1
|
Hauser BR, Estafanos M, Ayyat KS, Yun JJ, Elgharably H. Current status of routine use of veno-arterial extracorporeal membrane oxygenation during lung transplantation. Expert Rev Med Devices 2024; 21:1153-1163. [PMID: 39670791 DOI: 10.1080/17434440.2024.2442485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Recently, there has been growing experience with utilizing a veno-arterial extracorporeal membrane oxygenator (VA ECMO) routinely during lung transplantation procedures. Yet, there is a lack of consensus on the protocols, benefits, and outcomes of routine VA ECMO use in lung transplantation. AREAS COVERED This article presents an overview of the current status of routine use of VA ECMO during lung transplantation, including rationale, protocols, applications, and outcomes. EXPERT OPINION Utilization of VA ECMO during lung transplantation has emerged as an alternative mechanical circulatory support modality to cardiopulmonary bypass, with growing evidence showing lower rates of peri-operative complications. Some groups took that further into routine application of VA ECMO during lung transplantation. The current available evidence suggests that routine utilization of VA ECMO during lung transplantation is associated with lower rates of primary graft dysfunction and improved early outcomes. Use of VA ECMO allows controlled reperfusion of the allograft and avoids an unplanned "crash" on pump in case of hemodynamic instability, which carries worse outcomes after lung transplantation. As a relatively new approach, further follow-up of growing experience, as well as prospective clinical trials, is necessary to develop a consensus about routine utilization of VA ECMO during lung transplantation.
Collapse
Affiliation(s)
- Benjamin R Hauser
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Mina Estafanos
- Department of Surgery, Division of Cardiac Surgery, University of Rochester, Rochester, NY, USA
| | - Kamal S Ayyat
- Department of Thoracic & Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - James J Yun
- Department of Thoracic & Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Haytham Elgharably
- Department of Thoracic & Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Functional Blockage of S100A8/A9 Ameliorates Ischemia–Reperfusion Injury in the Lung. Bioengineering (Basel) 2022; 9:bioengineering9110673. [DOI: 10.3390/bioengineering9110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
(1) Background: Lung ischemia–reperfusion (IR) injury increases the mortality and morbidity of patients undergoing lung transplantation. The objective of this study was to identify the key initiator of lung IR injury and to evaluate pharmacological therapeutic approaches using a functional inhibitor against the identified molecule. (2) Methods: Using a mouse hilar clamp model, the combination of RNA sequencing and histological investigations revealed that neutrophil-derived S100A8/A9 plays a central role in inflammatory reactions during lung IR injury. Mice were assigned to sham and IR groups with or without the injection of anti-S100A8/A9 neutralizing monoclonal antibody (mAb). (3) Results: Anti-S100A8/A9 mAb treatment significantly attenuated plasma S100A8/A9 levels compared with control IgG. As evaluated by oxygenation capacity and neutrophil infiltration, the antibody treatment dramatically ameliorated the IR injury. The gene expression levels of cytokines and chemokines induced by IR injury were significantly reduced by the neutralizing antibody. Furthermore, the antibody treatment significantly reduced TUNEL-positive cells, indicating the presence of apoptotic cells. (4) Conclusions: We identified S100A8/A9 as a novel therapeutic target against lung IR injury.
Collapse
|
3
|
Wang LF, Sun YY, Pan Q, Yin YQ, Tian XM, Liu Y, Bu T, Zhang Q, Wang YA, Zhao J, Luo Y. Diminazen Aceturate Protects Pulmonary Ischemia-Reperfusion Injury via Inhibition of ADAM17-Mediated Angiotensin-Converting Enzyme 2 Shedding. Front Pharmacol 2021; 12:713632. [PMID: 34712133 PMCID: PMC8546118 DOI: 10.3389/fphar.2021.713632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/16/2021] [Indexed: 01/30/2023] Open
Abstract
Lung ischemia-reperfusion (IR) injury is induced by pulmonary artery occlusion and reperfusion. Lung IR injury commonly happens after weaning from extracorporeal circulation, lung transplantation, and pulmonary thromboendarterectomy; it is a lethal perioperative complication. A definite therapeutic intervention remains to be determined. It is known that the enzyme activity of angiotensin-converting enzyme 2 (ACE2) is critical in maintaining pulmonary vascular tone and epithelial integrity. In a noxious environment to the lungs, inactivation of ACE2 is mainly due to a disintegrin and metalloprotease 17 (ADAM17) protein-mediated ACE2 shedding. Thus, we assumed that protection of local ACE2 in the lung against ADAM17-mediated shedding would be a therapeutic target for lung IR injury. In this study, we established both in vivo and in vitro models to demonstrate that the damage degree of lung IR injury depends on the loss of ACE2 and ACE2 enzyme dysfunction in lung tissue. Treatment with ACE2 protectant diminazen aceturate (DIZE) maintained higher ACE2 enzyme activity and reduced angiotensin II, angiotensin type 1 receptor, and ADAM17 levels in the lung tissue. Concurrently, DIZE-inhibited oxidative stress and nitrosative stress via p38MAPK and NF-κB pathways consequently reduced release of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β. The underlying molecular mechanism of DIZE contributed to its protective effect against lung IR injury and resulted in the improvement of oxygenation index and ameliorating pulmonary pathological damage. We concluded that DIZE protects the lungs from IR injury via inhibition of ADAM17-mediated ACE2 shedding.
Collapse
Affiliation(s)
| | - Yang-Yang Sun
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Qian Pan
- China-Japan Friendship Hospital, Beijing, China
| | - Yi-Qing Yin
- China-Japan Friendship Hospital, Beijing, China
| | | | - Yue Liu
- China-Japan Friendship Hospital, Beijing, China
| | - Tegeleqi Bu
- China-Japan Friendship Hospital, Beijing, China
| | - Qingy Zhang
- China-Japan Friendship Hospital, Beijing, China
| | - Yong-An Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Zhao
- China-Japan Friendship Hospital, Beijing, China
| | - Yuan Luo
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
4
|
Nakata K, Okazaki M, Shimizu D, Suzawa K, Shien K, Miyoshi K, Otani S, Yamamoto H, Sugimoto S, Yamane M, Ousaka D, Ohara T, Matsukawa A, Nishibori M, Toyooka S. Protective effects of anti-HMGB1 monoclonal antibody on lung ischemia reperfusion injury in mice. Biochem Biophys Res Commun 2021; 573:164-170. [PMID: 34418763 DOI: 10.1016/j.bbrc.2021.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/25/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
During ischemia reperfusion (IR) injury, high mobility group box 1 (HMGB1), a chromatin binding protein, is released from necrotic cells and triggers inflammatory responses. We assessed the therapeutic effect of a neutralizing anti-HMGB1 monoclonal antibody (mAb) on lung IR injury. A murine hilar clamp model of IR was used, where mice were divided into sham and IR groups with intravenous administration of anti-HMGB 1 mAb or control mAb. We analyzed the effect of anti-HMGB1 mAb against IR injury by assessing lung oxygenation, lung injury score, neutrophil infiltration, expression of proinflammatory cytokines and chemokines, levels of mitogen-activated protein kinase (MAPK) signaling, and measurement of apoptotic cells. Anti-HMGB1 mAb significantly decreased the plasma level of HMGB1 elevated by IR. The severity of IR injury represented by oxygenation capacity, lung injury score, and neutrophil infiltration was significantly improved by anti-HMGB1 mAb treatment. The expression of proinflammatory factors, including IL-1β, IL-6, IL-12, TNF-α, CXCL-1, and CXCL-2, and phosphorylation of p38 MAPK were both significantly reduced by anti-HMGB1 mAb treatment. Furthermore, anti-HMGB1 mAb treatment suppressed apoptosis, as determined through TUNEL assays. Overall, anti-HMGB1 mAb ameliorated lung IR injury by reducing inflammatory responses and apoptosis. Our findings indicate that anti-HMGB1 mAb has potential for use as a therapeutic to improve IR injury symptoms during lung transplantation.
Collapse
Affiliation(s)
- Kentaro Nakata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Dai Shimizu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
Lin KC, Yeh JN, Chen YL, Chiang JY, Sung PH, Lee FY, Guo J, Yip HK. Xenogeneic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. Cell Transplant 2021; 29:963689720954140. [PMID: 33050736 PMCID: PMC7784512 DOI: 10.1177/0963689720954140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study tested the hypothesis that both allogenic adipose-derived mesenchymal stem cells (ADMSCs) and human inducible pluripotent stem cell-derived MSCs (iPS-MSCs) offered a comparable effect for protecting the lung against ischemia-reperfusion (IR) injury in rodent through downregulating the inflammatory, oxidative stress, and autophagic signaling pathways. Adult male Sprague–Dawley rats (n = 32) were categorized into group 1 (sham-operated control), group 2 (IRI), group 3 [IRI + ADMSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and group 4 [IRI + iPS-MSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and lungs were harvested at 72 h after IR procedure. In vitro study demonstrated that protein expressions of three signaling pathways in inflammation (TLR4/MyD88/TAK1/IKK/I-κB/NF-κB/Cox-2/TNF-α/IL-1ß), mitochondrial damage/cell apoptosis (cytochrome C/cyclophilin D/DRP1/ASK1/APAF-1/mitochondrial-Bax/caspase3/8/9), and autophagy/cell death (ULK1/beclin-1/Atg5,7,12, ratio of LCB3-II/LC3B-I, p-AKT/m-TOR) were significantly higher in lung epithelial cells + 6h hypoxia as compared with the control, and those were significantly reversed by iPS-MSC treatment (all P < 0.001). Flow cytometric analysis revealed that percentages of the inflammatory cells in bronchioalveolar lavage fluid and circulation, and immune cells in circulation/spleen as well as circulatory early and late apoptotic cells were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4 (all P < 0.0001). Microscopy showed the lung injury score and numbers of inflammatory cells and Western blot analysis showed the signaling pathways of inflammation, mitochondrial damage/cell apoptosis, autophagy, and oxidative stress exhibited an identical pattern of flow cytometric results among the four groups (all P < 0.0001). Both xenogeneic and allogenic MSCs protected the lung against IRI via suppressing the inflammatory, oxidative stress, and autophagic signaling.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jun-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Fan-Yen Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,*Both the authors contributed equally to this article
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung.,Department of Nursing, Asia University, Taichung.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.,*Both the authors contributed equally to this article
| |
Collapse
|
6
|
Zhou Y, Zhang L, Guan J, Yin X. Improvement of lung ischemia-reperfusion injury by inhibition of microRNA-155 via reductions in neuroinflammation and oxidative stress of vagal afferent nerve. Pulm Circ 2020; 10:2045894020922125. [PMID: 32547733 PMCID: PMC7273343 DOI: 10.1177/2045894020922125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/25/2020] [Indexed: 11/25/2022] Open
Abstract
Lung ischemia–reperfusion injury (LIRI) is a common clinical concern. As the injury
occurs, the pulmonary afferent nerves play a key role in regulating respiratory functions
under pathophysiological conditions. The present study was to examine the effects of
inhibiting microRNA-155 on the levels of proinflammatory cytokines and products of
oxidative stress in the pulmonary vagal afferent nerves and the commissural nucleus of the
solitary tract (cNTS) after LIRI. A rat model of LIRI was used. ELISA method was employed
to examine proinflammatory cytokines, namely, IL-1β, IL-6 and TNF-α; and key biomarkers of
oxidative stress, 8-isoprostaglandin F2α (8-iso PGF2α) and 8-hydroxy-2′-deoxyguanosine
(8-OHdG). In results, in the process of LIRI, the levels of microRNA-155 were amplified in
the vagal afferent nerves and cNTS, and this was accompanied with increases of IL-1β, IL-6
and TNF-α; and 8-iso PGF2α and 8-OHdG. Application of microRNA-155 inhibitor, but not its
scramble, attenuated the elevation of proinflammatory cytokines and amplification of 8-iso
PGF2α and 8-OHdG in those nerve tissues. In conclusion, we observed the abnormalities in
the pulmonary afferent pathways at the levels of the peripheral nerves and brainstem,
which is likely to affect respiratory functions as LIRI occurs. Our data suggest that
blocking microRNA-155 signal pathways plays a beneficial role in regulating LIRI via
inhibiting responses of neuroinflammation and oxidative stress signal pathways to
LIRI.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Lianjie Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Guan
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Kumar A, Noda K, Philips B, Velayutham M, Stolz DB, Gladwin MT, Shiva S, D'Cunha J. Nitrite attenuates mitochondrial impairment and vascular permeability induced by ischemia-reperfusion injury in the lung. Am J Physiol Lung Cell Mol Physiol 2020; 318:L580-L591. [PMID: 32073901 DOI: 10.1152/ajplung.00367.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primary graft dysfunction (PGD) is directly related to ischemia-reperfusion (I/R) injury and a major obstacle in lung transplantation (LTx). Nitrite (NO2-), which is reduced in vivo to form nitric oxide (NO), has recently emerged as an intrinsic signaling molecule with a prominent role in cytoprotection against I/R injury. Using a murine model, we provide the evidence that nitrite mitigated I/R-induced injury by diminishing infiltration of immune cells in the alveolar space, reducing pulmonary edema, and improving pulmonary function. Ultrastructural studies support severe mitochondrial impairment in the lung undergoing I/R injury, which was significantly protected by nitrite treatment. Nitrite also abrogated the increased pulmonary vascular permeability caused by I/R. In vitro, hypoxia-reoxygenation (H/R) exacerbated cell death in lung epithelial and microvascular endothelial cells. This contributed to mitochondrial dysfunction as characterized by diminished complex I activity and mitochondrial membrane potential but increased mitochondrial reactive oxygen species (mtROS). Pretreatment of cells with nitrite robustly attenuated mtROS production through modulation of complex I activity. These findings illustrate a potential novel mechanism in which nitrite protects the lung against I/R injury by regulating mitochondrial bioenergetics and vascular permeability.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kentaro Noda
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Philips
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Murugesan Velayutham
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| |
Collapse
|
8
|
Peng CK, Wu CP, Lin JY, Peng SC, Lee CH, Huang KL, Shen CH. Gas6/Axl signaling attenuates alveolar inflammation in ischemia-reperfusion-induced acute lung injury by up-regulating SOCS3-mediated pathway. PLoS One 2019; 14:e0219788. [PMID: 31318922 PMCID: PMC6638944 DOI: 10.1371/journal.pone.0219788] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023] Open
Abstract
Background Axl is a cell surface receptor tyrosine kinase, and activation of the Axl attenuates inflammation induced by various stimuli. Growth arrest-specific 6 (Gas6) has high affinity for Axl receptor. The role of Gas6/Axl signaling in ischemia-reperfusion-induced acute lung injury (IR-ALI) has not been explored previously. We hypothesized that Gas6/Axl signaling regulates IR-induced alveolar inflammation via a pathway mediated by suppressor of cytokine signaling 3 (SOCS3). Methods IR-ALI was induced by producing 30 min of ischemia followed by 90 min of reperfusion in situ in an isolated and perfused rat lung model. The rats were randomly allotted to a control group and IR groups, which were treated with three different doses of Gas6. Mouse alveolar epithelium MLE-12 cells were cultured in control and hypoxia-reoxygenation (HR) conditions with or without Gas6 and Axl inhibitor R428 pretreatment. Results We found that Gas6 attenuated IR-induced lung edema, the production of proinflammatory cytokines in perfusates, and the severity of ALI ex vivo. IR down-regulated SOCS3 expression and up-regulated NF-κB, and Gas6 restored this process. In the model of MLE-12 cells with HR, Gas6 suppressed the activation of TRAF6 and NF-κB by up-regulating SOCS3. Axl expression of alveolar epithelium was suppressed in IR-ALI but Gas6 restored phosphorylation of Axl. The anti-inflammatory effect of Gas6 was antagonized by R428, which highlighted that phosphorylation of Axl mediated the protective role of Gas6 in IR-ALI. Conclusions Gas6 up-regulates phosphorylation of Axl on alveolar epithelium in IR-ALI. The Gas6/Axl signaling activates the SOCS3-mediated pathway and attenuates IR-related inflammation and injury.
Collapse
Affiliation(s)
- Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Jr-Yu Lin
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Chi Peng
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hao Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Gu X, Nan Y, Pang X, Zhang W, Zhang J, Zhang Y. EXPRESS: Products of oxidative stress and TRPA1 expression in the brainstem of rats after lung ischemia-reperfusion injury. Pulm Circ 2019; 9:2045894019865169. [PMID: 31267824 PMCID: PMC6681259 DOI: 10.1177/2045894019865169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022] Open
Abstract
Lung ischemia–reperfusion injury is a common clinical concern. As the injury occurs, the pulmonary afferent nerves play a key role in regulating respiratory functions under pathophysiological conditions. The present study was to examine products of oxidative stress and expression of transient receptor potential A1 in the commissural nucleus of the solitary tract after lung ischemia–reperfusion injury; and further to determine molecular mediators linking to activation of oxidative stress and transient receptor potential ankyrin A1. A rat model of lung ischemia–reperfusion injury was used. Enzyme-linked immunosorbent assay and western blot analysis were employed to examine products of oxidative stress (i.e. 8-isoprostaglandin F2α and 8-hydroxy-2′-deoxyguanosine), and expression of transient receptor potential A1, Nrf2-antioxidant response element, and NADPH oxidase. 8-isoprostaglandin F2α and 8-hydroxy-2′-deoxyguanosine were amplified in the commissural nucleus of the solitary tract of lung ischemia–reperfusion injury rats, accompanied with downregulation of Nrf2-antioxidant response element, and upregulation of NOX4 and transient receptor potential A1. Blocking NADPH oxidase (subtype NOX4) decreased products of oxidative stress in the commissural nucleus of the solitary tract and attenuated upregulation of transient receptor potential A1 induced by lung ischemia–reperfusion injury. Our data revealed specific signaling pathways by which lung ischemia–reperfusion injury impairs Nrf2-antioxidant response and activates oxidative stress in the brainstem thereby leading to amplification of transient receptor potential A1 receptor likely via products of oxidative stress. Data suggest the abnormalities in the pulmonary afferent signals at the brainstem level which is likely to affect respiratory functions as lung ischemia–reperfusion injury occurs.
Collapse
Affiliation(s)
- Xiaoying Gu
- Department of Anesthesiology, The First
Hospital of Jilin University, Changchun, China
| | - Yu Nan
- Department of Gynecology and Obstetrics,
The Second Hospital of Jilin University, Changchun, China
| | - Xiaochuan Pang
- Clinical Laboratory, The First Hospital
of Jilin University, Changchun, China
| | - Wenwen Zhang
- Department of Anesthesiology, The First
Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- Department of Anesthesiology, The First
Hospital of Jilin University, Changchun, China
| | - Yiyuan Zhang
- Department of Anesthesiology, The First
Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Moreno Garijo J, Cypel M, McRae K, Machuca T, Cunningham V, Slinger P. The Evolving Role of Extracorporeal Membrane Oxygenation in Lung Transplantation: Implications for Anesthetic Management. J Cardiothorac Vasc Anesth 2019; 33:1995-2006. [DOI: 10.1053/j.jvca.2018.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 01/09/2023]
|
11
|
Wei L, Li J, Han Z, Chen Z, Zhang Q. Silencing of lncRNA MALAT1 Prevents Inflammatory Injury after Lung Transplant Ischemia-Reperfusion by Downregulation of IL-8 via p300. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:285-297. [PMID: 31604167 PMCID: PMC6796730 DOI: 10.1016/j.omtn.2019.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion injury is a common early complication after lung transplantation. It was reported that long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in ischemia-reperfusion injury and regulates inflammation. This study aimed to explore the role of MALAT1 in inflammatory injury following lung transplant ischemia-reperfusion (LTIR). A LTIR rat model was successfully established, with the expression of MALAT1 and interleukin-8 (IL-8) in lung tissues detected. Then, in vitro loss- and gain-of-function investigations were conducted to evaluate the effect of MALAT1 on pulmonary epithelial cell apoptosis and IL-8 expression. The relationship among MALAT1, p300, and IL-8 was tested. Moreover, a sh-MALAT1-mediated model of LTIR was established in vivo to examine inflammatory injury and chemotaxis infiltration. Both IL-8 and MALAT1 were highly expressed in LTIR. MALAT1 interacted with p300 to regulate the IL-8 expression by recruiting p300. Importantly, silencing of MALAT1 inhibited the chemotaxis of neutrophils by downregulating IL-8 expression via binding to p300. Besides, MALAT1 silencing alleviated the inflammatory injury after LTIR by downregulating IL-8 and inhibiting infiltration and activation of neutrophils. Collectively, these results demonstrated that silencing of MALAT1 ameliorated the inflammatory injury after LTIR by inhibiting chemotaxis of neutrophils through p300-mediated downregulation of IL-8, providing clinical insight for LTIR injury.
Collapse
Affiliation(s)
- Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Jiwei Li
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China.
| | - Zhijun Han
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Zhong Chen
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| | - Quan Zhang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou 450003, P.R. China
| |
Collapse
|
12
|
Effects of monoacylglycerol lipase inhibitor URB602 on lung ischemia-reperfusion injury in mice. Biochem Biophys Res Commun 2018; 506:578-584. [PMID: 30366666 DOI: 10.1016/j.bbrc.2018.10.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023]
Abstract
Lung ischemia-reperfusion injury (LIRI) is a common and severe postoperative pathologic complication that often occurs when the oxygen supply disrupted to the lung tissue fallowed by reperfusion period, in most cases after lung transplantation and cardiopulmonary bypass. Endocannabinoids such as 2-arachidonoylglycerol (2-AG) have very important role as regulators of inflammation. Monoacylglycerol lipase (MAGL) is the main 2-AG-degrading enzyme, and the downstream metabolites of 2-AG play a role in the inflammation. Ischemia reperfusion (IR) was induced by clamping the left pulmonary hilum for 60 min, followed by 120 min of reperfusion in male C57BL/6 mice. Effects of URB602, a MAGL inhibitor, were evaluated in a preventive or therapeutic regimen (5 min before ischemia or reperfusion, respectively). Oxygenation index, wet-to-dry weight ratio and lung injury score were analyzed. Endocannabinoids including 2-AG, anandamide (AEA) and arachidonic acid (AA) levels, metabolites such as Prostaglandin I2 (PGI2), Thromboxane B2 (TXB2) and Leukotrienes B4 (LTB4) and inflammatory markers (Interleukin 6 (IL-6) andTumor necrosis factor-α (TNF-α)) in lung tissues were measured by using mass spectrometry or ELISA analyses. We found that IR increased the wet-to-dry weight ratio of lung and lung injury score and decreased oxygenation index as compared to the sham group. Moreover, treatment with URB602 in preventive or therapeutic regimen reduced the wet-to-dry weight ratio and lung injury score while increased oxygenation index when compared with the IR group, with a more improvement in the preventive regimen group. In addition, treatment with URB602 before ischemia increased 2-AG level but decreased metabolites (AA, PGI2, TXB2, LTB4) and inflammatory markers (IL-6, TNF-α). Thus, our study demonstrated that a pretreatment with URB602 significantly reduced IR-induced lung injury and inflammation. URB602 inhibited LIRI and inflammation by increasing 2-AG level and reducing downstream metabolites from AA to PGI2, TXB2 and LTB4 in lung tissues.
Collapse
|
13
|
Shock Wave Therapy Enhances Mitochondrial Delivery into Target Cells and Protects against Acute Respiratory Distress Syndrome. Mediators Inflamm 2018; 2018:5425346. [PMID: 30420790 PMCID: PMC6215567 DOI: 10.1155/2018/5425346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/05/2018] [Indexed: 01/11/2023] Open
Abstract
This study tested the hypothesis that shock wave therapy (SW) enhances mitochondrial uptake into the lung epithelial and parenchymal cells to attenuate lung injury from acute respiratory distress syndrome (ARDS). ARDS was induced in rats through continuous inhalation of 100% oxygen for 48 h, while SW entailed application 0.15 mJ/mm2 for 200 impulses at 6 Hz per left/right lung field. In vitro and ex vivo studies showed that SW enhances mitochondrial uptake into lung epithelial and parenchyma cells (all p < 0.001). Flow cytometry demonstrated that albumin levels and numbers of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+) in bronchoalveolar lavage fluid were the highest in untreated ARDS, were progressively reduced across SW, Mito, and SW + Mito (all p < 0.0001), and were the lowest in sham controls. The same profile was also seen for fibrosis/collagen deposition, levels of biomarkers of oxidative stress (NOX-1/NOX-2/oxidized protein), inflammation (MMP-9/TNF-α/NF-κB/IL-1β/ICAM-1), apoptosis (cleaved caspase 3/PARP), fibrosis (Smad3/TGF-β), mitochondrial damage (cytosolic cytochrome c) (all p < 0.0001), and DNA damage (γ-H2AX+), and numbers of parenchymal inflammatory cells (CD11+/CD14+/CD40L+/F4/80+) (p < 0.0001). These results suggest that SW-assisted Mito therapy effectively protects the lung parenchyma from ARDS-induced injury.
Collapse
|
14
|
Mehaffey JH, Charles EJ, Narahari AK, Schubert S, Laubach VE, Teman NR, Lynch KR, Kron IL, Sharma AK. Increasing circulating sphingosine-1-phosphate attenuates lung injury during ex vivo lung perfusion. J Thorac Cardiovasc Surg 2018; 156:910-917. [PMID: 29609890 PMCID: PMC6056006 DOI: 10.1016/j.jtcvs.2018.02.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Sphingosine-1-phosphate regulates endothelial barrier integrity and promotes cell survival and proliferation. We hypothesized that upregulation of sphingosine-1-phosphate during ex vivo lung perfusion would attenuate acute lung injury and improve graft function. METHODS C57BL/6 mice (n = 4-8/group) were euthanized, followed by 1 hour of warm ischemia and 1 hour of cold preservation in a model of donation after cardiac death. Subsequently, mice underwent 1 hour of ex vivo lung perfusion with 1 of 4 different perfusion solutions: Steen solution (Steen, control arm), Steen with added sphingosine-1-phosphate (Steen + sphingosine-1-phosphate), Steen plus a selective sphingosine kinase 2 inhibitor (Steen + sphingosine kinase inhibitor), or Steen plus both additives (Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor). During ex vivo lung perfusion, lung compliance and pulmonary artery pressure were continuously measured. Pulmonary vascular permeability was assessed with injection of Evans Blue dye. RESULTS The combination of 1 hour of warm ischemia, followed by 1 hour of cold ischemia created significant lung injury compared with lungs that were immediately harvested after circulatory death and put on ex vivo lung perfusion. Addition of sphingosine-1-phosphate or sphingosine kinase inhibitor alone did not significantly improve lung function during ex vivo lung perfusion compared with Steen without additives. However, group Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor resulted in significantly increased compliance (110% ± 13.9% vs 57.7% ± 6.6%, P < .0001) and decreased pulmonary vascular permeability (33.1 ± 11.9 μg/g vs 75.8 ± 11.4 μg/g tissue, P = .04) compared with Steen alone. CONCLUSIONS Targeted drug therapy with a combination of sphingosine-1-phosphate + sphingosine kinase inhibitor during ex vivo lung perfusion improves lung function in a murine donation after cardiac death model. Elevation of circulating sphingosine-1-phosphate via specific pharmacologic modalities during ex vivo lung perfusion may provide endothelial protection in marginal donor lungs leading to successful lung rehabilitation for transplantation.
Collapse
Affiliation(s)
- J Hunter Mehaffey
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Adishesh K Narahari
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Sarah Schubert
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Nicholas R Teman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
15
|
Preactivated and Disaggregated Shape-Changed Platelets Protected Against Acute Respiratory Distress Syndrome Complicated by Sepsis Through Inflammation Suppression. Shock 2018; 46:575-586. [PMID: 27058048 DOI: 10.1097/shk.0000000000000617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND This study tested the hypothesis that preactivated and disaggregated shape-changed platelet (PreD-SCP) therapy attenuates lung injury from acute respiratory distress syndrome (ARDS) induced by 100% oxygen inhalation and complicated by sepsis through peritoneal administration of 1.5 mg/kg lipopolysaccharide (LPS). METHODS Adult male Sprague-Dawley rats, weighing 325 to 350 g, were randomized into group 1 (normal controls [NC]), group 2 (NC + PreD-SCP [3.0 × 10, intravenous administration]), group 3 (ARDS-LPS), and group 4 (ARDS-LPS + PreD-SCP), and sacrificed by 72 h after ARDS induction. RESULTS The lung injury score was significantly higher in group 3 than that in other groups, and significantly higher in group 4 than that in groups 1 and 2, whereas the numbers of alveolar sacs and oxygen saturation (%) showed a reversed pattern compared with that of lung injury score among the four groups (all P < 0.0001) without significant difference between groups 1 and 2. The expressions of proinflammatory cells (CD11+, CD14+, CD68+) and proteins (tumor necrosis factor [TNF]-α, nuclear factor [NF]-κB, interleukin [IL]-1ββ, matrix metalloproteinase [MMP]-9, inducible nitric oxide synthase, intercellular adhesion molecule-1) exhibited a pattern identical to the lung injury score. Circulating levels of white blood cell, IL-6, TNF-α, myeloperoxidase and CCL5, and pulmonary protein expressions of oxidative stress (NOX-1/NOX-2, oxidized protein), apoptotic (Bax, cleaved caspase 3/poly (ADP-ribose) polymerase), fibrotic (Smad3, transforming growth factor [TGF]-β), and DNA damage (γ-H2AX) biomarkers showed an identical pattern, whereas protein expressions of antifibrotic (Smad1/5, bone morphogenetic protein [BMP]-2) and anti-inflammatory (Bcl-2) biomarkers demonstrated an opposite pattern compared with the proinflammatory indices among the four groups (all P < 0.001). CONCLUSIONS PreD-SCP therapy effectively improved lung injury in ARDS complicated by sepsis.
Collapse
|
16
|
Glorion M, Polard V, Favereau F, Hauet T, Zal F, Fadel E, Sage E. Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO 2life ® in pig lung transplantation model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1773-1780. [PMID: 29069926 DOI: 10.1080/21691401.2017.1392315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe the results of adding a new biological agent HEMO2life® to a standard preservation solution for hypothermic static lung preservation aiming to improve early functional parameters after lung transplantation. HEMO2life® is a natural oxygen carrier extracted from Arenicola marina with high oxygen affinity developed as an additive to standard organ preservation solutions. Standard preservation solution (Perfadex®) was compared with Perfadex® associated with HEMO2life® and with sham animals after 24 h of hypothermic preservation followed by lung transplantation. During five hours of lung reperfusion, functional parameters and biomarkers expression in serum and in bronchoalveolar lavage fluid (BALF) were measured. After five hours of reperfusion, HEMO2life® group led to significant improvement in functional parameters: reduction of graft vascular resistance (p < .05) and increase in graft oxygenation ratio (p < .05). Several ischemia-reperfusion related biomarkers showed positive trends in the HEMO2life® group: expression of HMG B1 in serum tended to be lower in comparison (2.1 ± 0.8 vs. 4.6 ± 1.5) with Perfadex® group, TNF-α and IL-8 in BALF were significantly higher in the two experimental groups compared to control (p < .05). During cold ischemia, expression of HIF1α and histology remained unchanged and similar to control. Supplementation of the Perfadex® solution by an innovative oxygen carrier HEMO2life® during hypothermic static preservation improves early graft function after prolonged cold ischemia in lung transplantation.
Collapse
Affiliation(s)
- M Glorion
- a Laboratoire de Chirurgie Expérimentale , Université PARIS XI, Hôpital Marie Lannelongue , Le Plessis Robinson , France.,b Department of Thoracic Surgery and Lung Transplantation , Foch Hospital , Suresnes , France
| | - V Polard
- c HEMARINA S.A. , Morlaix , France
| | - F Favereau
- d Faculté de Médecine, Université de Poitiers, INSERM U927 , Poitiers , France
| | - T Hauet
- d Faculté de Médecine, Université de Poitiers, INSERM U927 , Poitiers , France
| | - F Zal
- c HEMARINA S.A. , Morlaix , France
| | - E Fadel
- a Laboratoire de Chirurgie Expérimentale , Université PARIS XI, Hôpital Marie Lannelongue , Le Plessis Robinson , France
| | - E Sage
- a Laboratoire de Chirurgie Expérimentale , Université PARIS XI, Hôpital Marie Lannelongue , Le Plessis Robinson , France.,b Department of Thoracic Surgery and Lung Transplantation , Foch Hospital , Suresnes , France
| |
Collapse
|
17
|
Chen CH, Chen YL, Sung PH, Sun CK, Chen KH, Chen YL, Huang TH, Lu HI, Lee FY, Sheu JJ, Chung SY, Lee MS, Yip HK. Effective protection against acute respiratory distress syndrome/sepsis injury by combined adipose-derived mesenchymal stem cells and preactivated disaggregated platelets. Oncotarget 2017; 8:82415-82429. [PMID: 29137274 PMCID: PMC5669900 DOI: 10.18632/oncotarget.19312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/06/2017] [Indexed: 12/25/2022] Open
Abstract
This study assessed whether combining adipose-derived mesenchymal stem cells (ADMSC) with preactivated, disaggregated shape-changed platelets (PreD-SCP) was superior to either therapy alone for protecting rat lung from acute respiratory distress syndrome (ARDS) complicated by sepsis. ARDS and sepsis were induced through 100% oxygen inhalation and peritoneal administration of 1.5 mg/kg lipopolysaccharide (LPS), respectively. Adult-male Sprague-Dawley rats (n=40) were randomized into sham-control (SC), ARDS-LPS, ARDS-LPS-ADMSC (1.2x106 cells), ARDS-LPS-PreD-SCP (3.0x108, intravenous administration), and ARDS-LPS-ADMS/PreD-SCP groups, and were sacrificed 72 h after 48 h ARDS induction. Lung injury scores (LIS) and collagen deposition were highest in ARDS-LPS, lowest in SC, higher in ARDS-LPS+ADMSC than in ARDS-LPS+PreD-SCP and ARDS-LPS+ADMS/PreD-SCP, and higher in ARDS-LPS+PreD-SCP than in ARDS-LPS+ADMS/PreD-SCP (all p<0.0001). Alveolar-sac numbers, oxygen saturation, endothelial marker levels, and mitochondrial cytochrome-C levels exhibited opposite patterns with respect to LIS (all p<0.001). Levels of inflammatory, oxidative-stress, apoptosis, mitochondrial/DNA damage, and MAPK and Akt signaling markers exhibited patterns identical to that of LIS (all p<0.001). Anti-oxidant and anti-inflammatory protein levels increased progressively from SC to ARDS-LPS+ADMS/PreD-SCP (all p<0.0001). These findings indicate combined ADMSC/PreD-SCP was superior to either therapy alone for protecting rat lung from ARDS-sepsis injury.
Collapse
Affiliation(s)
- Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-I Lu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Tapias L, Ott HC. Organ transplantation: Lung repair via cross-circulation. Nat Biomed Eng 2017. [DOI: 10.1038/s41551-017-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Mehaffey JH, Hawkins RB, Charles EJ, Tribble CG. Revisiting successful transplantation with marginal lungs: Fourteen years later, a new era of extended criteria. J Thorac Cardiovasc Surg 2016; 152:e135-e136. [PMID: 27639818 DOI: 10.1016/j.jtcvs.2016.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 11/28/2022]
Affiliation(s)
- J Hunter Mehaffey
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Va.
| | - Robert B Hawkins
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| | - Eric J Charles
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| | - Curtis G Tribble
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| |
Collapse
|
20
|
Zhao Q, Wang W, Wang R, Cheng Y. TRPV1 and neuropeptide receptor immunoreactivity and expression in the rat lung and brainstem after lung ischemia-reperfusion injury. J Surg Res 2016; 203:183-92. [DOI: 10.1016/j.jss.2016.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/02/2016] [Accepted: 03/22/2016] [Indexed: 12/01/2022]
|
21
|
Huerter ME, Sharma AK, Zhao Y, Charles EJ, Kron IL, Laubach VE. Attenuation of Pulmonary Ischemia-Reperfusion Injury by Adenosine A2B Receptor Antagonism. Ann Thorac Surg 2016; 102:385-393. [PMID: 27109193 DOI: 10.1016/j.athoracsur.2016.02.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/16/2016] [Accepted: 02/16/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a major source of morbidity and mortality after lung transplantation. We previously demonstrated a proinflammatory role of adenosine A2B receptor (A2BR) in lung IR injury. The current study tests the hypothesis that A2BR antagonism is protective of ischemic lungs after in vivo reperfusion or ex vivo lung perfusion (EVLP). METHODS Mice underwent lung IR with or without administration of ATL802, a selective A2BR antagonist. A murine model of EVLP was also used to evaluate rehabilitation of donation after circulatory death (DCD) lungs. DCD lungs underwent ischemia, cold preservation, and EVLP with Steen solution with or without ATL802. A549 human type 2 alveolar epithelial cells were exposed to hypoxia-reoxygenation (HR) (3 hours/1 hour) with or without ATL802 treatment. Cytokines were measured in bronchoalveolar lavage (BAL) fluid and culture media by enzyme-linked immunoassay (ELISA). RESULTS After IR, ATL802 treatment significantly improved lung function (increased pulmonary compliance and reduced airway resistance and pulmonary artery pressure) and significantly attenuated proinflammatory cytokine production, neutrophil infiltration, vascular permeability, and edema. ATL802 also significantly improved the function of DCD lungs after EVLP (increased compliance and reduced pulmonary artery pressure). After HR, A549 cells exhibited robust production of interleukin (IL)-8, a potent neutrophil chemokine, which was significantly attenuated by ATL802. CONCLUSIONS These results demonstrate that A2BR antagonism attenuates lung IRI and augments reconditioning of DCD lungs by EVLP. The protective effects of ATL802 may involve targeting A2BRs on alveolar epithelial cells to prevent IL-8 production. A2BR may be a novel therapeutic target for mitigating IRI to increase the success of lung transplantation.
Collapse
Affiliation(s)
- Mary E Huerter
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, VA
| |
Collapse
|
22
|
Zhang X, Gao F, Yan Y, Ruan Z, Liu Z. Combination therapy with human umbilical cord mesenchymal stem cells and angiotensin-converting enzyme 2 is superior for the treatment of acute lung ischemia-reperfusion injury in rats. Cell Biochem Funct 2015; 33:113-20. [PMID: 25756848 DOI: 10.1002/cbf.3092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/25/2014] [Accepted: 01/05/2015] [Indexed: 11/11/2022]
Abstract
Acute lung ischemia-reperfusion injury (ALIRI) is a serious disease that seriously affects human's life. In this study, we aimed to explore a more effective treatment method by combining human umbilical cord mesenchymal stem cells (HUMSCs) and angiotensin-converting enzyme 2 (ACE2) for ALIRI. Fifty rats were firstly divided into five groups, namely sham surgery group (sham) and four model groups (model, ACE2, HUMSCs and HUMSCs + ACE2) that were reperfused with 0.1 ml physiological saline (PS), 0.1 ml PS containing 1 × 10(6) lentiviral-ACE2/HUMSCs/ACE2 + UMSCs, respectively. Quantitative reverse transcription-PCR (qRT-PCR) and western blot assays were then conducted to detect the messenger RNA (mRNA) and protein levels of inflammatory cytokines [intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), tumour necrosis factor α (TNF-α), nuclear factor κB (NF-κB), platelet-derived growth factor (PDGF) and angiotensin II (Ang II)], antioxidant proteins [NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1)], DNA damage and apoptotic indicators [BCL2-associated X (Bax), cleaved caspase-3 (C-Csp 3), cleaved-poly(ADP-ribose) polymerase (C-PARP), Y-H2AX], anti-apoptotic indicator (Bcl-2) and smooth muscle cell proliferation indicator [connexin 43 (Cx43)]. According to the qRT-PCR and western results, the mRNA and protein expression levels of ICAM-1, VCAM-1, TNF-α, NF-κB, PDGF, Bax, C-Csp 3, C-PARP and Y-H2AX were significantly higher in model group than those in sham group and they were significantly reduced by HUMSCs or ACE2 treatment (P < 0.05). On the contrary, Bcl-2 showed an opposite expression trend with the previous proteins. The mRNA and protein levels of NQO1 and HO-1 were sequentially increased in sham, model, ACE2, HUMSCs and HUMSCs + ACE2 groups. Besides, HUMSCs combined with ACE2 exhibited a better inhibition effect on ALIRI than HUMSCs or ACE2 alone (P < 0.05). In summary, HUMSCs combined with ACE2 was demonstrated to have the best therapeutic effect on ALIRI through anti-inflammation, oxidative stress and anti-apoptotic processes.
Collapse
Affiliation(s)
- Xiaomiao Zhang
- Department of Thoracic Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
23
|
Sun CK, Lee FY, Kao YH, Chiang HJ, Sung PH, Tsai TH, Lin YC, Leu S, Wu YC, Lu HI, Chen YL, Chung SY, Su HL, Yip HK. Systemic combined melatonin-mitochondria treatment improves acute respiratory distress syndrome in the rat. J Pineal Res 2015; 58:137-50. [PMID: 25491480 DOI: 10.1111/jpi.12199] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023]
Abstract
Despite high in-hospital mortality associated with acute respiratory distress syndrome (ARDS), there is no effective therapeutic strategy. We tested the hypothesis that combined melatonin-mitochondria treatment ameliorates 100% oxygen-induced ARDS in rats. Adult male Sprague-Dawley rats (n = 40) were equally categorized into normal controls, ARDS, ARDS-melatonin, ARDS with intravenous liver-derived mitochondria (1500 μg per rat 6 hr after ARDS induction), and ARDS receiving combined melatonin-mitochondria. The results showed that 22 hr after ARDS induction, oxygen saturation (saO2 ) was lowest in the ARDS group and highest in normal controls, significantly lower in ARDS-melatonin and ARDS-mitochondria than in combined melatonin-mitochondria group, and significantly lower in ARDS-mitochondria than in ARDS-melatonin group. Conversely, right ventricular systolic blood pressure and lung weight showed an opposite pattern compared with saO2 among all groups (all P < 0.001). Histological integrity of alveolar sacs showed a pattern identical to saO2 , whereas lung crowding score exhibited an opposite pattern (all P < 0.001). Albumin level and inflammatory cells (MPO+, CD40+, CD11b/c+) from bronchoalveolar lavage fluid showed a pattern opposite to saO2 (all P < 0.001). Protein expression of indices of inflammation (MMP-9, TNF-α, NF-κB), oxidative stress (oxidized protein, NO-1, NOX-2, NOX-4), apoptosis (mitochondrial Bax, cleaved caspase-3, and PARP), fibrosis (Smad3, TGF-β), mitochondrial damage (cytochrome C), and DNA damage (γ-H2AX+) exhibited an opposite pattern compared to saO2 in all groups, whereas protein (HO-1, NQO-1, GR, GPx) and cellular (HO-1+) expressions of antioxidants exhibited a progressively increased pattern from normal controls to ARDS combined melatonin-mitochondria group (all P < 0.001). In conclusion, combined melatonin-mitochondrial was superior to either treatment alone in attenuating ARDS in this rat model.
Collapse
Affiliation(s)
- Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu F, Gao F, Li Q, Liu Z. The functional study of human umbilical cord mesenchymal stem cells harbouring angiotensin-converting enzyme 2 in rat acute lung ischemia-reperfusion injury model. Cell Biochem Funct 2014; 32:580-9. [PMID: 25230251 DOI: 10.1002/cbf.3054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Fabing Liu
- Department of Thoracic Surgery; First People's Hospital, Affiliated to Shanghai Jiao Tong University; Shanghai China
| | - Fengying Gao
- Department of Respiratory Medicine; Shanghai Jian Gong Hospital; Shanghai China
| | - Qian Li
- Department of Pediatrics; First People's Hospital of Kunshan, Jiangsu University; Kunshan China
| | - Zhenwei Liu
- Department of Respiratory Medicine; First People's Hospital, Affiliated to Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
25
|
Sharma AK, LaPar DJ, Stone ML, Zhao Y, Kron IL, Laubach VE. Receptor for advanced glycation end products (RAGE) on iNKT cells mediates lung ischemia-reperfusion injury. Am J Transplant 2013; 13:2255-67. [PMID: 23865790 PMCID: PMC3776006 DOI: 10.1111/ajt.12368] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 01/25/2023]
Abstract
Activation of invariant natural killer T (iNKT) cells and signaling through receptor for advanced glycation end products (RAGE) are known to independently mediate lung ischemia-reperfusion (IR) injury. This study tests the hypothesis that activation of RAGE specifically on iNKT cells via alveolar macrophage-produced high mobility group box 1 (HMGB1) is critical for the initiation of lung IR injury. A murine in vivo hilar clamp model was utilized, which demonstrated that RAGE(-/-) mice were significantly protected from IR injury. Treatment of WT mice with soluble RAGE (a decoy receptor), or anti-HMGB1 antibody, attenuated lung IR injury and inflammation, whereas treatment with recombinant HMGB1 enhanced IR injury in WT mice but not RAGE(-/-) mice. Importantly, lung dysfunction, cytokine production and neutrophil infiltration were significantly attenuated after IR in Jα18(-/-) mice reconstituted with RAGE(-/-) iNKT cells (versus WT iNKT cells). In vitro studies demonstrated that, after hypoxia-reoxygenation, alveolar macrophage-derived HMGB1 augmented IL-17 production from iNKT cells in a RAGE-dependent manner. These results suggest that HMGB1-mediated RAGE activation on iNKT cells is critical for initiation of lung IR injury and that a crosstalk between macrophages and iNKT cells via the HMGB1/RAGE axis mediates IL-17 production by iNKT cells causing neutrophil infiltration and lung IR injury.
Collapse
Affiliation(s)
- A K Sharma
- Department of Surgery, University of Virginia Health System, Charlottesville, VA
| | | | | | | | | | | |
Collapse
|
26
|
Hennessy SA, Gillen JR, Hranjec T, Kozower BD, Jones DR, Kron IL, Lau CL. Influence of hemodialysis on clinical outcomes after lung transplantation. J Surg Res 2013; 183:916-21. [PMID: 23481566 PMCID: PMC4217044 DOI: 10.1016/j.jss.2013.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 11/18/2012] [Accepted: 02/04/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic renal failure after lung transplantation is associated with significant morbidity. However, the significance of acute kidney injury (AKI) after lung transplantation remains unclear and poorly studied. We hypothesized that hemodialysis (HD)-dependent AKI after lung transplantation is associated with significant mortality. MATERIALS AND METHODS We performed a retrospective review of all patients undergoing lung transplantation from July 1991 to July 2009 at our institution. Recipients with AKI (creatinine > 3 mg/dL) were identified. We compared recipients without AKI versus recipients with and without HD-dependent AKI. Kaplan-Meier survival curves were compared by log rank test. RESULTS Of 352 lung transplant recipients reviewed at our institution, 17 developed non-HD-dependent AKI (5%) and 16 developed HD-dependent AKI (4.6%). Cardiopulmonary bypass was significantly higher in patients with HD-dependent AKI. None of the recipients who required HD had recovery of renal function. The 30-day mortality was significantly greater in recipients requiring HD (63% versus 0%; P < 0.0001). One-year mortality after transplantation was significantly increased in recipients with HD-dependent AKI compared with those with non-HD-dependent AKI (87.5% versus 17.6%; P < 0.001). CONCLUSIONS Hemodialysis is associated with mortality after lung transplantation. Fortunately, AKI that does not progress to HD commonly resolves and has a better overall survival. Avoidance, if possible, of cardiopulmonary bypass may attenuate the incidence of AKI. Aggressive measures to identify and treat early postoperative renal dysfunction and prevent progression to HD may improve outcomes after lung transplantation.
Collapse
Affiliation(s)
| | | | - Tjasa Hranjec
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - David R. Jones
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Irving L. Kron
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Christine L. Lau
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
27
|
Wittwer T, Madershahian N, Rahmanian P, Choi YH, Neef K, Frank K, Müller-Ehmsen J, Ochs M, Mühlfeld C, Wahlers T. Surfactant application in experimental lung transplantation. J Heart Lung Transplant 2013; 32:355-9. [DOI: 10.1016/j.healun.2012.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 12/17/2022] Open
|
28
|
Yip HK, Chang YC, Wallace CG, Chang LT, Tsai TH, Chen YL, Chang HW, Leu S, Zhen YY, Tsai CY, Yeh KH, Sun CK, Yen CH. Melatonin treatment improves adipose-derived mesenchymal stem cell therapy for acute lung ischemia-reperfusion injury. J Pineal Res 2013; 54:207-21. [PMID: 23110436 DOI: 10.1111/jpi.12020] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
This study investigated whether melatonin-treated adipose-derived mesenchymal stem cells (ADMSC) offered superior protection against acute lung ischemia-reperfusion (IR) injury. Adult male Sprague-Dawley rats (n = 30) were randomized equally into five groups: sham controls, lung IR-saline, lung IR-melatonin, lung IR-melatonin-normal ADMSC, and lung IR-melatonin-apoptotic ADMSC. Arterial oxygen saturation was lowest in lung IR-saline; lower in lung IR-melatonin than sham controls, lung IR-melatonin-normal ADMSC, and lung IR-melatonin-apoptotic ADMSC; lower in lung IR-melatonin-normal ADMSC than sham controls and lung IR-melatonin-apoptotic ADMSC; lower in lung IR-melatonin-apoptotic ADMSC than sham controls (P < 0.0001 in each case). Right ventricular systolic blood pressure (RVSBP) showed a reversed pattern among all groups (all P < 0.0001). Changes in histological scoring of lung parenchymal damage and CD68+ cells showed a similar pattern compared with RVSBP in all groups (all P < 0.001). Changes in inflammatory protein expressions such as VCAM-1, ICAM-1, oxidative stress, TNF-α, NF-κB, PDGF, and angiotensin II receptor, and changes in apoptotic protein expressions of cleaved caspase 3 and PARP, and mitochondrial Bax, displayed identical patterns compared with RVSBP in all groups (all P < 0.001). Numbers of antioxidant (GR+, GPx+, NQO-1+) and endothelial cell biomarkers (CD31+ and vWF+) were lower in sham controls, lung IR-saline, and lung IR-melatonin than lung IR-melatonin-normal ADMSC and lung IR-melatonin-apoptotic ADMSC, and lower in lung IR-melatonin-normal ADMSC than lung IR-melatonin-apoptotic ADMSC (P < 0.001 in each case). In conclusion, when the animals were treated with melatonin, the apoptotic ADMSC were superior to normal ADMSC for protection of lung from acute IR injury.
Collapse
Affiliation(s)
- Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Thistlethwaite PA. Invited commentary. Ann Thorac Surg 2013; 95:1033-4. [PMID: 23438530 DOI: 10.1016/j.athoracsur.2012.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, University of California, San Diego, 9300 Campus Point Dr, La Jolla, CA 92037-7982, USA.
| |
Collapse
|
30
|
de Perrot M, Granton JT, McRae K, Pierre AF, Singer LG, Waddell TK, Keshavjee S. Outcome of patients with pulmonary arterial hypertension referred for lung transplantation: A 14-year single-center experience. J Thorac Cardiovasc Surg 2012; 143:910-8. [DOI: 10.1016/j.jtcvs.2011.08.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/21/2011] [Accepted: 08/24/2011] [Indexed: 10/14/2022]
|
31
|
Donor Type Impact on Ischemia-Reperfusion Injury After Lung Transplantation. Ann Thorac Surg 2012; 93:913-9; discussion 919-20. [DOI: 10.1016/j.athoracsur.2011.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 11/08/2011] [Accepted: 11/14/2011] [Indexed: 11/24/2022]
|
32
|
Lapar DJ, Hajzus VA, Zhao Y, Lau CL, French BA, Kron IL, Sharma AK, Laubach VE. Acute hyperglycemic exacerbation of lung ischemia-reperfusion injury is mediated by receptor for advanced glycation end-products signaling. Am J Respir Cell Mol Biol 2011; 46:299-305. [PMID: 21980055 DOI: 10.1165/rcmb.2011-0247oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effects of acute hyperglycemia on lung ischemia-reperfusion (IR) injury and the role of receptor for advanced glycation end-products (RAGE) signaling in this process are unknown. The objective of this study was twofold: (1) evaluate the impact of acute hyperglycemia on lung IR injury; and (2) determine if RAGE signaling is a mechanism of hyperglycemia-enhanced IR injury. We hypothesized that acute hyperglycemia worsens lung IR injury through a RAGE signaling mechanism. C57BL/6 wild-type (WT) and RAGE knockout (RAGE (-/-)) mice underwent sham thoracotomy or lung IR (1-h left hilar occlusion and 2-h reperfusion). Acute hyperglycemia was established by dextrose injection 30 minutes before ischemia. Lung injury was assessed by measuring lung function, cytokine expression in bronchoalveolar lavage fluid, leukocyte infiltration, and microvascular permeability via Evans blue dye. Mean blood glucose levels doubled in hyperglycemic mice 30 minutes after dextrose injection. Compared with IR in normoglycemic mice, IR in hyperglycemic mice significantly enhanced lung dysfunction, cytokine expression (TNF-α, keratinocyte chemoattractant, IL-6, monocyte chemotactic protein-1, regulated upon activation, normal T cell expressed and secreted), leukocyte infiltration, and microvascular permeability. Lung injury and dysfunction after IR were attenuated in normoglycemic RAGE (-/-) mice, and hyperglycemia failed to exacerbate IR injury in RAGE (-/-) mice. Thus, this study demonstrates that acute hyperglycemia exacerbates lung IR injury, whereas RAGE deficiency attenuates IR injury and also prevents exacerbation of IR injury in an acute hyperglycemic setting. These results suggest that hyperglycemia-enhanced lung IR injury is mediated, at least in part, by RAGE signaling, and identifies RAGE as a potential, novel therapeutic target to prevent post-transplant lung IR injury.
Collapse
Affiliation(s)
- Damien J Lapar
- Department of Surgery, University of Virginia Health System, P.O. Box 801359, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
LaPar DJ, Laubach VE, Emaminia A, Crosby IK, Hajzus VA, Sharma AK, Sumner HM, Webb DV, Lau CL, Kron IL. Pretreatment strategy with adenosine A2A receptor agonist attenuates reperfusion injury in a preclinical porcine lung transplantation model. J Thorac Cardiovasc Surg 2011; 142:887-94. [PMID: 21762933 PMCID: PMC3212732 DOI: 10.1016/j.jtcvs.2011.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/02/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Adenosine A(2A) receptor activation after lung transplantation attenuates ischemia-reperfusion injury by reducing inflammation. However, the effect of adenosine A(2A) receptor activation in donor lungs before transplant remains ill defined. This study compares the efficacy of 3 different treatment strategies for adenosine A(2A) receptor agonist in a clinically relevant porcine lung transplantation model. METHODS Mature porcine lungs underwent 6 hours of cold ischemia before allotransplantation and 4 hours of reperfusion. Five groups (n = 6/group) were evaluated on the basis of treatment with ATL-1223, a selective adenosine A(2A) receptor agonist: thoracotomy alone (sham), transplant alone (ischemia-reperfusion), donor pretreatment via ATL-1223 bolus (ATL-D), recipient treatment via ATL-1223 infusion (ATL-R), and a combination of both ATL-1223 treatments (ATL-D/R). Lung function and injury were compared. RESULTS Blood oxygenation was significantly higher among ATL-D, ATL-R, and ATL-D/R groups versus ischemia-reperfusion (392.0 ± 52.5, 428.9 ± 25.5, and 509.4 ± 25.1 vs 77.2 ± 17.0 mm Hg, respectively, P < .001). ATL-1223-treated groups had lower pulmonary artery pressures (ATL-D = 30.5 ± 1.8, ATL-R = 30.2 ± 3.3, and ATL-D/R = 29.3 ± 4.5 vs IR = 45.2 ± 2.1 mm Hg, P < .001) and lower mean airway pressures versus ischemia-reperfusion (ATL-D = 9.1 ± 0.8, ATL-R = 9.1 ± 2.6, and ATL-D/R = 9.6 ± 1.3 vs IR = 21.1 mm Hg, P < .001). Likewise, ATL-1223-treated groups had significantly lower lung wet/dry weight, proinflammatory cytokine expression, and lung injury scores by histology compared with ischemia-reperfusion. All parameters of lung function and injury in ATL-1223-treated groups were similar to sham (all P > .05). CONCLUSIONS Pretreatment of donor lungs with ATL-1223 was as efficacious as other treatment strategies in protecting against ischemia-reperfusion injury. If necessary, supplemental treatment of recipients with ATL-1223 may provide additional protection. These results support the development of pharmacologic A(2A)R agonists for use in human clinical trials for lung transplantation.
Collapse
Affiliation(s)
- Damien J. LaPar
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Victor E. Laubach
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Abbas Emaminia
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Ivan K. Crosby
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Vanessa A. Hajzus
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Ashish K. Sharma
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Heather M. Sumner
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - David V. Webb
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Christine L. Lau
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Irving L. Kron
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
34
|
Sharma AK, LaPar DJ, Zhao Y, Li L, Lau CL, Kron IL, Iwakura Y, Okusa MD, Laubach VE. Natural killer T cell-derived IL-17 mediates lung ischemia-reperfusion injury. Am J Respir Crit Care Med 2011; 183:1539-49. [PMID: 21317314 DOI: 10.1164/rccm.201007-1173oc] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RATIONALE We recently implicated a role for CD4(+) T cells and demonstrated elevated IL-17A expression in lung ischemia-reperfusion (IR) injury. However, identification of the specific subset of CD4(+) T cells and their mechanistic role in IR injury remains unknown. OBJECTIVES We tested the hypothesis that invariant natural killer T (iNKT) cells mediate lung IR injury via IL-17A signaling. METHODS Mice underwent lung IR via left hilar ligation. Pulmonary function was measured using an isolated lung system. Lung injury was assessed by measuring edema (wet/dry weight) and vascular permeability (Evans blue dye). Inflammation was assessed by measuring proinflammatory cytokines in lungs, and neutrophil infiltration was measured by immunohistochemistry and myeloperoxidase levels. MEASUREMENTS AND MAIN RESULTS Pulmonary dysfunction (increased airway resistance and pulmonary artery pressure and decreased pulmonary compliance), injury (edema, vascular permeability), and inflammation (elevated IL-17A; IL-6; tumor necrosis factor-α; monocyte chemotactic protein-1; keratinocyte-derived chemokine; regulated upon activation, normal T-cell expressed and secreted; and neutrophil infiltration) after IR were attenuated in IL-17A(-/-) and Rag-1(-/-) mice. Anti-IL-17A antibody attenuated lung dysfunction in wild-type mice after IR. Reconstitution of Rag-1(-/-) mice with wild-type, but not IL-17A(-/-), CD4(+) T cells restored lung dysfunction, injury, and inflammation after IR. Lung dysfunction, injury, IL-17A expression, and neutrophil infiltration were attenuated in Jα18(-/-) mice after IR, all of which were restored by reconstitution with wild-type, but not IL-17A(-/-), iNKT cells. Flow cytometry and enzyme-linked immunosorbent spot assay confirmed IL-17A production by iNKT cells after IR. CONCLUSIONS These results demonstrate that CD4(+) iNKT cells play a pivotal role in initiating lung injury, inflammation, and neutrophil recruitment after IR via an IL-17A-dependent mechanism.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gazoni LM, Walters DM, Unger EB, Linden J, Kron IL, Laubach VE. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2010; 140:440-6. [PMID: 20398911 PMCID: PMC2906677 DOI: 10.1016/j.jtcvs.2010.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/08/2009] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion injury. We hypothesized that activation of A(1), A(2A), or A(3) adenosine receptors would provide protection against lung ischemia-reperfusion injury. METHODS With the use of an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours of cold ischemia followed by 2 hours of reperfusion. Lungs were administered vehicle, adenosine, or selective A(1), A(2A), or A(3) receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. RESULTS Compared with the vehicle-treated control group, treatment with A(1), A(2A), or A(3) agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced tumor necrosis factor-alpha production. Adenosine treatment was also protective, but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A(2A) agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A(1) or A(3) agonists. CONCLUSION Selective activation of A(1), A(2A), or A(3) adenosine receptors provides significant protection against lung ischemia-reperfusion injury. The decreased elaboration of the potent proinflammatory cytokine tumor necrosis factor-alpha and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients.
Collapse
Affiliation(s)
- Leo M. Gazoni
- Department of Surgery, University of Virginia Health System, Charlottesville, VA
| | - Dustin M. Walters
- Department of Surgery, University of Virginia Health System, Charlottesville, VA
| | - Eric B. Unger
- Department of Surgery, University of Virginia Health System, Charlottesville, VA
| | - Joel Linden
- Department of Medicine, University of Virginia Health System, Charlottesville, VA
| | - Irving L. Kron
- Department of Surgery, University of Virginia Health System, Charlottesville, VA
| | - Victor E. Laubach
- Department of Surgery, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
36
|
Anvari F, Sharma AK, Fernandez LG, Hranjec T, Ravid K, Kron IL, Laubach VE. Tissue-derived proinflammatory effect of adenosine A2B receptor in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2010; 140:871-7. [PMID: 20659747 DOI: 10.1016/j.jtcvs.2010.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/14/2010] [Accepted: 06/28/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Ischemia-reperfusion injury after lung transplantation remains a major source of morbidity and mortality. Adenosine receptors have been implicated in both pro- and anti-inflammatory roles in ischemia-reperfusion injury. This study tests the hypothesis that the adenosine A(2B) receptor exacerbates the proinflammatory response to lung ischemia-reperfusion injury. METHODS An in vivo left lung hilar clamp model of ischemia-reperfusion was used in wild-type C57BL6 and adenosine A(2B) receptor knockout mice, and in chimeras created by bone marrow transplantation between wild-type and adenosine A(2B) receptor knockout mice. Mice underwent sham surgery or lung ischemia-reperfusion (1 hour ischemia and 2 hours reperfusion). At the end of reperfusion, lung function was assessed using an isolated buffer-perfused lung system. Lung inflammation was assessed by measuring proinflammatory cytokine levels in bronchoalveolar lavage fluid, and neutrophil infiltration was assessed via myeloperoxidase levels in lung tissue. RESULTS Compared with wild-type mice, lungs of adenosine A(2B) receptor knockout mice were significantly protected after ischemia-reperfusion, as evidenced by significantly reduced pulmonary artery pressure, increased lung compliance, decreased myeloperoxidase, and reduced proinflammatory cytokine levels (tumor necrosis factor-α; interleukin-6; keratinocyte chemoattractant; regulated on activation, normal T-cell expressed and secreted; and monocyte chemotactic protein-1). Adenosine A(2B) receptor knockout → adenosine A(2B) receptor knockout (donor → recipient) and wild-type → adenosine A(2B) receptor knockout, but not adenosine A(2B) receptor knockout → wild-type, chimeras showed significantly improved lung function after ischemia-reperfusion. CONCLUSIONS These results suggest that the adenosine A(2B) receptor plays an important role in mediating lung inflammation after ischemia-reperfusion by stimulating cytokine production and neutrophil chemotaxis. The proinflammatory effects of adenosine A(2B) receptor seem to be derived by adenosine A(2B) receptor activation primarily on resident pulmonary cells and not bone marrow-derived cells. Adenosine A(2B) receptor may provide a therapeutic target for prevention of ischemia-reperfusion-related graft dysfunction in lung transplant recipients.
Collapse
Affiliation(s)
- Farshad Anvari
- Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Salama M, Andrukhova O, Hoda MA, Taghavi S, Jaksch P, Heinze G, Klepetko W, Aharinejad S. Concomitant endothelin-1 overexpression in lung transplant donors and recipients predicts primary graft dysfunction. Am J Transplant 2010; 10:628-36. [PMID: 20055806 DOI: 10.1111/j.1600-6143.2009.02957.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Primary graft dysfunction (PGD) causes significant morbidity following lung transplantation (LTX). Mortality is high in PGD and therapeutic strategies are limited. To investigate whether endothelin-1 (ET-1) that mediates increased vascular permeability and edema formation in lung grafts can predict PGD, ET-1 mRNA expression was examined in lung tissue biopsies of 105 donors and recipients obtained shortly before LTX. Serum ET-1 concentration was assessed by ELISA. PGD grade was diagnosed and scored by oxygenation and radiological characteristics according to ISHLT guidelines. PGD grade 3 developed in 11% of patients. ET-1 mRNA expression was significantly increased in both donor (p < 0.0001) and recipient (p = 0.01) developing PGD as compared to no PGD group. Pretransplant ET-1 serum concentrations were elevated in recipients with PGD as compared to no PGD group (p < 0.0001), although serum ET-1 was not different between donors whose grafts developed PGD grades 0-3. In regression analysis, concomitant elevated donor tissue ET-1 and recipient serum ET-1 predicted PGD grade 3. This study indicates that pretransplant ET-1 mRNA overexpression in donors associated with elevated pretransplant serum ET-1 in recipients contribute to PGD development and that their assessment might be beneficial to predict PGD and to identify recipients who could benefit from a targeted ET-1 blockade.
Collapse
Affiliation(s)
- M Salama
- Department of Cardiothoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bonnette P. [Logistic, technic and postoperative complications of lung and heart-lung transplantations]. REVUE DE PNEUMOLOGIE CLINIQUE 2010; 67:15-20. [PMID: 21353969 DOI: 10.1016/j.pneumo.2010.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
In France, the "Agence de la biomédecine" distributes lung grafts. "Ideal" criteria for lung donor selection are not always respected, driven by the scarcity of suitable donor lungs (10% deaths while waiting). In single lung transplantation, three anastomoses are performed (bronchus near the lobar carina, pulmonary artery, left atrium). For double lung transplantation (twice as frequent around the world), two single lung transplantations are successively performed through two separate anterolateral thoracotomies, often without cardiopulmonary bypass. Heart lung transplantations are now rare (2% around the world). Postoperative mortality has improved (between 10 and 15%): less severe primary graft dysfunctions, treatable with ECMO, fewer bronchial complications, improvement in the diagnosis of hyperacute humoral rejection, improvement in antiviral prophylaxis.
Collapse
Affiliation(s)
- P Bonnette
- Chirurgie thoracique et groupe de transplantation pulmonaire, hôpital Foch, 40, rue Worth, 92150 Suresnes, France.
| |
Collapse
|