1
|
Cassa MA, Gentile P, Girón-Hernández J, Ciardelli G, Carmagnola I. Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices. Biomater Sci 2024; 12:5433-5449. [PMID: 39320148 DOI: 10.1039/d4bm00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gianluca Ciardelli
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Pisa 56124, Italy
| | - Irene Carmagnola
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| |
Collapse
|
2
|
Divya M, Chen J, Durán-Lara EF, Kim KS, Vijayakumar S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb Pathog 2024; 191:106679. [PMID: 38718953 DOI: 10.1016/j.micpath.2024.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders. One of the most promising ways to address this issue is through the development of long-lasting coatings with antibacterial properties. In recent years, antibacterial treatments based on metallic nanoparticles (NPs) have emerged as an effective strategy in the fight over bacterial drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are the basis of a new composite coating material. This article begins with a brief overview of the mechanisms that underlie bacterial resistance to antimicrobial drugs. A detailed examination of the properties of metallic nanoparticles (NPs) and their potential use as antibacterial drugs for curing drug-sensitive and resistant bacteria follows. Furthermore, we assess metal nanoparticles (NPs) as powerful agents to fight against antibiotic-resistant bacteria and the growth of biofilm, and we look into their potential toxicological effects for the development of future medicines.
Collapse
Affiliation(s)
- Mani Divya
- BioMe-Live Analytical Centre, Karaikudi, Tamil Nadu, India.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai, 264209, PR China.
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab| Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de La Salud, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 462s41, Republic of Korea.
| | | |
Collapse
|
3
|
Amyx-Sherer K, Reichhardt C. Challenges and opportunities in elucidating the structures of biofilm exopolysaccharides: A case study of the Pseudomonas aeruginosa exopolysaccharide called Pel. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:361-369. [PMID: 37919227 DOI: 10.1002/mrc.5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Biofilm formation protects bacteria from antibiotic treatment and host immune responses, making biofilm infections difficult to treat. Within biofilms, bacterial cells are entangled in a self-produced extracellular matrix that typically includes exopolysaccharides. Molecular-level descriptions of biofilm matrix components, especially exopolysaccharides, have been challenging to attain due to their complex nature and lack of solubility and crystallinity. Solid-state nuclear magnetic resonance (NMR) has emerged as a key tool to determine the structure of biofilm matrix exopolysaccharides without degradative sample preparation. In this review, we discuss challenges of studying biofilm matrix exopolysaccharides and opportunities to develop solid-state NMR approaches to study these generally intractable materials. We specifically highlight investigations of the exopolysaccharide called Pel made by the opportunistic pathogen, Pseudomonas aeruginosa. We provide a roadmap for determining exopolysaccharide structure and discuss future opportunities to study such systems using solid-state NMR. The strategies discussed for elucidating biofilm exopolysaccharide structure should be broadly applicable to studying the structures of other glycans.
Collapse
Affiliation(s)
- Kristen Amyx-Sherer
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Courtney Reichhardt
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Latag GV, Nakamura T, Palai D, Mondarte EAQ, Hayashi T. Investigation of Three-Dimensional Bacterial Adhesion Manner on Model Organic Surfaces Using Quartz Crystal Microbalance with Energy Dissipation Monitoring. ACS APPLIED BIO MATERIALS 2023; 6:1185-1194. [PMID: 36802460 PMCID: PMC10031553 DOI: 10.1021/acsabm.2c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Bacterial biofilms reduce the performance and efficiency of biomedical and industrial devices. The initial step in forming bacterial biofilms is the weak and reversible attachment of the bacterial cells onto the surface. This is followed by bond maturation and secretion of polymeric substances, which initiate irreversible biofilm formation, resulting in stable biofilms. This implies that understanding the initial reversible stage of the adhesion process is crucial to prevent bacterial biofilm formation. In this study, we analyzed the adhesion processes of E. coli on self-assembled monolayers (SAMs) with different terminal groups using optical microscopy and quartz crystal microbalance with energy dissipation (QCM-D) monitoring. We found that a considerable number of bacterial cells adhere to hydrophobic (methyl-terminated) and hydrophilic protein-adsorbing (amine- and carboxy-terminated) SAMs forming dense bacterial adlayers while attaching weakly to hydrophilic protein-resisting SAMs [oligo(ethylene glycol) (OEG) and sulfobetaine (SB)], forming sparse but dissipative bacterial adlayers. Moreover, we observed positive shifts in the resonant frequency for the hydrophilic protein-resisting SAMs at high overtone numbers, suggesting how bacterial cells cling to the surface using their appendages as explained by the coupled-resonator model. By exploiting the differences in the acoustic wave penetration depths at each overtone, we estimated the distance of the bacterial cell body from different surfaces. The estimated distances provide a possible explanation for why bacterial cells tend to attach firmly to some surfaces and weakly to others. This result is correlated to the strength of the bacterium-substratum bonds at the interface. Elucidating how the bacterial cells adhere to different surface chemistries can be a suitable guide in identifying surfaces with a more significant probability of contamination by bacterial biofilms and designing bacteria-resistant surfaces and coatings with excellent bacterial antifouling characteristics.
Collapse
Affiliation(s)
- Glenn Villena Latag
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Taichi Nakamura
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Debabrata Palai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Evan Angelo Quimada Mondarte
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
5
|
Xu W, Ceylan Koydemir H. Non-invasive biomedical sensors for early detection and monitoring of bacterial biofilm growth at the point of care. LAB ON A CHIP 2022; 22:4758-4773. [PMID: 36398687 DOI: 10.1039/d2lc00776b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections have long been a serious global health issue. Biofilm formation complicates matters even more. The biofilm's extracellular polymeric substances (EPSs) matrix protects bacteria from the host's immune responses, yielding strong adhesion and drug resistance as the biofilm matures. Early bacterial biofilm detection and bacterial biofilm growth monitoring are crucial to treating biofilm-associated infections. Current detection methods are highly sensitive but not portable, are time-consuming, and require expensive equipment and complex operating procedures, limiting their use at the point of care. Therefore, there is an urgent need to develop affordable, on-body, and non-invasive biomedical sensors to continuously monitor and detect early biofilm growth at the point of care through personalized telemedicine. Herein, recent advances in developing non-invasive biomedical sensors for early detection and monitoring bacterial biofilm growth are comprehensively reviewed. First, biofilm's life cycle and its impact on the human body, such as biofilm-associated disease and infected medical devices, are introduced together with the challenges of biofilm treatment. Then, the current methods used in clinical and laboratory settings for biofilm detection and their challenges are discussed. Next, the current state of non-invasive sensors for direct and indirect detection of bacterial biofilms are summarized and highlighted with the detection parameters and their design details. Finally, commercially available products, challenges of current devices, and the further trend in biofilm detection sensors are discussed.
Collapse
Affiliation(s)
- Weiming Xu
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| |
Collapse
|
6
|
Kouijzer JJP, Noordermeer DJ, van Leeuwen WJ, Verkaik NJ, Lattwein KR. Native valve, prosthetic valve, and cardiac device-related infective endocarditis: A review and update on current innovative diagnostic and therapeutic strategies. Front Cell Dev Biol 2022; 10:995508. [PMID: 36263017 PMCID: PMC9574252 DOI: 10.3389/fcell.2022.995508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening microbial infection of native and prosthetic heart valves, endocardial surface, and/or indwelling cardiac device. Prevalence of IE is increasing and mortality has not significantly improved despite technological advances. This review provides an updated overview using recent literature on the clinical presentation, diagnosis, imaging, causative pathogens, treatment, and outcomes in native valve, prosthetic valve, and cardiac device-related IE. In addition, the experimental approaches used in IE research to improve the understanding of disease mechanisms and the current diagnostic pipelines are discussed, as well as potential innovative diagnostic and therapeutic strategies. This will ultimately help towards deriving better diagnostic tools and treatments to improve IE patient outcomes.
Collapse
Affiliation(s)
- Joop J. P. Kouijzer
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Daniëlle J. Noordermeer
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wouter J. van Leeuwen
- Department of Cardiothoracic Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Nelianne J. Verkaik
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Kirby R. Lattwein
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Di Domenico EG, Oliva A, Guembe M. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections. Microorganisms 2022; 10:microorganisms10071259. [PMID: 35888978 PMCID: PMC9322301 DOI: 10.3390/microorganisms10071259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm is the trigger for the majority of infections caused by the ability of microorganisms to adhere to tissues and medical devices. Microbial cells embedded in the biofilm matrix are highly tolerant to antimicrobials and escape the host immune system. Thus, the refractory nature of biofilm-related infections (BRIs) still represents a great challenge for physicians and is a serious health threat worldwide. Despite its importance, the microbiological diagnosis of a BRI is still difficult and not routinely assessed in clinical microbiology. Moreover, biofilm bacteria are up to 100–1000 times less susceptible to antibiotics than their planktonic counterpart. Consequently, conventional antibiograms might not be representative of the bacterial drug susceptibility in vivo. The timely recognition of a BRI is a crucial step to directing the most appropriate biofilm-targeted antimicrobial strategy.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: ; Tel.: +34-914-269-595
| |
Collapse
|
8
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
9
|
Agarwalla SV, Ellepola K, Silikas N, Castro Neto AH, Seneviratne CJ, Rosa V. Persistent inhibition of Candida albicans biofilm and hyphae growth on titanium by graphene nanocoating. Dent Mater 2020; 37:370-377. [PMID: 33358443 DOI: 10.1016/j.dental.2020.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Candida albicanscolonizes biomaterial surfaces and are highly resistant to therapeutics. Graphene nanocoating on titanium compromises initial biofilm formation. However, its sustained antibiofilm potential is unknown. The objective of this study was to investigate the potential of graphene nanocoating to decrease long-term fungal biofilm development and hyphae growth on titanium. METHODS Graphene nanocoating was deposited twice (TiGD) or five times (TiGV) on grade 4 titanium with vacuum assisted technique and characterized with Raman spectroscopy and atomic force microscope. The biofilm formation and hyphae growth of C. albicans was monitored for seven days by CFU, XTT, confocal, mean cell density and scanning electronic microscopy (SEM). Uncoated titanium was the Control. All tests had three independent biological samples and were performed in independent triplicates. Data was analyzed with one- or two-way ANOVA and Tukey's HSD (α = 0.05). RESULTS Both TiGD and TiGV presented less biofilms at all times points compared with Control. The confocal and SEM images revealed few adhered cells on graphene coated samples, absence of hyphae and no features of a mature biofilm architecture. The increase in number of layers of graphene nanocoating did not improve its antibiofilm potential. SIGNIFICANCE The graphene nanocoating exerted a long-term persistent inhibitory effect on the biofilm formation on titanium. The fewer cells that were able to attach on graphene coated titanium were scattered and unable to form a mature biofilm with hyphae elements. The findings open opportunities to prevent microbial attachment and proliferation on implantable materials without the use of antibiotics.
Collapse
Affiliation(s)
| | - Kassapa Ellepola
- Louisiana State University Health Sciences Center, School of Dentistry, USA
| | - Nikolaos Silikas
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - A H Castro Neto
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore
| | - Chaminda Jayampath Seneviratne
- National Dental Centre Singapore, SingHealth, Duke NUS Medical School, 05, Hospital Avenue, National Dental Centre Singapor, Singapore.
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore; Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore; NUS Craniofacial Research and Innovation Center, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Taghizadeh B, Ghavami L, Derakhshankhah H, Zangene E, Razmi M, Jaymand M, Zarrintaj P, Zarghami N, Jaafari MR, Moallem Shahri M, Moghaddasian A, Tayebi L, Izadi Z. Biomaterials in Valvular Heart Diseases. Front Bioeng Biotechnol 2020; 8:529244. [PMID: 33425862 PMCID: PMC7793990 DOI: 10.3389/fbioe.2020.529244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023] Open
Abstract
Valvular heart disease (VHD) occurs as the result of valvular malfunction, which can greatly reduce patient's quality of life and if left untreated may lead to death. Different treatment regiments are available for management of this defect, which can be helpful in reducing the symptoms. The global commitment to reduce VHD-related mortality rates has enhanced the need for new therapeutic approaches. During the past decade, development of innovative pharmacological and surgical approaches have dramatically improved the quality of life for VHD patients, yet the search for low cost, more effective, and less invasive approaches is ongoing. The gold standard approach for VHD management is to replace or repair the injured valvular tissue with natural or synthetic biomaterials. Application of these biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of this type of heart disease. The focus of the present review is the current use of different types of biomaterials in treatment of valvular heart diseases.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Ghavami
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Moallem Shahri
- Cardiology Department, Taleghani Trauma Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, United States
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
11
|
Keleştemur S, Çobandede Z, Çulha M. Biofilm formation of clinically important microorganisms on 2D and 3D poly (methyl methacrylate) substrates: A surface-enhanced Raman scattering study. Colloids Surf B Biointerfaces 2020; 188:110765. [DOI: 10.1016/j.colsurfb.2019.110765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/05/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
|
12
|
The effect of sophorolipids against microbial biofilms on medical-grade silicone. J Biotechnol 2020; 309:34-43. [DOI: 10.1016/j.jbiotec.2019.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/29/2019] [Accepted: 12/26/2019] [Indexed: 01/01/2023]
|
13
|
Development of micropatterning polyimide films for enhanced antifouling and antibacterial properties. Colloids Surf B Biointerfaces 2020; 188:110801. [PMID: 31955014 DOI: 10.1016/j.colsurfb.2020.110801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
A commercial biomedical Polyimide (PI) film was topographically and chemically modified by generating micrometric periodic arrays of lines using Direct Laser Interference Patterning (DLIP) in order to improve antifouling and antibacterial properties. DLIP patterning was performed with periods from 1 μm to 10 μm. The physical modification of the surface was characterized by SEM, AFM and contact angle measurements and, the chemical composition of the ablated surfaces was analyzed by ATR-IR and XPS spectroscopies. The antibacterial effects were evaluated through the effect on Pseudomonas aeruginosa colonies growth on the LB (Luria Bertani) broth. The results showed that the laser treatment change the topography and as a consequence the chemistry surface, also that the microstructured surfaces with periods below 2 μm, exhibited a significant bacterial (P. aeruginosa) adhesion decrease compared with non-structured surfaces or with surfaces with periods higher than 2 μm. The results suggest that periodic topography only confer antifouling properties and reduction of the biofilm formation when the microstructure presents periods ranging from 1 μm to 2 μm. On the other hand, the topography that confer strong antifouling superficial properties persists at long incubation times. In that way, polymer applications in the biosciences field can be improved by a surface topography modification using a simple, single-step laser-assisted ablation method.
Collapse
|
14
|
Gates KV, Xing Q, Griffiths LG. Immunoproteomic Identification of Noncarbohydrate Antigens Eliciting Graft-Specific Adaptive Immune Responses in Patients with Bovine Pericardial Bioprosthetic Heart Valves. Proteomics Clin Appl 2019; 13:e1800129. [PMID: 30548925 PMCID: PMC6565515 DOI: 10.1002/prca.201800129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/31/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE This case-control retrospective discovery study is to identify antigenic bovine pericardium (BP) proteins that stimulate graft-specific humoral immune response in patients implanted with glutaraldehyde fixed bovine pericardial (GFBP) heart valves. EXPERIMENTAL DESIGN Banked serum is collected from age- and sex-matched patients who received either a GFBP or mechanical heart valve replacement. Serum IgG is isolated and used to generate poly-polyclonal antibody affinity chromatography columns from each patient. Native and deglycosylated BP protein extracts are separately added to individual patient affinity chromatography columns, with unbound proteins washed through the column. Proteins captured in the affinity chromatography columns are submitted for proteomic identification. Differences between GFBP and mechanical heart valve replacement recipients are analyzed with Gaussian linearized modeling. RESULTS Carbohydrate antigens overwhelm protein capture in the column, requiring BP protein deglycosylation prior to affinity chromatography. Nineteen BP protein antigens, which stimulated graft-specific IgG production, are identified in patients who received GFBP valve replacements. Identified antigens are significantly over-represented for calcium-binding proteins. CONCLUSIONS AND CLINICAL RELEVANCE Patients implanted with GFBP valves develop a graft-specific humoral immune response toward BP protein antigens, with 19 specific antigens identified in this work. The molecular functions of over-represented antigens, specifically calcium-binding proteins, may aid in understanding the underlying factors that contribute to structural valve deterioration.
Collapse
Affiliation(s)
- Katherine V. Gates
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester MN 55905, USA
| | - Qi Xing
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester MN 55905, USA
| | - Leigh G. Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester MN 55905, USA
| |
Collapse
|
15
|
Polymeric Composites with Silver (I) Cyanoximates Inhibit Biofilm Formation of Gram-Positive and Gram-Negative Bacteria. Polymers (Basel) 2019; 11:polym11061018. [PMID: 31181853 PMCID: PMC6631325 DOI: 10.3390/polym11061018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
Biofilms are surface-associated microbial communities known for their increased resistance to antimicrobials and host factors. This resistance introduces a critical clinical challenge, particularly in cases associated with implants increasing the predisposition for bacterial infections. Preventing such infections requires the development of novel antimicrobials or compounds that enhance bactericidal effect of currently available antibiotics. We have synthesized and characterized twelve novel silver(I) cyanoximates designated as Ag(ACO), Ag(BCO), Ag(CCO), Ag(ECO), Ag(PiCO), Ag(PICO) (yellow and red polymorphs), Ag(BIHCO), Ag(BIMCO), Ag(BOCO), Ag(BTCO), Ag(MCO) and Ag(PiPCO). The compounds exhibit a remarkable resistance to high intensity visible light, UV radiation and heat and have poor solubility in water. All these compounds can be well incorporated into the light-curable acrylate polymeric composites that are currently used as dental fillers or adhesives of indwelling medical devices. A range of dry weight % from 0.5 to 5.0 of the compounds was tested in this study. To study the potential of these compounds in preventing planktonic and biofilm growth of bacteria, we selected two human pathogens (Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus) and Gram-positive environmental isolate Bacillus aryabhattai. Both planktonic and biofilm growth was abolished completely in the presence of 0.5% to 5% of the compounds. The most efficient inhibition was shown by Ag(PiCO), Ag(BIHCO) and Ag(BTCO). The inhibition of biofilm growth by Ag(PiCO)-yellow was confirmed by scanning electron microscopy (SEM). Application of Ag(BTCO) and Ag(PiCO)-red in combination with tobramycin, the antibiotic commonly used to treat P. aeruginosa infections, showed a significant synergistic effect. Finally, the inhibitory effect lasted for at least 120 h in P. aeruginosa and 36 h in S. aureus and B. aryabhattai. Overall, several silver(I) cyanoximates complexes efficiently prevent biofilm development of both Gram-negative and Gram-positive bacteria and present a particularly significant potential for applications against P. aeruginosa infections.
Collapse
|
16
|
Agarwalla SV, Ellepola K, Costa MCFD, Fechine GJM, Morin JLP, Castro Neto AH, Seneviratne CJ, Rosa V. Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dent Mater 2019; 35:403-413. [PMID: 30679015 DOI: 10.1016/j.dental.2018.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate the surface and wettability characteristics and the microbial biofilm interaction of graphene coating on titanium. METHODS Graphene was deposited on titanium (Control) via a liquid-free technique. The transfer was performed once (TiGS), repeated two (TiGD) and five times (TiGV) and characterized by AFM (n=10), Raman spectroscopy (n=10), contact angle and SFE (n=5). Biofilm formation (n=3) to Streptococcus mutans, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans was evaluated after 24h by CV assay, CFU, XTT and confocal microscopy. Statistics were performed by one-way Anova, Tukey's tests and Pearson's correlation analysis at a pre-set significance level of 5 %. RESULTS Raman mappings revealed coverage yield of 82 % for TiGS and ≥99 % for TiGD and TiGV. Both TiGD and TiGV presented FWHM>44cm-1 and ID/IG ratio<0.12, indicating multiple graphene layers and occlusion of defects. The contact angle was significantly higher for TiGD and TiGV (110° and 117°) comparing to the Control (70°). The SFE was lower for TiGD (13.8mN/m) and TiGV (12.1mN/m) comparing to Control (38.3mN/m). TiGD was selected for biofilm assays and exhibited significant reduction in biofilm formation for all microorganisms compared to Control. There were statistical correlations between the high contact angle and low SFE of TiGD and decreased biofilm formation. SIGNIFICANCE TiGD presented high quality and coverage and decreased biofilm formation for all species. The increased hydrophobicity of graphene films was correlated with the decreased biofilm formation for various species.
Collapse
Affiliation(s)
| | - Kassapa Ellepola
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | - Julien Luc Paul Morin
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore
| | - A H Castro Neto
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore
| | | | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. MATERIALS 2018; 11:ma11091676. [PMID: 30201944 PMCID: PMC6163278 DOI: 10.3390/ma11091676] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Biofilm formation in healthcare is an issue of considerable concern, as it results in increased morbidity and mortality, imposing a significant financial burden on the healthcare system. Biofilms are highly resistant to conventional antimicrobial therapies and lead to persistent infections. Hence, there is a high demand for novel strategies other than conventional antibiotic therapies to control biofilm-based infections. There are two approaches which have been employed so far to control biofilm formation in healthcare settings: one is the development of biofilm inhibitors based on the understanding of the molecular mechanism of biofilm formation, and the other is to modify the biomaterials which are used in medical devices to prevent biofilm formation. This review will focus on the recent advances in anti-biofilm approaches by interrupting the quorum-sensing cellular communication system and the multidrug efflux pumps which play an important role in biofilm formation. Research efforts directed towards these promising strategies could eventually lead to the development of better anti-biofilm therapies than the conventional treatments.
Collapse
|
18
|
Reichhardt C, McCrate OA, Zhou X, Lee J, Thongsomboon W, Cegelski L. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification. Anal Bioanal Chem 2016; 408:7709-7717. [PMID: 27580606 DOI: 10.1007/s00216-016-9868-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Microbial biofilms are communities of cells characterized by a hallmark extracellular matrix (ECM) that confers functional attributes to the community, including enhanced cohesion, adherence to surfaces, and resistance to external stresses. Understanding the composition and properties of the biofilm ECM is crucial to understanding how it functions and protects cells. New methods to isolate and characterize ECM are emerging for different biofilm systems. Solid-state nuclear magnetic resonance was used to quantitatively track the isolation of the insoluble ECM from the uropathogenic Escherichia coli strain UTI89 and understand the role of Congo red in purification protocols. UTI89 assembles amyloid-integrated biofilms when grown on YESCA nutrient agar. The ECM contains curli amyloid fibers and a modified form of cellulose. Biofilms formed by UTI89 and other E. coli and Salmonella strains are often grown in the presence of Congo red to visually emphasize wrinkled agar morphologies and to score the production of ECM. Congo red is a hallmark amyloid-binding dye and binds to curli, yet also binds to cellulose. We found that growth in Congo red enabled more facile extraction of the ECM from UTI89 biofilms and facilitates isolation of cellulose from the curli mutant, UTI89ΔcsgA. Yet, Congo red has no influence on the isolation of curli from curli-producing cells that do not produce cellulose. Sodium dodecyl sulfate can remove Congo red from curli, but not from cellulose. Thus, Congo red binds strongly to cellulose and possibly weakens cellulose interactions with the cell surface, enabling more complete removal of the ECM. The use of Congo red as an extracellular matrix purification aid may be applied broadly to other organisms that assemble extracellular amyloid or cellulosic materials. Graphical abstract Solid-state NMR was used to quantitatively track the isolation of the insoluble amyloid-associated ECM from uropathogenic E. coli and understand the role of Congo red in purification protocols.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Oscar A McCrate
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Xiaoxue Zhou
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Jessica Lee
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Wiriya Thongsomboon
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Singh R, Nadhe S, Wadhwani S, Shedbalkar U, Chopade BA. Nanoparticles for Control of Biofilms of Acinetobacter Species. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E383. [PMID: 28773507 PMCID: PMC5503024 DOI: 10.3390/ma9050383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022]
Abstract
Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases. Various methods have been developed for treatment and control of Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative. Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections.
Collapse
Affiliation(s)
- Richa Singh
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | - Shradhda Nadhe
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | - Sweety Wadhwani
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Balu Ananda Chopade
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
- Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India.
| |
Collapse
|
20
|
Reichhardt C, Fong JCN, Yildiz F, Cegelski L. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:378-83. [PMID: 24911407 PMCID: PMC4406247 DOI: 10.1016/j.bbamem.2014.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analyses. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using ¹³C CPMAS and ¹³C{(¹⁵N}, ¹⁵N{³¹P}, and ¹³C{³¹P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, ¹⁵N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Chemistry, Stanford University, Mudd Building, Room 121, 333 Campus Drive, Stanford, CA 94305, USA.
| | - Jiunn C N Fong
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Fitnat Yildiz
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Mudd Building, Room 121, 333 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Chen CW, Hsu CY, Lai SM, Syu WJ, Wang TY, Lai PS. Metal nanobullets for multidrug resistant bacteria and biofilms. Adv Drug Deliv Rev 2014; 78:88-104. [PMID: 25138828 DOI: 10.1016/j.addr.2014.08.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Infectious diseases were one of the major causes of mortality until now because drug-resistant bacteria have arisen under broad use and abuse of antibacterial drugs. These multidrug-resistant bacteria pose a major challenge to the effective control of bacterial infections and this threat has prompted the development of alternative strategies to treat bacterial diseases. Recently, use of metallic nanoparticles (NPs) as antibacterial agents is one of the promising strategies against bacterial drug resistance. This review first describes mechanisms of bacterial drug resistance and then focuses on the properties and applications of metallic NPs as antibiotic agents to deal with antibiotic-sensitive and -resistant bacteria. We also provide an overview of metallic NPs as bactericidal agents combating antibiotic-resistant bacteria and their potential in vivo toxicology for further drug development.
Collapse
Affiliation(s)
- Ching-Wen Chen
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Chia-Yen Hsu
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Wei-Jhe Syu
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Ting-Yi Wang
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan; Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan.
| |
Collapse
|
22
|
Balikoglu-Yilmaz M, Yilmaz T, Cetinel S, Taskin U, Banu Esen A, Taskapili M, Kose T. Comparison of scanning electron microscopy findings regarding biofilm colonization with microbiological results in nasolacrimal stents for external, endoscopic and transcanalicular dacryocystorhinostomy. Int J Ophthalmol 2014; 7:534-40. [PMID: 24967205 DOI: 10.3980/j.issn.2222-3959.2014.03.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/26/2013] [Indexed: 11/02/2022] Open
Abstract
AIM To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy (EX-DCR), endoscopic dacryocystorhinostomy (EN-DCR), and transcanalicular dacryocystorhinostomy (TC-DCR) with multidiode laser. METHODS This prospective study included 30 consecutive patients with nasolacrimal duct obstruction who underwent EXT-, EN-, or TC-DCR. Thirty removed lacrimal stent fragments and conjunctival samples were cultured. The lacrimal stent biofilms were examined by scanning electron microscopy (SEM). RESULTS Eleven (36.7%) of the 30 lacrimal stent cultures were positive for aerobic bacteria (most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa). However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures. Twenty-seven (90%) patients had biofilm-positive lacrimal stents. The conjunctival culture positivity after the DCR, biofilm positivity on stents, the grade of biofilm colonization, and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups (P>0.05). However, a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures (P<0.001). CONCLUSION Type of dacryocystorhinostomy (DCR) surgery did not affect the biofilm colonization of the lacrimal stents. SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents.
Collapse
Affiliation(s)
- Melike Balikoglu-Yilmaz
- Department of Ophthalmology, Bagcilar Education and Research Hospital, Istanbul 34200, Turkey
| | - Tolga Yilmaz
- Department of Ophthalmology, Bagcilar Education and Research Hospital, Istanbul 34200, Turkey
| | - Sule Cetinel
- Department of Histology&Embryology, Marmara University, Faculty of Medicine, Istanbul 34854, Turkey
| | - Umit Taskin
- Department of Otorhinolaryngology, Bagcilar Education and Research Hospital, Istanbul 34200, Turkey
| | - Ayse Banu Esen
- Department of Microbiology and Clinical Microbiology, Bagcilar Education and Research Hospital, Istanbul 34200, Turkey
| | - Muhittin Taskapili
- Department of Ophthalmology, Bagcilar Education and Research Hospital, Istanbul 34200, Turkey
| | - Timur Kose
- Department of Biostatistics and Medical Informatics, Ege University, Faculty of Medicine, Izmir 35100, Turkey
| |
Collapse
|
23
|
Määttänen A, Fallarero A, Kujala J, Ihalainen P, Vuorela P, Peltonen J. Printed paper-based arrays as substrates for biofilm formation. AMB Express 2014; 4:32. [PMID: 25006538 PMCID: PMC4077624 DOI: 10.1186/s13568-014-0032-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 01/05/2023] Open
Abstract
The suitability of paper-based arrays for biofilm formation studies by Staphylococcus aureus is demonstrated. Laboratory-coated papers with different physicochemical properties were used as substrates. The array platform was fabricated by patterning the coated papers with vinyl-substituted polydimethylsiloxane (PDMS) -based ink. The affinity of bacteria onto the flexographically printed hydrophobic and smooth PDMS film was very low whereas bacterial adhesion and biofilm formation occurred preferentially on the unprinted areas, i.e. in the reaction arrays. The concentration of the attached bacteria was quantified by determining the viable colony forming unit (CFU/cm2) numbers. The distribution and the extent of surface coverage of the biofilms were determined by atomic force microscopy. In static conditions, the highest bacterial concentration and most highly organized biofilms were observed on substrates with high polarity. On a rough paper surface with low polarity, the biofilm formation was most hindered. Biofilms were effectively removed from a polar substrate upon exposure to (+)-dehydroabietic acid, an anti-biofilm compound.
Collapse
|
24
|
Barman S, Mukhopadhyay SK, Behara KK, Dey S, Singh NDP. 1-Acetylpyrene-salicylic acid: photoresponsive fluorescent organic nanoparticles for the regulated release of a natural antimicrobial compound, salicylic acid. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7045-7054. [PMID: 24800888 DOI: 10.1021/am500965n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photoresponsive 1-acetylpyrene-salicylic acid (AcPy-SA) nanoparticles (NPs) were developed for the regulated release of a natural antimicrobial compound, salicylic acid. The strong fluorescent properties of AcPy-SA NPs have been extensively used for potential in vitro cell imaging. The phototrigger capability of our newly prepared AcPy-SA NPs was utilized for the efficient release of an antimicrobial compound, salicylic acid. The photoregulated drug release of AcPy-SA NPs has been shown by the subsequent switching off and on of a visible-light source. In vitro biological studies reveal that AcPy-SA NPs of ∼68 nm size deliver the antimicrobial drug salicylic acid into the bacteria cells (Pseudomonas aeruginosa) and efficiently kill the cells upon exposure to visible light (≥410 nm). Such photoresponsive fluorescent organic NPs will be highly beneficial for targeted and regulated antimicrobial drug release because of their biocompatible nature, efficient cellular uptake, and light-induced drug release ability.
Collapse
Affiliation(s)
- Shrabani Barman
- Department of Chemistry and ‡Department of Biotechnology, Indian Institute of Technology Kharagpur 721302, West Bengal India
| | | | | | | | | |
Collapse
|
25
|
Abdallah M, Benoliel C, Drider D, Dhulster P, Chihib NE. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol 2014; 196:453-72. [PMID: 24744186 DOI: 10.1007/s00203-014-0983-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022]
Abstract
The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.
Collapse
Affiliation(s)
- Marwan Abdallah
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), IUT A/Polytech'Lille, Université de Lille1-Science et Technologies, Avenue Paul Langevin, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
26
|
Badawy HT, Pasetto P, Mouget JL, Pilard JF, Cutright TJ, Milsted A. Bacterial adhesion and growth reduction by novel rubber-derived oligomers. Biochem Biophys Res Commun 2013; 438:691-6. [PMID: 23921230 DOI: 10.1016/j.bbrc.2013.07.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
In the medical field, attached bacteria can cause infections associated with catheters, incisions, burns, and medical implants especially in immunocompromised patients. The problem is exacerbated by the fact that attached bacteria are ∼1000 times more resistant to antibiotics than planktonic cells. The rapid spread of antibiotic resistance in these and other organisms has led to a significant need to find new methods for preventing bacterial attachment. The goal of this research was to evaluate the effectiveness of novel polymer coatings to prevent the attachment of three medically relevant bacteria. Tests were conducted with Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus for oligomers derived from modifications of natural rubber (cis 1,4-polyisoprene). The different oligomers were: PP04, with no quaternary ammonium (QA); MV067, one QA; PP06, three QA groups. In almost all experiments, cell attachment was inhibited to various extents as long as the oligomers were used. PP06 was the most effective as it decreased the planktonic cell numbers by at least 50% for all bacteria. Differences between species sensitivity were also observed. P. aeruginosa was the most resistant bacteria tested, S. aureus, the most sensitive. Further experiments are required to understand the full extent and mode of the antimicrobial properties of these surfaces.
Collapse
Affiliation(s)
- Hope T Badawy
- Biology Department, University of Akron, Akron, OH 44325, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Biofilms in Chronic Wounds and the Potential Role of Negative Pressure Wound Therapy. J Wound Ostomy Continence Nurs 2013; 40:143-9. [DOI: 10.1097/won.0b013e31827e8481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Sebők B, Kiss G, Szabó PJ, Rigler D, Molnár ML, Dobos G, Réti F, Szőcs H, Joób AF, Bogdán S, Szabó G. SEM and EDS investigation of a pyrolytic carbon covered C/C composite maxillofacial implant retrieved from the human body after 8 years. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:821-828. [PMID: 23274629 DOI: 10.1007/s10856-012-4840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
The long term effect of the human body on a pyrolytic carbon covered C/C composite maxillofacial implant (CarBulat(Tm)) was investigated by comparing the structure, the surface morphology and composition of an implant retrieved after 8 years to a sterilized, but not implanted one. Although the thickness of the carbon fibres constituting the implants did not change during the 8 year period, the surface of the implant retrieved was covered with a thin surface layer not present on the unimplanted implant. The composition of this layer is identical to the composition of the underlying carbon fibres. Calcium can only be detected on the surface as a trace element implying that the new layer is not formed by bone tissue. Residual soft tissue penetrating the bulk material between the carbon fibre bunches was found on the retrieved implant indicating the importance of the surface morphology in tissue growth and adhering to implants.
Collapse
Affiliation(s)
- Béla Sebők
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Myllymaa K, Levon J, Tiainen VM, Myllymaa S, Soininen A, Korhonen H, Kaivosoja E, Lappalainen R, Konttinen YT. Formation and retention of staphylococcal biofilms on DLC and its hybrids compared to metals used as biomaterials. Colloids Surf B Biointerfaces 2013; 101:290-7. [DOI: 10.1016/j.colsurfb.2012.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/20/2012] [Accepted: 07/09/2012] [Indexed: 12/01/2022]
|
30
|
Costaglioli P, Barthe C, Claverol S, Brözel VS, Perrot M, Crouzet M, Bonneu M, Garbay B, Vilain S. Evidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation. Microbiologyopen 2012; 1:326-39. [PMID: 23170231 PMCID: PMC3496976 DOI: 10.1002/mbo3.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 12/03/2022] Open
Abstract
Bacterial biofilms are complex cell communities found attached to surfaces and surrounded by an extracellular matrix composed of exopolysaccharides, DNA, and proteins. We investigated the whole-genome expression profile of Pseudomonas aeruginosa sessile cells (SCs) present in biofilms developed on a glass wool substratum. The transcriptome and proteome of SCs were compared with those of planktonic cell cultures. Principal component analysis revealed a biofilm-specific gene expression profile. Our study highlighted the overexpression of genes controlling the anthranilate degradation pathway in the SCs grown on glass wool for 24 h. In this condition, the metabolic pathway that uses anthranilate for Pseudomonas quinolone signal production was not activated, which suggested that anthranilate was primarily being consumed for energy metabolism. Transposon mutants defective for anthranilate degradation were analyzed in a simple assay of biofilm formation. The phenotypic analyses confirmed that P. aeruginosa biofilm formation partially depended on the activity of the anthranilate degradation pathway. This work points to a new feature concerning anthranilate metabolism in P. aeruginosa SCs.
Collapse
Affiliation(s)
- Patricia Costaglioli
- Biotechnologie des Protéines Recombinantes à Visée Santé, University Bordeaux EA4135, F-33000, Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nandakumar V, Chittaranjan S, Kurian VM, Doble M. Characteristics of bacterial biofilm associated with implant material in clinical practice. Polym J 2012. [DOI: 10.1038/pj.2012.130] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Marshall JC, al Naqbi A. Principles of Source Control in the Management of Sepsis. Crit Care Nurs Clin North Am 2011; 23:99-114. [DOI: 10.1016/j.ccell.2010.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Yang B, Gan L, Qu Y, Yue C. Anti-inflammatory properties of bioactive titanium metals. J Biomed Mater Res A 2010; 94:700-5. [PMID: 20205239 DOI: 10.1002/jbm.a.32743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anti-inflammatory properties of bioactive titanium metals prepared by anodic oxidation (AO-Ti) and alkali-heat (AH-Ti) treatments were studied by bacterial adhesion test and myeloperoxidase (MPO) activity assay methods. The bioactivities of the metals were also evaluated by apatite formation ability and osteoblasts culture experiments. Both metals could induce apatite formation and support osteoblasts proliferation. At the condition with normal incandescent light shine, both bioactive titanium metals had antibacterial adhesion properties compared with the titanium metal without treatment. The MPO activity assay proved that they both showed anti-inflammatory properties in vivo. The bioactive AO-Ti had better anti-inflammatory properties than the AH-Ti. It indicated that it is possible to optimize the anti-inflammatory properties of the bioactive titanium metals by different preparation methods.
Collapse
Affiliation(s)
- Bangcheng Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | | | | | | |
Collapse
|
34
|
Williams DL, Bloebaum RD. Observing the biofilm matrix of Staphylococcus epidermidis ATCC 35984 grown using the CDC biofilm reactor. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:143-152. [PMID: 20205969 DOI: 10.1017/s143192760999136x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacteria flourish in nearly every environment on earth. Contributing to their ability to grow in many esoteric locations is their development into a biofilm structure. In an effort to more accurately model the growth environment of biofilms in nature, a Center for Disease Control and Prevention (CDC) biofilm reactor has been developed that mimics nature-like shear forces and renewable nutrient sources. To date, there has been no confirmation by scanning electron microscopy (SEM) that mature biofilms develop on a surface when grown using the CDC biofilm reactor. Three different SEM methods were used to collect images of Staphylococcus epidermidis ATCC 35984 that was to be grown using the CDC biofilm reactor. In addition, two different fixative techniques were used in each of the imaging methods. Results indicated that after 48 hours of growth in the reactor, S. epidermidis ATCC 35984 does produce a significant network of matrix components and 3D mushroom- or pillar-like structures with signs of water channel development. In conclusion, S. epidermidis ATCC 35984 grown using the CDC biofilm reactor does appear to display signs of mature biofilm development. These results could be important for studies wherein mature biofilms are needed for in vitro and/or in vivo applications.
Collapse
|
35
|
Abstract
The term "source control" encompasses all those physical measures used to control a focus of invasive infection and to restore the optimal function of the affected area. Source-control measures can be categorized into 3 broad modalities: drainage controls the liquid component of an infection by converting a closed space infection to a controlled sinus or fistula; debridement is the physical removal of solid necrotic tissue (removal of an infected device can be considered a form of debridement); definitive measures seek to restore optimal function to the involved area. This article discusses specific approaches to source control in the abdomen, chest, and skin and soft tissues.
Collapse
Affiliation(s)
- John C Marshall
- Department of Surgery, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
36
|
Bénard L, Litzler PY, Cosette P, Lemeland JF, Jouenne T, Junter GA. Proteomic analysis of Staphylococcus aureus biofilms grown in vitro on mechanical heart valve leaflets. J Biomed Mater Res A 2009; 88:1069-78. [PMID: 18404712 DOI: 10.1002/jbm.a.31941] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The in vitro colonization of three commercial heart valve leaflets by Staphylococcus aureus was investigated. The leaflets, made of pyrolytic carbon alloyed with or without silicon, displayed similar surface properties (wettability, roughness) and were readily colonized by S. aureus that formed patchy biofilms on the three supports. A proteomic approach was used to assess the physiological status of biofilm populations by comparing their protein maps to those of bacteria cultured as free cells in the presence or absence of biofilm substratum. Principal component analysis (PCA) revealed, for each tested leaflet, statistical relationships between the protein maps of the biofilm and free-floating microbial populations. A spot-by-spot comparison of protein levels on two-dimensional electropherograms showed that many proteins were accumulated or underproduced by microbial populations grown in the presence of a leaflet compared with protein levels in control free populations. The number of accumulated proteins was noticeably higher than that of underproduced polypeptides. This protein overproduction was emphasized in biofilm populations. Several proteins, some of which were identified, were differentially produced by both surface-associated planktonic and biofilm-grown cell populations compared with control free-cell ones cultured in the absence of leaflet, whatever the leaflet tested. The potential of this proteomic approach for fighting against microbial adhesion and biofilm formation is discussed.
Collapse
Affiliation(s)
- Laetitia Bénard
- Research Group on Antimicrobials and Microorganisms, EA 2656, Charles Nicolle University Hospital, Rouen, France
| | | | | | | | | | | |
Collapse
|
37
|
Ciston S, Lueptow RM, Gray KA. Bacterial attachment on reactive ceramic ultrafiltration membranes. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2008.03.065] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Park MR, Banks MK, Applegate B, Webster TJ. Influence of nanophase titania topography on bacterial attachment and metabolism. Int J Nanomedicine 2008; 3:497-504. [PMID: 19337418 PMCID: PMC2636588 DOI: 10.2147/ijn.s4399] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection.
Collapse
Affiliation(s)
| | | | | | - Thomas J Webster
- School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|