedicine: lessons learned across Europe and the US. Curr Opin Infect Dis 2022; 35:295-301. [PMID: 35849519 DOI: 10.1097/qco.0000000000000843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW To describe the state-of-the-art of telemedicine in hematology through the description of most relevant studies published in the pre-COVID19 and during the COVID19 era. RECENT FINDINGS Telemedicine has recently gained momentum in hematology due to the COVID19 pandemic. Due to a necessary improvement of domiciliary follow-up of patients during the pandemic and an increase in technologies able to offer telemedicine, the number of studies has increased in the last 2 years. Telemedicine showed the potential to improve the monitoring of both benign and malignant hematological diseases. Patients affected by thalassemias, hemophilias and/or myeloproliferative diseases were monitored successfully with telemedicine platform. For higher-risk patients such as high-dose chemotherapy or stem cell transplantation, better platforms are needed (e.g. use of wearable devices systems). Also, telemedicine showed to be useful for the follow-up of hematological patients with COVID19. SUMMARY Despite the clear potential advantages of telemedicine for the follow-up of hematological patients, more evidence is required before adopting this approach in larger cohorts of patients. Larger- and higher-quality studies are highly needed in this setting.
Collapse
|
18
|
José RJ, Dickey BF, Sheshadri A. Airway disease in hematologic malignancies. Expert Rev Respir Med 2022; 16:303-313. [PMID: 35176948 PMCID: PMC9067103 DOI: 10.1080/17476348.2022.2043746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Hematologic malignancies are cancers of the blood, bone marrow and lymph nodes and represent a heterogenous group of diseases that affect people of all ages. Treatment generally involves chemotherapeutic or targeted agents that aim to kill malignant cells. In some cases, hematopoietic stem cell transplantation (HCT) is required to replenish the killed blood and stem cells. Both disease and therapies are associated with pulmonary complications. As survivors live longer with the disease and are treated with novel agents that may result in secondary immunodeficiency, airway diseases and respiratory infections will increasingly be encountered. To prevent airways diseases from adding to the morbidity of survivors or leading to long-term mortality, improved understanding of the pathogenesis and treatment of viral bronchiolitis, BOS, and bronchiectasis is necessary. AREAS COVERED This review focuses on viral bronchitis, BOS and bronchiectasis in people with hematological malignancy. Literature was reviewed from Pubmed for the areas covered. EXPERT OPINION Airway disease impacts significantly on hematologic malignancies. Viral bronchiolitis, BOS and bronchiectasis are common respiratory manifestations in hematological malignancy. Strategies to identify patients early in their disease course may improve the efficacy of treatment and halt progression of lung function decline and improve quality of life.
Collapse
Affiliation(s)
- Ricardo J José
- Department of Respiratory Medicine, Host Defence, Royal Brompton Hospital, Chelsea, London, UK
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, UK
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Sheshadri A, Makhnoon S, Alousi AM, Bashoura L, Andrade R, Miller CJ, Stolar KR, Arain MH, Noor L, Balagani A, Jain A, Blanco D, Ortiz A, Taylor MS, Stenzler A, Mehta R, Popat UR, Hosing C, Ost DE, Champlin RE, Dickey BF, Peterson SK. Home-Based Spirometry Telemonitoring After Allogeneic Hematopoietic Cell Transplantation: Mixed Methods Evaluation of Acceptability and Usability. JMIR Form Res 2022; 6:e29393. [PMID: 35129455 PMCID: PMC8861865 DOI: 10.2196/29393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/06/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Home-based spirometry (HS) allows for the early detection of lung complications in recipients of an allogeneic hematopoietic cell transplant (AHCT). Although the usability and acceptability of HS are critical for adherence, patient-reported outcomes of HS use remain poorly understood in this setting. OBJECTIVE The aim of this study is to design a longitudinal, mixed methods study to understand the usability and acceptability of HS among recipients of AHCT. METHODS Study participants performed HS using a Bluetooth-capable spirometer that transmitted spirometry data to the study team in real time. In addition, participants completed usability questionnaires and in-depth interviews and reported their experiences with HS. Analysis of interview data was guided by the constructs of performance expectancy, effort expectancy, and social influence from the Unified Theory of Acceptance and Use of Technology model. RESULTS Recipients of AHCT found HS to be highly acceptable despite modest technological barriers. On average, participants believed that the HS was helpful in managing symptoms related to AHCT (scores ranging from 2.22 to 2.68 on a scale of 0-4) and for early detection of health-related problems (score range: 2.88-3.12). Participants viewed HS favorably and were generally supportive of continued use. No significant barriers to implementation were identified from the patient's perspective. Age and gender were not associated with the patient perception of HS. CONCLUSIONS Study participants found HS acceptable and easy to use. Some modifiable technical barriers to performing HS were identified; however, wider implementation of pulmonary screening is feasible from the patient's perspective.
Collapse
Affiliation(s)
- Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sukh Makhnoon
- Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amin M Alousi
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lara Bashoura
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rene Andrade
- Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christopher J Miller
- Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karen R Stolar
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Muhammad Hasan Arain
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Laila Noor
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amulya Balagani
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Akash Jain
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David Blanco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Abel Ortiz
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Alex Stenzler
- Monitored Therapeutics, Inc, Dublin, OH, United States
| | - Rohtesh Mehta
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uday R Popat
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chitra Hosing
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David E Ost
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard E Champlin
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan K Peterson
- Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Williams KM. Noninfectious complications of hematopoietic cell transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:578-586. [PMID: 34889438 PMCID: PMC8791176 DOI: 10.1182/hematology.2021000293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Noninfectious lung diseases contribute to nonrelapse mortality. They constitute a spectrum of diseases that can affect the parenchyma, airways, or vascular pulmonary components and specifically exclude cardiac and renal causes. The differential diagnoses of these entities differ as a function of time after hematopoietic cell transplantation. Specific diagnosis, prognosis, and optimal treatment remain challenging, although progress has been made in recent decades.
Collapse
Affiliation(s)
- Kirsten M. Williams
- Correspondence Kirsten M. Williams, Blood and Marrow
Transplant Program, Aflac Cancer and Blood Disorders Center, Emory University
School of Medicine, Children's Healthcare of Atlanta, 1760 Haygood Dr,
3rd floor W362, Atlanta, GA 30322; e-mail:
| |
Collapse
|
21
|
Kitko CL, Pidala J, Schoemans HM, Lawitschka A, Flowers ME, Cowen EW, Tkaczyk E, Farhadfar N, Jain S, Steven P, Luo ZK, Ogawa Y, Stern M, Yanik GA, Cuvelier GDE, Cheng GS, Holtan SG, Schultz KR, Martin PJ, Lee SJ, Pavletic SZ, Wolff D, Paczesny S, Blazar BR, Sarantopoulos S, Socie G, Greinix H, Cutler C. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IIa. The 2020 Clinical Implementation and Early Diagnosis Working Group Report. Transplant Cell Ther 2021; 27:545-557. [PMID: 33839317 PMCID: PMC8803210 DOI: 10.1016/j.jtct.2021.03.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Recognition of the earliest signs and symptoms of chronic graft-versus-host disease (GVHD) that lead to severe manifestations remains a challenge. The standardization provided by the National Institutes of Health (NIH) 2005 and 2014 consensus projects has helped improve diagnostic accuracy and severity scoring for clinical trials, but utilization of these tools in routine clinical practice is variable. Additionally, when patients meet the NIH diagnostic criteria, many already have significant morbidity and possibly irreversible organ damage. The goals of this early diagnosis project are 2-fold. First, we provide consensus recommendations regarding implementation of the current NIH diagnostic guidelines into routine transplant care, outside of clinical trials, aiming to enhance early clinical recognition of chronic GVHD. Second, we propose directions for future research efforts to enable discovery of new, early laboratory as well as clinical indicators of chronic GVHD, both globally and for highly morbid organ-specific manifestations. Identification of early features of chronic GVHD that have high positive predictive value for progression to more severe manifestations of the disease could potentially allow for future pre-emptive clinical trials.
Collapse
Affiliation(s)
- Carrie L Kitko
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Joseph Pidala
- Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Hélène M Schoemans
- Department of Hematology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Anita Lawitschka
- St. Anna Children's Hospital, Children's Cancer Research Institute, Vienna, Austria
| | - Mary E Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Eric Tkaczyk
- Research & Dermatology Services, Department of Veterans Affairs, Nashville, Tennessee; Vanderbilt Dermatology Translational Research Clinic, Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Nosha Farhadfar
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Sandeep Jain
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, Illinois
| | - Philipp Steven
- Division for Dry-Eye Disease and Ocular GVHD, Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Zhonghui K Luo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard University, Boston, Massachusetts
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Michael Stern
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, Illinois; ImmunEyez LLC, Irvine, California
| | - Greg A Yanik
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Geoffrey D E Cuvelier
- Pediatric Blood and Marrow Transplantation, Department of Pediatric Oncology-Hematology-BMT, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Shernan G Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota
| | - Stephanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Gerard Socie
- Hematology Transplantation, AP-HP Saint Louis Hospital & University of Paris, INSERM U976, Paris, France
| | - Hildegard Greinix
- Clinical Division of Hematology, Medical University of Graz, Graz, Austria
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|